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Abstract—A novel framework was introduced recently for
stochastic routing in wireless multihop networks, whereby each
node selects a neighbor to forward a packet according to a
probability distribution. Generalizing (deterministic) shortest
path routing, stochastic routing offers greater flexibility that
matches the random nature of wireless links. Consider the
pairwise reliability matrix R, whose (i, j)-th entry Rij represents
the probability that a packet transmitted from the j-th user
Uj is correctly received by the i-th user Ui. Using R to
capture physical layer aspects of the wireless medium, several
rate-oriented stochastic routing formulations can be reduced
to centrally solvable convex optimization problems. The present
paper, introduces distributed algorithms that find optimal routing
probabilities without the burden of collecting R at a central node
and then percolating the resulting routing probabilities through
network nodes. The resultant schemes are distributed in the
sense that: (i) terminal Uj has access only to the j-th row and
column of R; and (ii) Uj interchanges variables only with those
single-hop neighbors having positive probability of decoding
its packets. The distributed algorithms are built by recasting
the optimization problems and applying dual decomposition
techniques. Since iterates obtained via dual decomposition do not
always converge to centralized optimal routing probabilities, two
known regularization approaches are further invoked, namely the
method of multipliers (MoM) and the alternating-direction MoM.
Convergence to the optimal routing matrix is then guaranteed
under mild conditions. Many rate-oriented optimality criteria of
practical interest can be addressed by the distributed framework,
including maximization of: (i) the minimum rate; (ii) a weighted
sum of rates; (iii) the product of rates; and (iv) the source’s rate
in a relay network. Robustness of the distributed algorithms
is tested with respect to “topological” changes, communication
errors and node mobility.

Index Terms—Routing, wireless multihop networks, dis-
tributed network optimization, convex optimization, dual decom-
position.
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I. INTRODUCTION

MULTIHOP routing for wireless networks has recently
attracted much interest, see e.g., [6], [8], due in part

to its potential for reducing energy consumption (and thus
increasing network lifetime) in energy-limited settings, such
as sensor networks. The potential for energy-savings of multi-
hop routing fundamentally stems from reducing the effective
average distance between communicating nodes. Properly
exploiting this potential requires addressing the challenge
of finding multi-hop routes according to suitable optimality
criteria; see e.g., [12], [18], [20]. Current multihop routing
protocols for wireless networks are based on accumulated
knowledge about routing in wired networks. Consequently, the
usual approach is to: i) define a communication radius for each
node; ii) draw the corresponding connectivity graph; and iii)
utilize network optimization tools, e.g., shortest path routing,
to find the optimal routes. While valuable as a first-order
approach, a connectivity graph is not necessarily an accurate
model of a wireless network [9], [10], [14]. In a recent
paper we introduced a framework to design stochastic routing
algorithms based on the reliability (pairwise packet-success-
probability) matrix R whose (i, j)-th entry Rij represents the
probability that a packet transmitted from the j-th user Uj

is correctly received by the i-th user Ui [17]; see also [5]
and Fig. 1. Using R to capture the essential characteristics of
the inherently unreliable wireless broadcast channel is still a
rather coarse abstraction. Unlike the crude connectivity graph,
however, R takes link reliability and radio interference from
other nodes into account. The usefulness of a model based
on R hinges on the relative communication efficiency and
algorithmic complexity of finding optimal routes. Enticingly,
many interesting optimality criteria lead to optimal routing
algorithms in the form of convex optimization problems [17].

A. Stochastic routing in wireless multihop networks

Consider a wireless network with J+1 user nodes {Uj}J+1
j=1

in which the first J users {Uj}J
j=1 participate in routing

packets to a destination D ≡ UJ+1. The physical and medium
access layers are such that (s.t.) if a packet is transmitted by
Uj it is correctly received by Ui with probability Rij that
we arrange in the matrix R. Packets are stochastically routed,
i.e., transmitted, according to probabilities Tij collected in a
matrix T. When user terminal Uj decides to transmit a packet
it selects a random terminal as the intended next hop with Ui

chosen with probability Tij . If the transmission is successfully
received – something that happens with probability Rij –
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Fig. 1. Schematic representation of R for a network with 70 terminal nodes.
The color index (gray level) represents the value of Rij . To generate Rij

we consider the per-packet SINRs as in (45) and determine the per-packet
reliabilities with a (23, 12) Golay code, [16, pp. 457]. The value of Rij is
then computed as the time average over 103 packet transmissions (μj = 0.2,
σj = −90db ∀j, c = 1 and α = 3.4).

the packet moves to Ui’s queue; otherwise it is kept by Uj

that attempts transmission, possibly to a different node, at a
later time. To capture the evolution of packets through the
network we define a matrix K whose elements Kij represent
the probability that a packet moves from Uj’s queue to Ui’s
queue. For i �= j the packet moves from Uj to Ui if and only
if it is routed through Ui and is correctly decoded; since these
two events are independent, we have (T denotes transposition
and 1 the all-ones column vector)

Kij = TijRij for i �= j, KT1 = 1, TT 1 = 1 (1)

where the last two constraints come from the fact that K and
T are stochastic matrices, i.e., columns add to one.

To complete the formulation let each terminal maintain a
queue to store packets to be transmitted. Exogenous packet
arrivals at Uj can be described by a stationary stochastic
process with average rate ρj ; let ρ := [ρ1, . . . , ρJ ]T . Further
denote as μ := [μ1, . . . , μJ ]T the transmission probabilities
and λ := [λ1, . . . , λJ ]T the average rate of packet departures.
For queue stability it suffices to have 0 � λ � μ, where �
should be interpreted element-wise and 0 denotes the all-zero
vector. Defining KD as the J × J upper left submatrix of K,
it is not difficult to see that ρ and λ are related by [17]

ρ = (I− KD)λ. (2)

With R available at a central location, the stochastic routing
protocols outlined here yield routes maximizing a measure of
the arrival rate vector ρ. Specifically, letting f(ρ) : R

J → R

be a utility function used to compare arrival rate vectors ρ,
the optimal routing matrix T∗ is given as the solution of the
generic optimization problem

T∗ = arg max f [(I − KD)λ]
s.t. Kij = RijTij for i �= j,

KT1 = 1, TT1 = 1, 0 � λ � μ. (3)

Finding efficient methods to solve (3) is challenging for a
general f(ρ). Remarkably though, for any f(ρ) that is con-
cave and monotonically non-decreasing in each component1

(3) can be transformed into an equivalent convex optimization
problem for which globally convergent solution methods are
available [17].

In fact, the basic result in [17] is that for functions f(ρ) that
are monotonically non-decreasing in each component there
exists an optimal solution of (3) with λ = μ; hence (3) can
be rewritten as

T∗ = arg max f [(I− KD)μ]
s.t. Kij = RijTij for i �= j,

KT1 = 1, TT 1 = 1. (4)

The concavity of f(ρ) further implies that the argument in (4)
is concave, which together with the fact that the constraints
are linear equalities imply that (4) is a convex optimization
problem that can be solved in polynomial time using interior
point methods [3, Ch. 11]. It is worth stressing that λ = μ is
not the unique optimal solution of (3) but among the set of
optimal pairs (T∗, λ∗) there exists one with λ∗ = μ.

Requiring f(ρ) to be monotonically non-decreasing in each
component is a mild condition ensuring that an increase in the
rate of one user does not decrease the value of the objective
function to be maximized. Many practical rate-maximizing
criteria rely on concave functions f(ρ) that are monotoni-
cally non-decreasing in each component [17]. These include
“workhorse criteria” such as optimal α-weighted sum-rate
with f(ρ) = αT ρ, max-min rate with f(ρ) = minj∈[1,J] ρj ,
and max-product rate with f(ρ) =

∏
j∈[1,J] ρj .

At this point it is important to clarify that when solving (4),
the matrix R is considered fixed. Its entries depend on fading
and interference through the signal-to-interference-plus-noise
ratios (SINRs) and the joint queue occupancy distribution,
which in turn depends on the arrival rates, scheduling and
routing decisions. Ultimately, routing and scheduling over
wireless links should be optimized jointly. But since this
appears analytically intractable, similar to [14], [18], [20]
where fixed SINRs are adopted as link metrics, we assume
that R is fixed during route optimization2. Note also that a
conservative (worst-case) fixed R corresponding to continu-
ously backlogged queues can be justified through a dominant
system argument [17]. Indeed, using such a fixed R amounts
to maximizing throughput under a condition that is sufficient
for stability. Furthermore, in a heavily loaded system in which
queues rarely empty, R is essentially independent of routing.

Finding optimal routes as solutions of (4) incurs manageable
complexity; yet, it requires R to be available at the access
point (AP) – or any designated node for that matter – so
that (4) can be solved and the optimal routing matrix T∗ can
then be distributed throughout the network. This entails: i)
a large communication cost to collect R and percolate T∗;

1We say a function g(v) is monotonically non-decreasing in each compo-
nent if for vectors v(1) := [v

(1)
1 , . . . , v

(1)
J ]T and v(2) := [v

(2)
1 , . . . , v

(2)
J ]T

with v
(1)
j � v

(2)
j and v

(1)
i = v

(2)
i for i �= j, we have that g[v(1)] � g[v(2)].

2Alternately, recent approaches which account for the coupling between
routing and SINRs, e.g., [7], render the problem tractable by sacrificing rate
optimality and assuming that the links are binary valued (good or bad).
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ii) considerable delay to compute T in a “batch” mode; and
iii) lack of resilience to changes in R, a problem particularly
important in highly dynamic (e.g., mobile) scenarios.

Distributed on-line routing algorithms, whereby nodes op-
erate in adaptive mode and iteratively exchange variables only
with one-hop neighbors tackle precisely these problems. In-
deed, in a distributed iterative algorithm it is assumed that Uj

has access only to the link reliabilities for transmission to and
from other nodes, i.e., the j-th row and column of R, respec-
tively. Consequently, distributed algorithms neither require R
to be available at a central node, nor percolate the routing
matrix T∗. Thus, they can afford reduced communication cost,
and gain robustness to changes in topology due to fading
and/or mobility; see e.g., [7], [13], [19], [22]. The main goal
of this paper is to show that the optimization problem in (4)
can be solved by an iterative distributed algorithm whereby: i)
node Uj has access only to the j-th row and column of R; ii)
Uj interchanges messages with one-hop neighbors, defined as
the set of terminals with positive probability of decoding Uj’s
packets; and iii) as time progresses Uj computes its optimal
routing probabilities, i.e., the j-th column of T.

The rest of the paper is organized as follows. In Sec-
tion II we work with max-min optimal routing (f(ρ) =
minj∈[1,J] ρj) and reformulate (4) into an equivalent problem
that is amenable to distributed implementation. We argue that
this reformulation is also applicable to a fairly broad class of
optimality criteria, thus motivating the generic problem formu-
lation of Section II-A. We then show how dual decomposition
techniques can be applied to yield a distributed iterative algo-
rithm converging to the (dual) optimal solution of the (convex)
routing problem in Section III. After discussing convergence
properties of dual decomposition in Section III-A, we point
out that convergence of the algorithm in Section III cannot
be always guaranteed, thus motivating the introduction of the
method of multipliers and the alternating direction method
of multipliers in Section IV. We finally present simulations in
Section V. We also illustrate the effect of routing decisions on
link reliabilities and consider the applicability of the proposed
protocols to mobile environments.

Notation: For a vector v := [v1, . . . , vJ ]T and a set of indices
c = (i1, . . . , ic) with 1 ≤ i1 < . . . < ic ≤ J define
the vector vc := [vi1 , . . . , vic ]T . Likewise, for the matrix
M := (Mij) define the vectors Mcj := [Mi1j , . . . , Micj ]T

and Mjc := [Mji1 , . . . , Mjic ]
T containing subsets of the

j-th column and row of M respectively. Note that even
if Mjc contains a subset of M’s j-th row it is defined
as a column vector. The componentwise product of vectors
v(1) := [v(1)

1 , . . . , v
(1)
J ]T and v(2) := [v(2)

1 , . . . , v
(2)
J ]T is

denoted as v(1) · v(2) := [v(1)
1 v

(2)
1 , . . . , v

(1)
J v

(2)
J ]T .

II. A SEPARABLE PROBLEM

The optimization problem in (4) is not in a form that
facilitates a distributed solution. Towards this end, we first
outline in this section equivalent reformulations, whose solu-
tion coincides with (4) for a given f(ρ). The reformulated
problems can be separated via a dual decomposition, and
lend themselves to a distributed solution. For specificity,

consider as optimality criterion the rate of the worst user
f(ρ) = minj∈[1,J] ρj , leading to the problem

T∗ = arg max min
j∈[1,J]

[(I − KD)μ]j

s.t. Kij = RijTij for i �= j,

KT1 = 1, TT 1 = 1. (5)

In order to reduce the number of variables we will eliminate
the equality constraints in (5). To this end, define the set
c(j) := {i : Rij > 0; i �= j, i ∈ [1, J + 1]} containing the
indices of terminals Ui that can decode Uj’s transmission with
non-zero probability. Likewise, define r(j) := {i : Rji >
0; i �= j, i ∈ [1, J + 1]} as the set of nodes that Uj decodes
with non-zero probability. Using these definitions we can write
the rate of the j-th user as

ρj = [(I − KD)μ]j

= μj(1 − Kjj) −
∑

i∈r(j)

μiKji

= μj

∑
i∈c(j)

Kij −
∑

i∈r(j)

μiKji (6)

where in the second equality we used the constraint KT1 = 1.
Upon substituting Kij = RijTij , (6) becomes

ρj =
∑

i∈c(j)

μjRijTij −
∑

i∈r(j)

μiRjiTji. (7)

For a more compact notation let vectors tj := Tc(j)j and
t′j = Tjc(j) contain the non-zero elements of the j-th column
and row of T, respectively. We further define the vectors rj :=
μjRc(j)j and sj := μc(j) · Rjc(j) so that

ρj = rT
j tj − sT

j t′j . (8)

Vectors rj and sj are constant and known at node Uj . Indeed,
Rc(j)j contains the probabilities of other nodes Ui �= Uj de-
coding correctly Uj’s packets. This Uj can easily estimate by
counting acknowledgments of packets sent to these terminals.
The probabilities of Uj decoding correctly transmissions from
other nodes (required to construct Rjc(j)) can be fed back
from the corresponding (one-hop) neighbors. We assume that
estimation of success probabilities and associated feedback
among neighboring nodes is perfect.

Using (8) and noting that the constraint TT1 = 1 is
equivalent to the set of constraints {tT

j 1 = 1}J
j=1, we can

rewrite the max-min optimal routing problem in (5) as

T∗ = argmax w

s.t. w � rT
j tj − sT

j t′j = ρj , tT
j 1 = 1, 0 � tj .

(9)

Even though (9) is written in terms of local variables (tj),
local constants (rj , sj) and neighboring variables (t′j), it is
not yet in a separable form. Indeed, note that: i) the variable
w is constrained to be smaller than the rates ρj of the J
terminals and in that sense its optimization requires access
to all the variables; and ii) computing ρj requires access to
the local variables tj and neighboring variables t′j . While tj

contains Uj’s transmission probabilities (the variable that Uj

is interested to optimize), t′j contains the probabilities of other
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terminals Ui routing their packets through Uj , a variable that
Uj’s (one-hop) neighbors are interested to optimize.

To overcome these hurdles we introduce local variables
wj and uj that can be viewed as Uj’s estimates of (the
global variable) w and (the neighboring variable) t′j . We
then introduce equality constraints uj = t′j and w = wj ,
∀j ∈ [1, J ]. Using these (local) variables we can write the
constraint in (9) as

wj ≤ ρj = rT
j tj − sT

j uj ; uj = t′j , w = wj . (10)

The last step is to replace w in (9) by the weighted sum w =
(
∑J

j=1 wj)/J . Note that if there is a non-zero probability for
a multi-hop route connecting any pair of nodes, the set of
constraints {wj = wi ∀i ∈ c(j)}J

j=1 is equivalent to requiring
wi = wj , ∀ i, j ∈ [1, J ]. We can now reformulate (9) as

T∗ = argmax
1
J

J∑
j=1

wj

s.t. wj ≤ rT
j tj − sT

j uj , tT
j 1 = 1, 0 � tj

t′j = uj , wj = wi ∀i ∈ c(j) (11)

where the maximization is over {tj}J
j=1 (or, equivalently, T),

{uj}J
j=1, and w := [w1, . . . , wJ ]T .

We summarize the equivalence of (9) and (11) in the
following proposition.

Proposition 1 If there exists a non-zero probability multihop
route between any pair of nodes, the matrix T∗ is a solution
of (9) if and only if it is a solution of (11).

Comparing (9) with (11) we recognize that the latter does
not contain any intrinsically global variable and that the sole
coupling between terminals is through the equality constraints
t′j = uj and wj = wi for all i ∈ c(j). An important feature
of (11) is that the constraints on the problem variables can be
classified into i) local constraints involving only variables kept
at the j-th terminal; and ii) coupling constraints enforcing the
equality with neighboring variables of interest. Indeed, note
that wj ≤ rT

j tj − sT
j uj , tT

j 1 = 1, and 0 � tj involve the
variables xj := (wj , tj ,uj) only. Thus, they can be locally
enforced, meaning that it is possible for Uj to find values
of xj satisfying these constraints. The equality constraints
cannot be enforced locally but it is important to note that they
relate neighboring variables only. Readers familiar with dual
decomposition techniques – see e.g., [2, Sec. 3.4.2], [11], [15]
– may notice that the form of (11) lends itself to distributed
optimization of the type we will elaborate on in Section III.

Remark 1 The terms rT
j tj and sT

j t′j in (8) respectively
correspond to packets successfully transmitted from and to Uj .
Their difference is the rate ρj available to Uj’s own packets.
This interpretation of (8) is reminiscent of the one encountered
in flow control optimization [2, Sec. 5.1]. Different from
flow control, the optimization here over the probabilities
Tij has to account for the joint constraint tT

j 1 = 1 that
outgoing flows from Uj must adhere to. Notwithstanding,
flow control is about deterministic splitting of traffic for load
balancing purposes, and the optimization of network flows is
implemented at the transport layer where optimal routes are
assumed available.

A. General problem formulation

The equivalence between (5) and (11) is not unique to max-
min optimal routing since the same steps can be applied to
reformulate many optimization problems. To clarify this point
consider a given packet success probability matrix R of which
node Uj only knows the non-zero elements of its j-th column
and row rj := Rc(j)j and sj := Rjc(j). Terminal Uj is
interested in finding the vector tj := Tc(j)j that determines
its probability of routing packets through neighboring nodes.
Introduce the matrix U with the same sparsity pattern as T
and let uj := Ujc(j) denote the non-zero components of the
j-th row of U. Node Uj maintains locally the variables wj ,
tj , and uj that we arrange in the vector xj := [wj , tT

j ,uT
j ]T .

Also, recall that w := [w1, . . . , wJ ]T contains the variables
wj of all terminals and let vj := wc(j) collect the variables
wj of Uj’s neighbors. Finally, abbreviate by X := (w,T,U)
the triplet of problem variables.

Our goal in this paper is to find distributed algorithms
converging to the optimal solution of the problem

X∗ = argmax
X

wT 1

s.t. xj ∈ Xj , t′j = uj , vj = wj1 (12)

where we defined X∗ := (T∗,U∗,w∗) and Xj is a set
specifying the chosen routing optimality criterion. Note that
the constraint t′j = uj implies that T∗ = U∗ so that
after obtaining the optimal solution Uj knows the (optimal)
probabilities tj with which to route its packets through its
neighbors and the probabilities t′j = uj with which its
neighbors route packets through Uj .

To find the optimal solution to (12) we require the following
operational conditions to hold:
(a1) The set Xj is convex.
(a2) There is a non-zero probability multi-hop route connect-

ing any pair of nodes.
(a3) Node Uj can only communicate with its one hop neigh-

bors {Ui : i ∈ c(j)}; hence, it has no access to variables
of other nodes.

(a4) The probability that Uj decodes Ui is non-zero if and
only if the probability that Ui decodes Uj is non-zero.
This implies c(j) = r(j) for all j ∈ [1, J ].

Assumption (a1) ensures that the problem in (12) is convex;
(a2) is required so that the constraints {wj = wi ∀i ∈
c(j)}J

j=1 imply wi = wj , ∀i, j ∈ [1, J ]; (a3) is in line with
the distributed setup; and (a4) guarantees that if Uj has access
to Ui’s variables then Ui has access to Uj’s variables, which
is natural in a peer-to-peer setting, and will be exploited later
on.

The formulation in (12) encompasses all the routing prob-
lems introduced in [17], with the set Xj specifying the
corresponding optimality criterion. In particular, we have:

Max-min optimal rate. This is the problem considered in
detail in Section II and can be obtained from (12) by defining
the set

X 1
j :=

{
xj : wj ≤ rT

j tj − sT
j uj , 0 � tj , tT

j 1= 1
}

. (13)

Additional convex constraints can be added to the definition
of Xj . Since we know that uj is a vector of probabilities,
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using the set Xj = X 1
j ∩ {xj : 0 � uj � 1} is equivalent

to using X 1
j because the constraint 0 � uj � 1 is implicit

in uj = t′j . Preventing the components of uj to become too
large enhances the numerical stability of the problem.

Optimal weighted sum-rate. Here the goal is to maximize a
weighted sum of average rates, i.e., f(ρ) = αT ρ with α :=
[α1, . . . , αJ ]T 
 0. In this case we define the set

X 2
j :=

{
xj : wj = αj(rT

j tj − sT
j uj), 0 � tj , tT

j 1 = 1
}
(14)

and consider the optimization problem

T∗ = arg max wT 1

s.t. xj := (wj , tj ,uj) ∈ X 2
j , t′j = uj (15)

which amounts to dropping the constraint vj = wj1 in (12).
Note that for this criterion wj = αjρj .

Extra convex constraints can be dealt with by modifying the
set X 2

j in (14). A case of interest is to consider a minimum
acceptable rate ρmin

j for terminal Uj that can be accommo-
dated by considering the set Xj := X 2

j ∩ {wj/αj ≥ ρmin
j }. A

solution T∗ to (15) with a minimum rate constraint may not
exist for some values of ρmin – in such cases interior point
methods return an infeasibility certificate. When it exists, T∗

ensures the minimum acceptable rate ρmin
j to every user with

the excess traffic distributed to the most favored users having
large weights αj and/or reliable connections to the AP.

Optimal product of rates. Maximizing the product of rates
constitutes a fairer alternative to the weighted sum-rate cri-
terion in (15) since it prevents solutions in which users with
less reliable links receive a very small packet delivery rate.
The function to be maximized in this case is f(ρ) =

∏J
j=1 ρj .

Equivalently, since the logarithm is monotonically increasing
the concave function f(ρ) =

∑J
j=1 log(ρj) can be used in-

stead. To cast this problem under the distributable formulation
in (12) it suffices to replace X 2

j in (15) by

X 3
j :=

{
xj : wj ≤ log[rT

j tj − sT
j uj ], 0 � tj , tT

j 1 = 1
}

.
(16)

The local variables wj denote the logarithm of the local rate.
Another example of a convex constraint is a cooperation

limit whereby terminals require their own rate to be at least
a certain percentage βj ∈ [0, 1] of their total outgoing rate
rT

j tj . The set effecting this constraint is Xj := X 3
j ∩ {xj :

rT
j tj − sT

j uj ≥ βj(rT
j tj)}. This constraint guarantees that at

least βj of the packets Uj transmits were generated at Uj .

Optimal rate with relays. In a relay network a group
of terminals collaborate in relaying traffic on behalf of a
designated active user. Let Uj0 denote this active user and
terminals {Uj}J

j=1,j �=j0
be willing to serve as relays. The

optimal relay network maximizing the rate ρj0 can be found
by solving (12) with

X 3
j =

{
xj : 0 = rT

j tj − sT
j uj , 0 � tj , tT

j 1 = 1
}

, j �= j0

X 3
j0 =

{
xj0 : wj0 = rT

j0tj0 − sT
j0uj0 , 0 � tj0 , tT

j01 = 1
}

.
(17)

In this example, wj is the local estimate of the source’s rate
ρj0 at terminal Uj .

III. DISTRIBUTED IMPLEMENTATION VIA DUAL

DECOMPOSITION

Problems of the general form (12) or (15) can be solved
using the so called dual decomposition methods [2, Sec. 3.4.2],
[15]. Since (a1) guarantees convexity of the problem the basic
idea is to optimize the dual function that, as we will show in
this section, exhibits a separable structure. Associate, thus,
Lagrange multipliers pj with the constraints t′j −uj = 0 and
qj with the constraints vj −wj1 = 0 to form the Lagrangian

L(X,P,Q) = −wT1 +
J∑

j=1

[
(t′j− uj)Tpj + (vj− wj1)Tqj

]

(18)

which is defined over the feasible region of the primal vari-
ables {xj ∈ Xj}J

j=1. Matrices P and Q are defined to have the
same sparsity pattern as T (and thus U); the dual variables
(multipliers) in (18) are respectively given by the non-zero
elements of the j-th row of P and the j-th column of Q;
i.e., pj = Pjc(j) and qj = Qc(j)j . Vectors pj and qj are
maintained at terminal Uj .

The Lagrangian in (18) is used to obtain the dual function

g(P,Q) = min
{xj∈Xj}J

j=1

L(X,P,Q) (19)

which in turn leads to the dual problem defined as the
unconstrained maximization of g(P,Q) – note that we do
not impose non-negativity constraints on the multipliers be-
cause this is an equality-constrained problem. For convex
optimization problems strong duality holds, implying that the
maximum in (12) coincides with the negative of the maximum
of the dual function g(P,Q); i.e.,

1Tw∗ = −max
P,Q

g(P,Q). (20)

The problem in (20) is an unconstrained optimization problem
that can be solved with a gradient ascent algorithm. However,
since the dual function g(P,Q) is not always differentiable
a generalization of the gradient, the so called subgradient, is
used instead.

Definition 1 Consider a concave function f(P) : R
M → R.

If ∇P(P) satisfies

f(P̃) ≤ f(P) + ∇P(P)(P̃ − P) (21)

for all P̃ ∈ R
M we say that ∇P(P) is a subgradient of f(P)

at P. Given a subset of P entries collected in a vector pj let
∇pj (P) denote the corresponding entries of ∇P(P).

The subgradient is any vector ∇P defining a supporting
hyperplane of the concave function f(P). When a gradient
exists, i.e., when f(P) is differentiable, it is the unique
subgradient of f(P).

A subgradient of g(P,Q) is presented in the next proposi-
tion; see also [2, Sec. 3.4.2].
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Proposition 2 For given multipliers P and Q, let X†(P,Q)
denote the optimal argument of the Lagrangian, i.e.,

X†(P,Q) := arg min
{xj∈Xj}J

j=1

L(X,P,Q) (22)

with L(X,P,Q) given by (18). Then, a subgradient ∇P,Q of
g(P,Q) has entries

∇pj (P,Q) = t′j
†(P,Q) − u†

j(P,Q)

∇qj (P,Q) = v†
j(P,Q) − w†

j(P,Q)1. (23)

Proof: Consider the value of the dual function for arbi-
trary multiplier matrices (P̃, Q̃)

g(P̃, Q̃) = min
{xj∈Xj}J

j=1

−wT1 (24)

+
J∑

j=1

[
(t′j− uj)T p̃j + (vj− wj1)T q̃j

]

≤ −w†T1 +
J∑

j=1

[
(t′†j − u†

j)
T p̃j + (v†

j − w†
j1)T q̃j

]

(25)

where for notational simplicity we omit the arguments of
t′†j , u†, v†

j , and w†
j . The equality in (24) follows from the

definitions of the dual function in (19) and the Lagrangian in
(18); and the inequality in (25) is true since {x†}J

j=1 = X†

cannot yield a value smaller than the optimal argument of (24).
Subtracting g(P,Q) = −w†T 1 +∑J
j=1

[
(t′†j − u†

j)
T pj + (v†

j − w†
j1)Tqj

]
from both sides of

the inequality in (25) yields

g(P̃, Q̃) − g(P,Q) ≤
J∑

j=1

[
(t′†j − u†

j)
T (p̃j− pj) + (v†

j− w†
j1)T (q̃j− qj)

]
.

(26)

Comparing (26) with (21) we recognize that the constraint
violations in (23) satisfy the definition of a subgradient of
g(P,Q) [cf. (21)].
Proposition 2 asserts that for general multipliers (P,Q) the
Lagrangian is optimized by variables X†(P,Q) which violate
the equality constraints in (12). Interestingly, the amount by
which the equality constraints are violated is a subgradient
of the dual function. Indeed, the multiplier pj (respectively
qj) is associated with the constraint t′j − uj = 0 (re-
spectively vj − wj1 = 0); the optimal arguments of the
Lagrangian violate this constraint by an amount ∇pj (P,Q) =
t′j

†(P,Q)−u†
j(P,Q) (respectively ∇qj (P,Q) = v†

j(P,Q)−
w†

j(P,Q)1).
An important property of the optimal arguments of the

Lagrangian is that they can be computed locally at each
node. To be precise, define the vectors p′

j = Pc(j)j and
q′

j = Qjc(j) containing the dual variables of the one-hop
neighbors {Ui : i ∈ c(j)}, and construct the local Lagrangian
Lj(xj ;pj ,qj ,p′

j ,q
′
j) by grouping the terms that depend only

on the local variable xj [cf. (18)]

Lj(xj ;pj ,qj ,p′
j ,q

′
j) =

− wj + tT
j p′

j − uT
j pj + wj1T (q′

j − qj).
(27)

By construction L(X,P,Q) =
∑J

j=1 Lj(xj ;pj ,qj ,p′
j,q

′
j)

[cf. (18) and (27)]. If we further note that the primal variables
xj appear only in Lj(xj ;pj ,qj ,p′

j ,q
′
j), we deduce that the

optimal arguments in (22) can be found as

x†
j := arg min

xj∈Xj

Lj(xj ,pj ,qj ,p′
j ,q

′
j). (28)

The ultimate reasons enabling a distributed implementation
of a subgradient ascent algorithm can be read out from
Proposition 2 and (28): i) a subgradient of the dual function
is obtained from the arguments optimizing the Lagrangian
L(X,P,Q) [cf. (23)]; ii) the subgradients ∇pj (P,Q) and
∇qj (P,Q) depend only on local and neighboring vari-
ables [cf. (23)]; and iii) the optimization of the Lagrangian
L(X,P,Q) separates into the optimization of J local La-
grangians Lj(xj ,pj ,qj ,p′

j ,q
′
j). Furthermore, these local La-

grangians depend only on local and neighboring variables [cf.
(27) and (28)].

Consequently, subgradient ascent for g(P,Q) can be im-
plemented by the following distributable iteration:

[I1] Compute subgradient. Given local multipliers pj(n) and
qj(n), and neighboring multipliers p′

j(n) and q′
j(n),

minimize the local Lagrangian with respect to the local
primal variables (n denotes iteration index)

xj(n) = arg min
xj∈Xj

Lj [xj ,pj(n),qj(n),p′
j(n),q′

j(n)]

:= arg min
xj∈Xj

Lj(xj , n) (29)

where we defined Lj(xj , n) :=
Lj [xj ,pj(n),qj(n),p′

j(n),q′
j(n)] and the primal

iterates are xj(n) := [wj(n), tj(n)T ,uj(n)T ]T .
[I2] Subgradient ascent step. Using local primal variables

[wj(n), tj(n),uj(n)] and neighboring primal variables
[vj(n), t′j(n),u′

j(n)] update local multipliers (cn is a
properly selected step size)

pj(n + 1) = pj(n) + cn[t′j(n) − uj(n)]
qj(n + 1) = qj(n) + cn[vj(n) − wj(n)1]. (30)

Algorithm 1 details the distributed implementation of [I1]-
[I2]. Given the local multipliers pj(n) and qj(n), and the
one-hop-neighbors’multipliers p′

j(n) and q′
j(n), user terminal

Uj solves a (local) convex optimization problem to find the
primal variables xj(n) that optimize the (local and global)
Lagrangian in step 3. In turn, these primal variables are used
in the gradient ascent steps 6 and 7 to obtain the updated
multipliers pj(n + 1) and qj(n + 1). Steps 6 and 7 represent
the subgradient ascent step for the dual function g(P,Q)
and as such are the steps guaranteeing convergence of the
iterates {pj(n)}J

j=1 and {qj(n)}J
j=1 obtained from (29)-(30)

to {p∗,q∗}J
j=1 := arg max g(P,Q) as n → ∞ (convergence

of (29)-(30) requires some qualifications that we discuss in
the next subsection). The remaining steps ensure that the
variables are properly communicated. Steps 8 and 2 ensure
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Algorithm 1 Dual decomposition solver
Require: Packet success probabilities to and from neighbors

Rc(j)j and Rjc(j)

Ensure: Optimal multipliers p∗
j and q∗

j

1: for n = 1 to ∞ do {repeat for the life of the network}
2: Receive multipliers pij(n) and qji(n) from one hop

neighbors {Ui : i ∈ c(j)}
3: Minimize Lagrangian [cf. (29)]: xj(n) =

arg minxj∈Xj Lj [xj ,pj(n),qj(n),p′
j(n),q′

j(n)]
4: Transmit wj(n), tij(n), and uji(n) to neighbor Ui;

repeat for all {Ui : i ∈ c(j)}.
5: Receive wi(n), tji(n), and uij(n) from one hop neigh-

bors {Ui : i ∈ c(j)}
6: Subgradient ascent iteration for pj [cf. (30)]: pj(n +

1) = pj(n) + cn[t′j(n) − uj(n)]
7: Subgradient ascent iteration for qj [cf. (30)]: qj(n +

1) = qj(n) + cn[vj(n) − wj(n)1]
8: Transmit multipliers pji(n + 1) and qij(n + 1) to

neighbor Ui; repeat for all {Ui : i ∈ c(j)}
9: end for

that the updated multipliers are sent to and received by the
corresponding neighboring node, while steps 4 and 5 guarantee
the same for the primal variables.

Remark 2 Strictly speaking the problem formulation in (15)
is not a special case of (12) since it involves dropping the
constraints vj = wj1. However, the Lagrangian for the
optimization problem in (15) can be obtained from (18) by
setting qj = 0. In that sense the subsequent treatment leading
to Algorithm 1 can be reproduced by eliminating all references
to the multipliers qj . To obtain an algorithm solving the dual
problem of (15) remove all references to dual variables qij(n)
and qj(n) from Algorithm 1.

A. Discussion of convergence properties

The goal of Algorithm 1 is for Uj to obtain the optimal
routing probabilities tj . We are thus interested in having
limn→∞ tj(n) = t∗j , with tj(n) obtained from the iteration
(29)-(30) and t∗j the solution of (12). Since the iteration (29)-
(30) implements subgradient ascent for the dual function, con-
vergence of the primal variables cannot be always guaranteed.
Relevant convergence properties of subgradient descent are
summarized next (see e.g., [2, Sec. 3.4.3]).

Property 1 Consider the iteration (29)-(30) and let
{p∗,q∗}J

j=1 := arg max g(P,Q) denote the optimal solution
of the dual problem in (20). We then have that:

(a) if the step size is constant, i.e., cn = c ∀n, then

lim
N→∞

1
N

N∑
n=0

pj(n) = p∗
j lim

N→∞
1
N

N∑
n=0

qj(n) = q∗
j

(31)

implying that the average value of the dual iterates
converges to the optimal dual variables; and

(b) if the step size sequence is non-summable,
∑∞

n=0 cn = ∞
but square summable,

∑∞
n=0 c2

n < ∞,

lim
n→∞pj(n) = p∗

j lim
n→∞qj(n) = q∗

j (32)

implying that the sequence of dual iterates converges to
the optimal dual variables.

Primal optimal variables {x∗
j}J

j=1 cannot always be recov-
ered from dual optimal variables {p∗

j}J
j=1 and {q∗

j}J
j=1 [3,

Sec. 5.5.5]. If, e.g., (12) amounts to a linear program, the
optimal dual variables {p∗

j}J
j=1 and {q∗

j}J
j=1 render the

Lagrangian L(X,P∗,Q∗) in (18) independent of the pri-
mal variables X [3, Sec. 5.5.5]. Since we determine xj(n)
as minxj∈Xj Lj

[
xj ;pj(n),qj(n),p′

j(n),q′
j(n)

]
, a sequence

of dual iterates converging to optimal dual variables, i.e.,
pj(n) → p∗

j and qj(n) → q∗
j , does not imply xj(n) → x∗

j .
In practice, limn→∞ tj(n) �= t∗j for many practical optimality
criteria including max-min optimal rate, optimal weighted
sum-rate, and optimal rate with relays as defined in Section
II-A – for these problems the sets Xj are convex polygons and
(12) is a linear program. Regularization approaches are known
to guarantee convergence of the primal iterates xj(n) to the
primal optima x∗

j . One of them, the method of multipliers, is
pursued in the next section.

Remark 3 To avoid a large variance of the iterates (i.e., large
fluctuations around the mean) when cn = c ∀n as in Property
1-(a) requires a small value of c. However, this results in a
slow convergence rate. This can be alleviated by adjusting cn

as per Property 1-(b), but this is difficult to implement in a
distributed setting. These complementary drawbacks provide
another motivation for the approach in Section IV.

IV. THE METHOD OF MULTIPLIERS

While useful as a first approach, the dual decomposition
method summarized in Algorithm 1 does not always lead to a
satisfactory solution of (12). As discussed previously, when the
dual function is non-differentiable and the step size cn is fixed
the iteration defined by (29) and (30) converges only on an
average sense. Perhaps more important, recovering the primal
variables optimizing (12) from the dual variables optimizing
(20) cannot always be guaranteed.

A common regularization approach is the so called method
of multipliers (MoM). The MoM is based on modifying the
optimization argument in (12) by adding (hence the term
regularization) a quadratic term corresponding to the squared
norm of the equality constraints; i.e.,

T∗ = argmin
X

− wT 1 +
c

2

J∑
j=1

[‖t′j − uj‖2 + ‖vj − wj1‖2
]

s.t. xj := (wj , tj ,uj) ∈ Xj ; t′j = uj ; vj = wj1.
(33)

Due to the triangle inequality norms are convex functions
of their arguments; and consequently the problem in (33) is
convex. Furthermore, the solutions of (12) and (33) coincide
since the terms ‖t′j − uj‖2 and ‖vj − wj1‖2 are null at any
feasible point. The Lagrangian associated with (33) is known
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as the augmented Lagrangian of (12) and with L(X,P,Q) as
in (18), it is given by

A(X,P,Q) = L(X,P,Q) (34)

+
c

2

J∑
j=1

[‖t′j − uj‖2 + ‖vj − wj1‖2
]
.

Mimicking steps (19) and (20) we can define the dual function
h(P,Q) := min{xj∈Xj}J

j=1
A(X,P,Q) and deduce that

finding the optimal value of (33) – which coincides with
the optimal value of (12) – is equivalent to solving the
corresponding dual problem

−1Tw∗ = max
P,Q

h(P,Q) := max
P,Q

min
{xj∈Xj}J

j=1

A(X,P,Q).

(35)

Recalling Proposition 2, we can obtain a subgradient of
h(P,Q) from the arguments minimizing the augmented La-
grangian. Upon (re-) defining

{x†
j(P,Q)}J

j=1 = arg min
{xj∈Xj}J

j=1

A(X,P,Q) (36)

= arg min
{xj∈Xj}J

j=1

L(X,P,Q)

+
c

2

J∑
j=1

[‖t′j − uj‖2 + ‖vj − wj1)‖2
]

we have that the subgradient components ∇pj (P,Q) and
∇qj (P,Q) of h(P,Q) are given as in (23).

Recapitulating the key steps enabling the distributed im-
plementation of the subgradient ascent for g(P,Q), we see
that: i) the arguments minimizing the augmented Lagrangian
A(X,P,Q) lead to a subgradient of h(P,Q) [cf. (23) and
(36)]; and ii) the subgradients ∇pj (P,Q) and ∇qj (P,Q)
depend only on local and neighboring variables [cf. (23)].

Different from L(X,P,Q), the minimization of
A(X,P,Q) cannot be separated into local independent
optimizations due to the coupling between t′j and uj and vj

and wj introduced by the quadratic terms [cf. (36)]. Note
however, that the coupling is between neighboring variables
only, and consequently we can again devise a distributed
algorithm to solve the minimization in (36). Specifically, our
goal is a distributed algorithm that for given multipliers P(n)
and Q(n) at the n-th iteration converges to the optimal value
of the augmented Lagrangian

{xj(n)}J
j=1 := arg min

{xj∈Xj}J
j=1

A(X,P(n),Q(n))

:= arg min
{xj∈Xj}J

j=1

A(X, n). (37)

A separable iteration converging to {xj(n)}J
j=1 can be ob-

tained using a coordinate descent iteration as described in the
following proposition.

Proposition 3 For fixed n consider iterations over a second
index m. With Lj(xj , n) as in (29), define the local augmented

Lagrangian at the (n, m)-th iteration as

Aj(xj , n, m) = Lj(xj , n) +
c

2

[
‖t′j(n, m) − uj‖2

+ 2‖vj(n, m) − wj1)‖‖2 + ‖tj − u′
j(n, m)‖2

]

(38)

and consider iterates {xj(n, m + 1)}J
j=1 satisfying

xj(n, m + 1) = arg min
xj∈Xj

Aj(n, m). (39)

Then, xj(n, m) converges to the optimal value of (37), i.e.,
limm→∞ xj(n, m) = xj(n), ∀ j ∈ [1, J ].

Proof: The only terms of A(X, n) in (37) that depend
on local primal variables xj are those contained in the
local augmented Lagrangian Aj(xj , n, m) in (38). Thus, the
optimal arguments in (39) are such that

xj(n, m + 1) = arg min
xj∈Xj

A
[
x1(n, m), . . . , (40)

xj−1(n, m),xj ,xj+1(n, m), . . . ,xJ (n, m), n
]
.

That is, (40) minimizes A(X, n) along the coordinates cor-
responding to xj . By definition this is a coordinate descent
algorithm for minimizing A(X, n) and we thus have

lim
m→∞xj(n, m) = arg min

{xj∈Xj}J
j=1

A(X, n) =: xj(n) (41)

where the first equality follows from convergence results for
coordinate descent, see e.g., [2, Sec. 3.2.1]; and the second
one from the definition in (37).

The coordinate descent iteration (38)-(39) depends only on
local and neighboring variables and can thus be implemented
in a distributed fashion to obtain the arguments {xj(n)}J

j=1

minimizing the augmented Lagrangian [cf. (37) and (41)]. In
turn, these optimal {xj(n)}J

j=1 can be used to implement the
subgradient ascent iteration in (30).

The resulting Algorithm 2 embeds an outer iteration (in-
dexed by n) implementing subgradient descent as per (30), and
an inner iteration (indexed by m for fixed n) implementing
coordinate descent as per (38)-(39) to minimize the augmented
Lagrangian. Indeed, steps 4-8 implement (38)-(39) while steps
6 and 7 represent the interchange of primal variables among
neighbors. Strictly speaking, step 9 is only true as M → ∞.
But even for finite M it provides a reasonable approximation
to (37) that can be used to find the subgradients in (23) and
implement the gradient ascent iteration in steps 10 and 11.
Steps 12 and 2 communicate the dual variables and step 3
initializes the coordinate descent (inner) iteration.

Different from the dual decomposition in Algorithm 1
convergence of the primal iterates {xj(n)}J

j=1 to the optimal
primal arguments {x∗

j}J
j=1 as n → ∞ can be guaranteed for

the MoM in Algorithm 2 as we summarize in the following
property; see e.g., [2, Sec. 3.4.4].

Property 2 Consider implementation of the MoM in Algo-
rithm 2 to solve the optimization problem in (12) and let
{x∗

j}J
j=1 denote the arguments minimizing (12). Then, for any
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Algorithm 2 Method of multipliers
Require: Packet success probabilities to and from neighbors

Rc(j)j and Rjc(j)

Ensure: Routing probabilities tj

1: for n = 1 to ∞ do {repeat for the life of the network}
2: Receive multipliers pij(n) and qji(n) from one hop

neighbors {Ui : i ∈ c(j)}
3: Initial value for coordinate descent: xj(n, 0) = xj(n−1)
4: for m = 1 to M do
5: Coordinate descent iteration for xj(n, m):

xj(n, m) = arg minxj∈Xj Aj(n, m)
6: Transmit wj(n, m), tij(n, m), and uji(n, m) to

neighbor Ui. Repeat for all {Ui : i ∈ c(j)}.
7: Receive wi(n, m), tji(n, m), and uij(n, m) from

one-hop neighbors {Ui : i ∈ c(j)}
8: end for
9: Argument minimizing augmented Lagrangian: xj(n) =

xj(n, M)
10: Subgradient ascent iteration for pj : pj(n) = pj(n −

1) + c[t′j(n) − uj(n)]
11: Subgradient ascent iteration for qj : qj(n) = qj(n −

1) + c[vj(n) − wj(n)1]
12: Transmit multipliers pji(n + 1) and qij(n + 1) to

neighbor Ui. Repeat for all {Ui : i ∈ c(j)}.
13: end for

value of M , we have limn→∞ xj(n) = x∗
j ; in particular it

holds that

lim
n→∞ tj(n) = t∗j . (42)

Property 2 guarantees that the optimal routing probabilities
can be obtained by running Algorithm 2. It also establishes
that the convergence in (42) holds for any number of inner
iterations M . A particularly interesting algorithm becomes
available for M = 1 which leads to the so-called alternat-
ing direction MoM. For this algorithm, we define the local
augmented Lagrangian at time n as

Aj(xj , n) =Lj(xj , n) +
c

2

[
‖t′j(n) − uj‖2 (43)

+ 2‖vj(n) − wj1)‖‖2 + ‖tj − u′
j(n)‖2

]

and define the iteration of the primal variables as

xj(n + 1) = arg min
xj∈Xj

Aj(xj , n) (44)

with the iteration of the dual variables (multipliers) given as
in (30). Due to Property 2 the iteration (43)-(44) and the
corresponding Algorithm 3 converge, as n → ∞, to the
optimal routing probabilities t∗j .

Remark 4 The algorithms of this section assume that packets
exchanged for computing T are received error-free. While it
is certainly possible to protect the critical routing information
(using e.g., error control coding) so that this is approximately
true, it is not fully true with the problem setup in Section
I, wherein packets are correctly decoded according to the
probabilities in R. An alternative assumption is to suppose
that routing variables sent from Uj are correctly received by

Algorithm 3 Alternating direction method of multipliers
Require: Packet success probabilities to and from neighbors

Rc(j)j and Rjc(j)

Ensure: Routing probabilities tj

1: for n = 1 to ∞ do {repeat for the life of the network}
2: Receive multipliers pji(n) and qji(n) from one hop

neighbors {Ui : i ∈ c(j)}
3: Coordinate descent iteration for xj(n): xj(n) =

arg minxj∈Xj Aj(n)
4: Transmit wj(n), tij(n), and uji(n) to neighbor Ui.

Repeat for all {Ui : i ∈ c(j)}.
5: Receive wi(n), tji(n), and uij(n) from one hop neigh-

bors {Ui : i ∈ c(j)}
6: Subgradient ascent iteration for pj : pj(n + 1) =

pj(n) + c[t′j(n) − uj(n)]
7: Subgradient ascent iteration for qj : qj(n + 1) =

qj(n) + c[vj(n) − wj(n)1]
8: Transmit multipliers pij(n + 1) and qij(n + 1) to

neighbor Ui. Repeat for all {Ui : i ∈ c(j)}.
9: end for
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Fig. 2. Max-min optimal routes obtained after solving (12) with the set X 1
j

defined in (13). Note how terminals in compromised spots divide their traffic
between more than one neighbor.

Ui with probability Rij as would be the case if they were
included in packet headers. This falls beyond the scope of
the present paper, but it is worth mentioning that there exist
asynchronous distributed optimization results that may be used
to prove convergence of Algorithms 1-3 even in this case,
under certain conditions [2, Ch. 6].

Remark 5 In Algorithms 1-3 node Uj solves a convex op-
timization problem to minimize the (augmented) Lagrangian
per iteration [cf. (29), (39), and (44)]. The number of variables
in these problems is the sum of the dimensions of wj , tj , and
uj which amounts to 1 + 2|c(j)|, with |c(j)| denoting the
cardinality of c(j). If, as expected, the number of neighbors
|c(j)| is small, the minimizations in (29), (39), or (44) incur
low computational burden.
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V. SIMULATIONS

For the simulations in this section we consider a network
with J = 70 terminal users randomly placed on a rectangle of
3.5 km ×5 km at whose center is the common access point
UJ+1; see Fig. 1. To determine the success probability matrix
R we let terminals transmit at random with probability μj =
0.2. In every slot, consider the indicator variable ej(n) = 1
if Uj transmitted in the n-th slot and ej(n) = 0 otherwise.
Letting pj denote the transmission power of Uj and hij(n)
the gain in the channel Uj → Ui at the n-th time slot, we
have

γij(n) =
hij(n)pj

σi + (1/S)
∑J

k=1,k �=j ek(n)hik(n)pk

(45)

where γij(n) denotes the instantaneous SINR in the Uj → Ui

link for the slot n, σi the noise power at Ui, and S the
spreading gain common to all nodes in the network. The
channels hij(n) are assumed Rayleigh distributed with mean
h̄ij , known at the receiver end, and independent across termi-
nals and time. The mean channel power obeys an exponential
pathloss law h̄ij = κd(Ui, Uj)α where d(Ui, Uj) denotes the
distance between Ui and Uj , and κ and α are constants. By
convention, hjj(n) = +∞ to ensure that Uj does not transmit
and receive simultaneously.

The SINR γij(n) in (45) determines the instantaneous
probability Rij(n) of the packet sent by Uj to be correctly
decoded by Ui in the n-th time slot. Terminals further utilize
a (23, 12) Golay code whose error probability as a function
of SINR can be found in [16, pp. 457]. Each Rij element
of the matrix R is the time average of Rij(n), i.e., Rij =
limN→∞(1/N)

∑N
n=1 Rij(n). A schematic representation of

the resulting R matrix is shown in Fig. 1. The corresponding
max-min optimal routes T, obtained after solving (12) with
the set X 1

j defined in (13) – or the equivalent (4) with utility
f(ρ) = minj(ρj) – are depicted in Fig. 2. The algorithm
run by individual nodes in these simulations is the alternating
direction MoM outlined in Algorithm 3.

Alternating direction MoM. We start by testing Algorithm 3
in ideal operating conditions. Therefore, we assume that: i) the
matrix R is fixed, i.e., we ignore changes brought about by,
e.g., mobility; ii) R is independent of routing decisions, as is
the case in heavily loaded networks; and iii) the vectors rj and
sj are known by Uj , e.g., they were acquired during a training
phase. The purpose of this exercise is to assess convergence
properties of Algorithm 3 to provide a benchmark for more
realistic simulations. In Fig. 3-(top) depicts the evolution of
the variable wj(n) that estimates the rate of the worst user and
the instantaneous rate of the worst user ρj(n) := rT

j tj(n) −
sT
j (n)t′j(n). We can see that these two variables approach

each other and become more or less equal after approximately
n = 80 iterations. This is also the approximate number of
iterations it takes for Algorithm 3 to reach steady state. Fig.
3-(top) further illustrates fairness of the max-min criterion by
showing the normalized sum rate (1/J)

∑J
j=1 ρj(n). We see

that the normalized sum rate is about twice the minimum rate.
This means that on average terminals get twice the rate of the
most compromised user. We also plot in Fig. 3-(bottom) the
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Fig. 3. Convergence of Algorithm 3 to the max-min optimal routes in Fig.
2. In the top we see that it takes about 80 iterations for the minimum rate to
converge to the optimal minimum rate. Convergence is typically much faster
as illustrated by the random selection of 10 representative terminals (bottom).
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Fig. 4. Terminals keep running estimates R̂ij(n) that they update as R̂ij(n+
1) = β + (1 − β)R̂ij(n) whenever a packet is successfully decoded and
R̂ij(n + 1) = (1 − β)R̂ij (n) when it is not. Convergence slows down to
about 100 iterations (top). Comparing with the case when Rij is known we
observe a slight increase in the minimum rate. This is because the latter case
underestimates channel reliability by assuming that all queues are backlogged
when in fact only some of them are.

path followed by the rate of 10 different representative users
with similar conclusions.

Online estimation of reliability. We now lift the assump-
tion that R is known beforehand and independent of T∗

and consider the effect of estimating R elements and the
interaction between R and the optimal routing matrix T∗.
For these simulations we consider slots separately and de-
termine the instantaneous SINRs γij(n) in (45) that in turn
determine the instantaneous success probability of individual
packets. Terminals do not know rj and sj beforehand but keep
running estimates R̂ij(n) of their elements. When packets
are transmitted, i.e., when ej(n) = 1, estimates are updated
as R̂ij(n + 1) = β + (1 − β)R̂ij(n) whenever a packet
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Fig. 5. Adaptability of Algorithm 3 to terminal mobility. Each terminal
moves up to 2 meters in a random direction. We show paths followed by
terminals in 700 realizations of these random movements.

is successfully decoded and R̂ij(n + 1) = (1 − β)R̂ij(n)
when it is not. The routing variables are updated only when
packets are correctly decoded. With reference to Fig. 4-(top)
we see that taking these realistic effects into account slows
down the convergence rate of Algorithm 3 to about n = 100
iterations. Note that since the optimal routes T∗ determine
which queues tend to be frequently backlogged and which
ones not, R is in practice affected by T∗. Given that we find
T∗ using R, in practice there exists a closed loop that we
opened for tractability purposes. The effect of this interaction
on the optimal utility is illustrated in Fig. 4-(bottom). We
see that the optimal utility when the interaction between R
and T∗ is taken into account is a little larger than when the
interaction is not considered. This is because the latter case
underestimates channel reliability by assuming that all queues
are backlogged when in fact only some of them are.

Mobility. We finally consider adaptability of Algorithm 3
to changes in R brought about by node mobility. For this
purpose, we let each terminal move up to 2 meters in a ran-
dom direction, and consider 700 repetitions of these random
movements. The paths followed by the terminals are plotted
in Fig. 5. After each random movement we let terminals
take D transmission decisions; i.e, for D times we let each
terminal decide whether to transmit a packet or not. If they
transmit a packet the reliability estimates are updated as in the
previous subsection. Whenever a packet is correctly decoded
the optimal routing probabilities are updated as per Algorithm
3. We consider D = 1, D = 2 and D = 5 transmission
decisions per movement instance. For benchmark purposes we
also let terminals take transmission decisions until Algorithm
3 converges. Fig. 6 depicts the ability of Algorithm 3 to
pursue the optimal routes computed by running Algorithm 3
until convergence after each movement. We see that with only
one iteration run, i.e., D = 1, there is a 32% loss in utility
performance with respect to the optimal. This is reduced to
about 17% with D = 2 iterations and about 6% with D = 5
iterations.
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Fig. 6. Response of Algorithm 3 to user mobility. After each movement we
let each terminal transmit 1, 2, or 5 packets corresponding to an equal number
of iterations of Algorithm 3. The losses with respect to optimal performance
are 32%, 17% and 6%, respectively.

VI. CONCLUSIONS

Stochastic multihop routing holds great promise to improve
performance of wireless networks. Building on recent results
that formulate stochastic routing problems as convex optimiza-
tion programs based on the pairwise error probability matrix
R, this paper developed distributed routing algorithms to find
rate-optimal routes. Since routing algorithms developed in [17]
cannot be implemented in a distributed fashion, we introduced
equivalent problems amenable to distributed implementation.
Many problems can be cast in the latter formulation including
max-min rate, sum-rate, maximum product-rate, and rate-
optimal relay networks. In all of these problems, additional
convex constraints, e.g., minimum acceptable rate or cooper-
ation limit, can be easily incorporated.

Distributed routing algorithms were obtained via dual de-
composition, requiring iterations based on communication
with one-hop neighbors only. Since in many cases of inter-
est dual decomposition iterates do not necessarily converge
to the optimal routing matrix, we adopted two well-known
regularization approaches, namely the method of multipliers
(MoM) and the alternating direction MoM. Convergence of
these algorithms to the optimal routing matrix is guaranteed
under mild conditions. Of particular practical importance is
the guaranteed convergence in the presence of communication
errors.

Simulations corroborated that the MoM is a robust algo-
rithm quickly converging to the optimal routes. We further
demonstrated that the resulting algorithms respond well to
changes in the pairwise error probability matrix arising due to,
e.g., node mobility. While the analytic development was based
on the assumption that R is independent of T∗, the interplay
between R and T∗ can be captured and even exploited in
on-line versions that alternate between estimating R and
computing T∗ in a distributed fashion. This is important
because it closes the loop that we opened for tractability
considerations.
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