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Distributed Network Optimization With Heuristic
Rational Agents

Ceyhun Eksin, Student Member, IEEE, and Alejandro Ribeiro, Member, IEEE

Abstract—A network of distributed agents wants to minimize
a global cost given by a sum of local terms involving nonlinear
convex functions of self and neighboring variables. Agents update
their variables at random times by observing the values of neigh-
boring agents and applying a random heuristic rule intent on
minimizing the local cost with respect to their own variables. The
heuristic rules are rational in that their average result is the actual
optimal action with respect to the given values of neighboring
variables. By identifying heuristic rational optimization with
stochastic coordinate descent, it is shown that all agents visit a
neighborhood of the optimal cost infinitely often with probability
1. An exponential probability bound on the worst deviation from
optimality between visits to near optimal operating points is
also derived. Commonly used models of consensus and opinion
propagation in social networks, Markov random field estimation
in wireless sensor networks, and cohesive foraging of animal
herds are cast in the language of heuristic rational optimization.
Numerical simulations for these three examples are presented to
corroborate analytical results.

Index Terms—Biological systems, convergence, distributed esti-
mation, distributed optimization, social networks.

I. INTRODUCTION

N ETWORK optimization problems entail a group of
agents with certain underlying connectivity that strive to

minimize a global cost through appropriate selection of local
variables. Optimal determination of local variables requires,
in principle, global coordination of all agents. In distributed
network optimization, agent coordination is further restricted
to neighboring nodes. The optimization of the global objective
is then achieved through iterative application of local optimiza-
tion rules that update local variables based on information about
the state of neighboring agents. Distributed network optimiza-
tion is a common solution method for estimation and detection
problems in wireless sensor networks (WSNs) [1]–[7].
Beyond its use in engineered systems, distributed network

optimization is also used to model the emergence of global be-
havior in biological and social networks. In this context, the op-
timization cost models global network behavior that emerges
through the application of the local optimization rules. In bio-
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logical systems, network optimization models that mimic nat-
ural phenomena like bird flocking [8], [9] or animal swarming
[10]–[13] have been introduced. Bird flocking models posit that
individual birds try to optimize total drag by adjusting their
individual positions and velocities based on the observed be-
havior of neighboring birds within their field of vision [8]. Sim-
ilarly, the foraging behavior of animal herds and fish schools can
be explained as the optimization of an objective that includes
terms to account for the value of food, the value of cohesion
and the cost of excessive proximity [14], [15]. As in the case
of bird flocks, members of the herd or school adjust their po-
sitions with respect to the observed positions of nearby peers.
Notice how these models exhibit the three hallmarks of dis-
tributed network optimization. They start from a global objec-
tive that the network agents want to optimize—like total drag
for bird flocks—through the selection of local variables—birds’
positions and velocities—while restricting interactions to neigh-
boring agents—positions and velocities are updated relative to
the closest neighboring birds on the field of vision. Consensus
formation [15], [16] and opinion propagation [17] in social net-
works can also be understood in terms of distributed network
optimization. In this case, network nodes represent social agents
having differing opinions that they update over time based on
the observed opinions of neighboring nodes. Agents determine
these updates by minimizing a local measure of disagreement
with their neighbors. As a result, the network as a whole is min-
imizing a global measure of disagreement. The difference be-
tween consensus and opinion propagation models is that in the
former all nodes attempt to increase harmony, while in the latter
some stubborn agents do not change their opinions.
A common feature in [8]–[17] is that agents are assumed

to act rationally, in that they update their local variables in a
manner that is optimal with respect to the available informa-
tion. Birds in a flock choose a position and speed to minimize
their own drag [8], animals in a herd choose a position to bal-
ance attraction and repulsion forces with their neighbors, [11],
[12], and people update their opinions to minimize the discor-
dance with their friends [17]–[19]. However, assuming optimal
behavior in the context of natural and social, as opposed to
engineered networks, limits the applicability of these models
because making optimal decisions requires exceedingly high
levels of awareness and cunningness.
The goal of this paper is to propose and study more real-

istic models whereby agents execute actions that are optimal
in an average sense only. We name these rules and the agents
that use them as heuristic rational, since we think of them as
the application of a heuristic rule that is intent on being op-
timal, even though it may not be so. We show that models com-
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monly used to study propagation of opinions in social networks
[20], foraging of animal herds [11], [21], and quantization and
communication issues in field estimation using WSNs [1], [2],
[22], [23] can be cast in the language of heuristic rational opti-
mization. We also study the behavior of networks composed of
heuristic rational agents and show that: (i) The global network
behavior visits a neighborhood of optimality infinitely often.
(ii) The probability of straying away from this neighborhood by
more than a given amount is exponentially bounded. These re-
sults can be interpreted as an explanation for the emergence [cf.
(i)] and sustenance [cf. (ii)] of global network behavior that is
close to optimal despite imperfect decisionmaking of individual
agents in natural and social systems.We note that other efforts to
lift unrealistic assumptions in distributed network optimization
exist. These include the study of asynchronous updates [24],
time-varying [15] or unreliable communication links [2], [3],
[25], [26], and communication contaminated with random noise
[2], [5], [8], [27]. Our work differs from these contributions in
that we are considering the update rules themselves as being
imperfect.
The paper begins by describing the induction of global

behavior through the minimization of a cost given by a sum
of local terms involving nonlinear functions of self and neigh-
boring variables. At random times, agents observe current
values of their neighbors’ variables and apply a heuristic rule
with the intent of minimizing the global cost with respect to
the selection of their local variables. These heuristic rules need
not be optimal but we assume that they are so in expectation
(Section II). We proceed to describe how voter models [19],
[20] used to study the propagation of opinions in social net-
works can be interpreted as a heuristic rational version of local
averaging models [16], [22] (Section II-A). We further present
a Markov random field (MRF) estimation problem using a
WSN. In this case, heuristic rational actions can be used to
model communication and quantization effects (Section II-B).
Because of the randomness associated with heuristic ra-

tional rules, we do not expect convergence to optimal global
behavior. Consequently, our goal is to describe the difference
in the yield of optimal variables and the values achieved
by heuristic rational rules (Section III). To characterize this
difference, we identify the variable updates with a stochastic
coordinate descent algorithm with random activation rule.
Exploiting this fact, it is possible to show that for points
sufficiently far away from optimal the distance to optimality
between subsequent uses of heuristic rational rules satisfies a
supermartingale inequality (Lemma 1). This observation leads
to the conclusion that a neighborhood of optimality is visited
infinitely often with probability 1 (Theorem 1). The size of the
near optimality region depends on parameters of the function
being minimized and is proportional to the variance of the
heuristic rational rule. We further show that between visits to
optimality the probability of the gap in the yield of agents’
variables exceeding a given value is bounded exponentially
(Theorem 2 in Section IV). This bound shows that even though
it is possible for local variables to become arbitrarily bad,
significant deviations are exponentially rare.
We present numerical results for opinion propagation in so-

cial networks, MRF estimation with WSNs, and herd foraging

in biological networks (Section V). In the social network case
study, we use a consensus model to analyze the propagation of
opinions in a social network from two stubborn agents having
opposing beliefs (Section V-A). We observe that stubborn
agents are influential only within their close neighborhood,
their beliefs losing strength as they propagate through the
network. In the MRF estimation problem, we consider a WSN
deployed to estimate a spatial-varying temperature field with
Markov conditional probabilities; see e.g., ([28], Ch. 1). Sen-
sors are interested in the temperature value at their location
that they estimate using a local noisy temperature measurement
and cooperation with neighboring nodes (Section V-B). The
biological network example concerns cohesive movement of
a foraging herd. Animals in the herd move on a field looking
for a food source while staying neither too close nor too far
away from each other. Individual behavior is explained through
attraction and repulsion forces between neighbors and an at-
traction force to the food source [21]. We close the paper with
concluding remarks (Section VI).

II. LOCAL HEURISTIC RATIONAL OPTIMIZATION

Consider a network of agents represented by the symmetric
graph where vertices denote agents and
edges connections between them. Agent can only
interact with neighboring nodes that
form an edge with it. We denote as the cardi-
nality of the number of neighbors. Each of the agents is
associated with corresponding variable and a convex
function . Each of the edges is affiliated with
a convex function that depends on the agent vari-
ables at the vertices of the given edge. To maintain symmetry,
we require that functions and be equal,

(1)

Variables are also constrained to the convex set in that
allowable values satisfy . Define the vectors

grouping all network variables and
containing the variables of all neighbors of , and

referring to all variables except . Further
introduce the set to represent the Cartesian
product of sets .
The function

(2)

represents a cost that agent would like to make as small as
possible by proper selection of its variable . Since this
cost depends on neighboring variables , it follows that
and for have to be jointly chosen. But these neigh-
boring variables are jointly chosen with their respective neigh-
bors, which depend on the values of their corresponding neigh-
bors, and so on. It follows that as long as the network is fully
connected, cost minimization requires simultaneous selection
of all variables . This is not a plausible model of network
behavior.
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Alternatively, suppose that at random time , agent
observes the values of neighboring variables . Given
the interest in minimizing the local cost in (2), a
rational action for this agent is to update its variable by selecting
the value that minimizes given the observed values
of neighboring variables,

(3)

Since the update in (3) is based on information that can be lo-
cally acquired and is unilaterally executed by , it constitutes
a possible model for network optimization, which has indeed
been used to model, e.g., the propagation of opinions in a social
network; see [17] and Section II-A. However, it is not always
accurate to assume that agents apply optimal policies perfectly.
In, e.g., social or biological systems, agents apply heuristic rules
in their decision making which are prone to randomness and
suboptimality. To model this type of network, we introduce the
concept of heuristic rational actions as random actions that are
optimal on average as we formally define next.
Definition 1: Consider network agent associated with vari-

able and denote as the values of neighboring vari-
ables at time . We say that a probabilistic rule is
heuristic rational if and only if its expectation is a rational ac-
tion as defined in (3)

(4)

This paper considers network optimization models that consist
of a random activation rule that determines when agents modify
their variables and a heuristic rational rule that determines how
the active agent updates its local values. Activations are indexed
by the nonnegative integer variable with denoting
the initial state. Variable denotes the th activation that
occurs at time . Given a random activation rule, th activation
almost surely involves a unique agent modifying its local
variable . When an activation occurs, variables
stay unchanged for all agents and are updated to
for terminal . Update rules are restricted to depend only on
neighboring variables and are assumed heuristic ra-
tional in the sense of Definition 1.
Based on the local costs in (2), we define the global cost

(5)

where the factor 1/2 is intended to account for the fact that
the function is included twice in the
sum in (5). The cost measures the optimality of config-
uration from a global perspective—as opposed
to that measures the optimality of configuration
from a local perspective. In particular, there exist globally op-
timal configurations that achieve the minimum possible cost

given by

(6)

The goal of this paper is to compare the sequence of iterates
generated by recursive application of heuristic rational

rules with the optimal configuration . More to the point, we
define the stochastic process of optimality gaps with
elements

(7)

We will show that the optimality gap achieves a small value
with probability 1 infinitely often (Theorem 1 in Section III).
Excursions away from this small value are possible and can
be arbitrarily bad. However, we will also show that the largest
value achieved in each of these excursions follows an exponen-
tial probability bound (Theorem 2 in Section IV). Before pro-
ceeding with the analysis, we discuss two examples of network
optimization with heuristic rational agents.

A. Opinion in Social Networks

The propagation of opinions in a social network can be cast in
the language of heuristic rational optimization. Consider a social
network where some stubborn agents have fixed opinions while
some other agents value agreement with friends with whom they
are directly connected [20]. In this context, we interpret

as the opinion of a social agent. The subset of stubborn
agents have fixed extreme opinions for all .
For the remaining agents, we model the desire for agreement
through the penalty function .
The resulting cost for disagreement for agent is

as follows from (2) in which function
. Through minimization of this quadratic cost, we

have that the rational action, as defined by (3), for agent at time
is

(8)

This action amounts to taking a local average of opinions in the
network [9]. A heuristic rational rule randomizes to
account for the fact that the average in (8) is not computed ex-
actly but rather guessed. The presumption in Definition 1 is that
these guesses are correct on average in that .
A more interesting example of heuristic rationality stems

from the observation that agents are not likely to consider
opinions of all of their neighbors at each decision but rather
rely on interactions with random subsets of friends. Accounting
for the fact that interactions occur between a member of the
network and subsets of its friends is the intent of voter models
[19]. The model of opinion propagation in this case replaces
the average in (8) by the average of a random sample of friends

(9)

where denotes the random interaction group at time
. If all subsets of friends are equally likely to be chosen it fol-
lows that actions in (8) and actions in (9) are such
that . Thus, we can think of voter models [cf.
(9), [19]] as heuristic rational rules for the local averagingmodel
[cf. (8), [9], [19]].
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In lieu of the quadratic cost leading to the rational action in
(8), we could use the pairwise cost given
by the absolute difference between neighbor’s opinions. This
cost assigns more weight to small opinion discrepancies than an
cost and less weight to large disagreements. In this case the

local cost in (2) takes the form

(10)

Given values of the actions of neighboring terminals,
a rational action of agent is to set its opinion to the me-
dian of the elements of . To be precise let

be an ordered version of the elements of

so that . Further denoting
as the smallest integer not exceeding and as

the largest integer not smaller than , we can
write the rational action of agent as

(11)

When the number of neighbors is odd
and (11) yields

as the rational action. When the number of
neighbors is even, the rational action is the average of
the two actions in the middle of the ordered vector . In
this latter case, the rational action is not unique because
we can set to any value between and

without changing the cost in
(10).
A particular heuristic rational rule for the rational action in

(11) is to select either or

with equal probability,

(12)

It follows that the rational actions in (11) and actions
in (12) are such that . This is consistent with the
definition of heuristic rationality in Definition 1. The heuristic
rational rule in (12) for even is similar to the voting model in
(9) in that both consider random subsets of neighbors. The rules
for selecting these subsets are different. In (9), neighbors are
selected with equal probability irrespective of their opinions. In
(12), only the neighbors with opinion closest to the median in
(11) are chosen.

B. Field Estimation With Wireless Sensor Networks

Consider a WSN deployed to estimate a spatially varying
field. Each sensor is interested in the value of the field
at its location which they estimate using locally collected
observations . Observations are assumed conditionally
independent with probability density .
We refer to as the observation energy function

of sensor . Given the spatial correlation of field values, all
observations contain information about all
field values . The network goal is consequently
stipulated as the computation of maximum a posteriori (MAP)
estimates [29]. According to Bayes’
rule MAP estimates can be computed as

(13)

where in the second equality, we used monotonicity of the log-
arithm function.
Even though according to problem definition sensor is in-

terested in only, these estimates are coupled in (13). This
coupling can be handled by reducing attention to MRFs with
spatial dependency coinciding with network connectivity. We
therefore assume that the conditional distribution of given
all field values can be reduced to a distribution conditioned on
neighboring nodes only, i.e., ,
([28], Ch. 1.2). A MRF with this correlation structure has an
equivalent representation in terms of a Gibbs random field over
the graph . In this representation, the probability dis-
tribution of the field can be written as , for
some energy function and
normalizing constant . Using this representation in (13), and
further noting that observations are conditionally independent

, it follows that

(14)
Rearranging terms in (14), it follows that the maximand is of
the form in (6) if we define the functions
and . The aggregate local cost in (2)
would then be

(15)

A rational action amounts to sensors minimizing the costs
in (15) based on their individual measurement

and the neighboring estimates . Heuristic rationality
can be used to account for communication errors, quantization
effects during the local signal processing or the communication
stages, and model mismatch; see Section V-B.
Remark 1: The model of heuristic rationality proposed

here is not to be confused with stochastic gradient descent
algorithms; see e.g., [30]. These algorithms are a variation
of gradient descent where the descent direction is replaced
by a quantity whose expected value is a gradient of the cost
function. Notice that this is fundamentally different from the
stochastic heuristic rational rules of Definition 1. Agents are
not descending along gradient directions but rather attempting
to optimize the cost with respect to their local variables. The
proper analogy is to a stochastic version of a coordinate descent
algorithm, see e.g., [31]. Our motivation to study stochastic
coordinate descent is that we believe it to be a better model of
behavior in natural networks than stochastic gradient descent.
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III. NEAR OPTIMALITY

The sequence of iterates generated by recursive appli-
cation of heuristic rational rules is akin to a stochastic version
of block coordinate descent on the function . In coordi-
nate descent algorithms, minimization is attempted by alterna-
tion between descents on different subsets of variables chosen
according to a given rule ([32], Ch. 1). The convergence prop-
erties of deterministic coordinate descent algorithms have been
studied with cyclic and random activation rules [31], [33]–[35].
In the case of heuristic rational optimization, we can identify
agents’ variables as coordinate blocks and random activation as
the selection rule. The structure of the local cost
in (2) allows for the distributed implementation of block coor-
dinate descent. Given this correspondence, we expect conver-
gence to a neighborhood of the optimal configuration , [cf.
(6)] in some sense. In this section, we prove that this expectation
is indeed true if the following assumptions on the cost function

and the random activation rule are satisfied.
(A1) Strong convexity. The global cost is strongly
convex in that there exists a constant such that for
any pair of points and it holds

(16)

(A2) Lipschitz gradients. Gradients of the global cost
are Lipschitz in that there exists a constant

such that for any pair of points and it holds

(17)

(A3) Random activation. At any given time , all agents
are equally likely to become active.
(A4) Bounded variance The mean squared error of the
heuristic rational action with respect to the corre-
sponding rational action is bounded [cf. (4)].

(18)

Assumptions (A1) and (A2) are typical in convergence analysis
of coordinate descent algorithms [31]. They are satisfied by the
examples discussed in Sections II-A and II-B except for opinion
propagation with cost which violates Assumption (A1). As-
sumption (A3) states that activations occur at random times and
that all agents are equally likely to become active in any given
time interval. This assumption is also common; see, e.g., [36].
Among other possibilities, it can be satisfied if all agents have
an activation clock based on independent exponential waiting
times with equal means. This is more a matter of simplifying
discussion than a fundamental requirement. It can be substituted
by laxer conditions as we discuss in Remark 3. Assumption (A4)
bounds the average irrationality of each agent by bounding the
deviation from the rational decision (3). We emphasize that this
bound holds on a mean square sense. It is possible to have iso-
lated actions that are arbitrarily bad. Our results are parametric
on the irrationality bound . As time increases, the optimality
gap of the global network behavior approaches a neighbor-
hood of zero whose size is determined by the irrationality bound
. Further note we are not imposing a connectivity requirement

on the network. We explain why such assumption is not neces-
sary in Remark 2.
The first result presented here considers global functional

values and
at subsequent update times and shows that the suboptimality of
the corresponding configurations and tends to be
reduced in the sense specified in the following lemma.
Lemma 1: Consider a sequence of iterates

such that at time agent updates its local
variables according to a heuristic rational update which
is optimal on average as per Definition 1. If assumptions
(A1)–(A4) hold, the optimality gaps and as defined in
(7) satisfy

(19)

where we defined the condition number and
used the shorthand notation .

Proof: At time , define as the result of
the application of a rational rule by agent . Further denote
as the vector with th component and
remaining components . Consequently, the
vector would be the network state after the application
of a rational rule by node , whereas the vector
is the network state after a heuristic rational rule is applied. As
per (3) and (4), we have that . In
the first part of the proof, we establish a relationship between
the current iterate and the rational state . In the
second part of the proof, we use the connection between optimal

and heuristic optimal variables to translate
this result into a result relating with .
For the first part of the proof, we use (17) to obtain a con-

traction between and . Notice that since
results from the application of the optimal action by

node , it must be

(20)

Using the upper bound (17) restricted to the th coordinate
in lieu of the minimization objective in (20), we can write

(21)

where denotes the th component of the gra-
dient . The minimization of the quadratic form in the
right hand side of (21) can be performed explicitly to yield

(22)

Subtracting from both sides of (22) and using the definition
given in (7) we get

(23)
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Equation (23) is true for any agent . Notice
that (23) gives us a strict inequality whenever the gradient

, which is to say when is not the
rational action for agent . However, it is possible that
for some configuration, the rational updates may not result in

smaller than . This may happen, e.g., if
the same agent is activated twice consecutively. Nevertheless,
since all agents have equal chance of becoming active as
per Assumption (A3), the process will descend on average.
To make this observation precise, observe that according to
Assumption (A3), we have

(24)

Taking now expectation on both sides of (23) conditional on the
network state and combining the result with the equality
in (24) yields,

(25)

Minimization of both sides of (16) with respect to yields the
bound ; see e.g., ([37], Ch. 9).
With , this bound takes the form

. Substituting this latter bound in
(25) for the gradient norm leads to

(26)

where we used the definition of the condition number
in the equality.

This completes the first part of the proof. To obtain a similar
relation between and , we use the definition
of heuristic rationality in (4). Start using the second order mean
value theorem centered at so as to write

(27)

which is true for some lying in the segment between
and . Recall now that only the th coordinate is
changing at time , which implies
for all coordinates . We can therefore simplify (27)
by keeping only the th coordinate components as the re-
maining terms are null. Using to denote the th
diagonal block of the Hessian and defining the error of agent

as , this
observation yields

(28)

But now notice that since is a rational action for
agent , we must have . We can then
further simplify (28) to

(29)

Now, subtract from both sides of (29) so that the left hand
side becomes as defined in (7). Further,
taking expectation conditioned on on both sides of (29)
leads to

(30)

We can now substitute (26) for the first term in the right hand
side of (30) and use Assumption (A4) to bound the second term
to obtain

(31)

The result in (19) follows from using the mean squared error
bound in (18) to bound the corresponding term in (31).
The result in Lemma 1 shows that the network behavior is

different depending on whether is far from the optimal
value or close to it. When the optimality gap is ,
rationality dominates in the sense that the right hand side of (19)
is smaller than . Thus, when an update occurs, the gap
is expected to become smaller. In this regime, the observed be-
havior seems rational as the global metric becomes
closer to the optimal . When , we do not ex-
pect a decrease on the optimality gap . This is because
when gets close to , the network’s behavior is domi-
nated by randomness. In this regime the network behavior seems
erratic or irrational in that the yield stops improving.
Considering that whenever exceeds the process

is attracted towards zero, we expect to see the process be-
coming smaller than at least once. This intuition is
correct as we state and prove in the following theorem.
Theorem 1: Consider the heuristic rational sequence of

iterates [cf. Definition 1] with corresponding optimality
gaps [cf. (7)]. Define the best optimality gap by time
as . With the same hypotheses and
definitions in Lemma 1 it holds

(32)
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i.e., the optimality gap becomes smaller than at least
once for almost all realizations.

Proof: Let be an arbitrary constant and define
the sequence

(33)

The sequence tracks the optimality gap until the
first time at which . Thereafter, we
have and the sequence is locked
at . We will show that the stochastic process with
realizations is a supermartingale whose expectation

converges to 0. The result in (32) will follow
from there.
Consider the expectation of the process’ value

at update , given the network state at time , i.e.,
. Separate this expectation into the cases

and and use total probability to write

(34)

Consider the case when in (34). It thenmust be that the
indicator function is , because
it is not possible to have without the indicator function
being null. If the indicator function is null, then we must have

from which in turn it follows that
for all since

by definition. This guarantees that for any update after , the
indicator function is locked to zero. Hence, the conditional ex-
pectation is zero from that point on,

(35)

In the other case, when , we can write the conditional
expected value of as

(36)

The equality in (36) follows from the definition of in
(33). The first inequality is true by the fact that indicator func-
tions cannot be greater than 1, and the second inequality follows
from applying Lemma 1 to .
Notice now that if , it must be that the indicator

function is . This further im-
plies that the best optimality gap attained so far is

. In particular, this is true for the current it-
erate, . Rearranging terms in this latter
inequality, we conclude that , which upon
substitution in (36) yields

(37)

Further notice that if the indicator function is
, it also holds that allowing

us to rewrite (37) as

(38)

The result in (38) states that the expectation of con-
tracts by a factor when is not null, or equiva-
lently when . The result in (35) states
that otherwise, the expectation is null. These two results substi-
tuted in (34) combined with the observation that probabilities
are smaller than one leads to

(39)

The difference between (38) and (39) is that (38) is a statement
conditional on the value of , whereas (39) holds for any
value of . It thus follows from (39) that is a super-
martingale and, as a consequence of the supermartingale con-
vergence theorem, that the limit exists almost
surely ([38], Ch. 5.2). We are left to prove that this limit is 0.
To see that this is true, observe that a second consequence

of (39) is that the limit of the expectation is
null. Indeed, applying (39) recursively yields

(40)

Since the process is nonnegative by definition, it follows
that we must have

(41)

which establishes that .
If almost all realizations are nonnegative and con-

verge—as it follows from the supermartingale convergence
theorem—and their expected values converge to 0—as it fol-
lows from (41), it must be that . Recalling
the definition of in (33), this is equivalent to the indicator
function becoming null i.e., ,
or equivalently to

(42)

The result in (32) follows because (42) is true for arbitrary small
.

According to Theorem 1 it holds that, for almost all real-
izations, the optimality gap approaches or becomes smaller
than at least once as grows. Theorem 1 also implies
that this happens infinitely often. Indeed, if at given time ,
we have , a simple time shift in Theorem 1
permits concluding that there exists a future time at which

.
For to become small, we need to have the current net-

work configuration close to the optimal configuration
. Consequently, Theorem 1 implies that enters into a

neighborhood of the optimal configuration infinitely often; see
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Fig. 1. Excursion from near optimality. Level sets for the optimality gap
are shown along with a piece of a sample path of optimality gaps.

The innermost level set encloses the near optimality region and the middle level
set corresponds to the value taken at the current update. An excursion is
defined as the path of the process until we return to a value smaller than .
The outermost level set is a given level. We want to study the probability of
the worst value attained during the excursion exceeding .

Fig. 1. The volume of this neighborhood increases with in-
creasing mean squared error of the heuristic rule , increasing
Lipschitz constant , or decreasing condition number . The
condition number is small for functions
having corresponding to ill conditioned functions with
elongated level sets. Therefore, the dependence on captures
the difficulty of minimizing the cost . The constant
is of little consequence as it plays the role of a normalizing
constant. If we multiply the function with a constant,
both, the optimality gaps and the Lipschitz constant are
multiplied by the same constant. The dependence on the mean
squared error captures the increase in global suboptimality
as agents’ behaviors become more erratic.
If the optimality gap approaches a small value infinitely

often but can stray away from it, the question arises of what the
process behavior is between visits to the optimality neighbor-
hood. We answer this question in the following section after the
following remarks.
Remark 2: Lemma 1 and Theorem 1 do not require a con-

nected network and hold true if the network contains multiple
connected components. If the network contains multiple con-
nected components, each of them descends towards its optimal
configuration. Given the structure of the cost function in (5), this
is equivalent to the optimal configuration for the network as a
whole. This is true because in a disconnected network there is
no cost coupling between members of different connected com-
ponents. Perhaps the most restrictive condition in Lemma 1 and
Theorem 1 is the strong convexity requirement in Assumption
(A1). Strong convexity is a necessary assumption in analyzing
convergence properties of deterministic coordinate descent al-
gorithms. In general, convergence fails in functions that are not
strongly convex. Since variable updates in a network of heuristic
rational agents are akin to a stochastic version of coordinate de-
scent, we expect Lemma 1 and Theorem 1 to not hold in this
case. There are some studies that achieve convergence under
laxer conditions such as pseudo-convexity but they assume spe-
cial restrictive structures for the cost function [31], [34]. A gen-

eralization of Lemma 1 and Theorem 1 to these scenarios is be-
yond the scope of this paper.
Remark 3: The assumption that all agents are equally likely

to become active can be relaxed to the assumption that all agents
have possibly different but strictly positive probabilities of be-
coming active. This less restrictive assumption still ensures that
when the configuration is not optimal there is always a pos-
itive probability of the rational rule descending towards the op-
timum. Formally, when considering different activation proba-
bilities, the expectation in (24) would be replaced by a weighted
sum of block coordinate gradients. The rest of the proof of
Lemma 1 would continue unchanged by redefining the gradient
norm bound . A modified version of Theorem 1 would follow
with the same arguments.

IV. EXCURSIONS FROM NEAR OPTIMALITY

Although Theorem 1 shows that the network state moves
within a close boundary of the optimal configuration almost
surely and infinitely often, it does not claim a guarantee on
staying close to the optimal value. In fact, it is easy to see that
in some particular examples, the process is almost sure to
move out of the optimality neighborhood and
even become arbitrarily bad with small but nonzero probability.
This may happen in the unlikely but not impossible situation
in which the variations in the heuristic rational rule cancel out
the intended drive towards optimality. In this section, we de-
rive an exponential probability bound on these excursions from
optimality. The bound shows that while arbitrarily bad excur-
sions may be possible, they happen with exponentially small
probability.
To formally define excursions away from the optimality

neighborhood, suppose that at given iteration , the optimality
gap is , i.e., larger than the neighborhood
border by a factor . Further consider a given value .
We define excursion as the trajectory
of the optimality gap until the process returns to a value

smaller than the given gap from which the
excursion started. Notice that is a random stopping time
given by . In particular, we are
interested in the worst value
reached during the excursion. In formal terms, we define as

(43)

Our goal here is to determine the probability that
the worst value attained during the excursion exceeds the given
. This definition and corresponding goal are illustrated in
Fig. 1. The innermost curve is the level set of network config-
urations with , the middle curve corresponds to states
with optimality gap , and the outermost
curve is the level set for gap value . The process strays fur-
ther away until returning to a value smaller than at time

. During this excursion the largest optimality
gap is at time meaning that . This
particular realization does not exceed , i.e., ,
but others may.
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To bound the probability , we need the following
additional assumption.

(A5) Bounded Increments. The difference on opti-
mality gaps between successive iterations is almost surely
bounded by a finite constant , i.e., for all times we
have that

(44)

A particular case in which Assumption (A5) is satisfied is when
the functions are bounded for all feasible values

and . Assumption (A5) can be alternatively
satisfied if the differences between rational
and heuristic rational actions are almost surely bounded. This
latter condition is more stringent than the finite variance require-
ment of Assumption (A4). For the opinion propagation scenario
in Section II-A, the bound in (44) is the maximum number of
neighbors, i.e., . This corresponds to the most
connected agent flipping its opinion from to 1. For the MRF
example in Section II-B, Assumption (A5) is satisfied if we
bound the range of values measured by sensors.
The exponential bound on is stated in the fol-

lowing theorem.
Theorem 2: Consider a process of heuristic rational updates

[cf. Definition 1] and the associated
process of optimality gaps [cf. (7)]. Assume that at time
the value of exceeds the optimality neighborhood of The-
orem 1 by a factor , i.e., , and let
be the worst optimality gap achieved during the subsequent

excursion as defined in (43). If assumptions (A1)–(A5) hold,
then, for arbitrary given constant we have

(45)

with .
When the optimality gap is outside the neighborhood

, it behaves like a supermartingale. It would
then be easy to obtain a linear bound for the probability

using Markov’s inequality for martingales;
see, e.g., ([38], Ch. 1). An exponential bound as the one in (45)
could be obtained if we can claim that an exponential transfor-
mation of yields another supermartingale-like relation. That
this is indeed possible is shown in the following lemma.
Lemma 2: Let be a sequence of random variables such

that for some , there are positive constants and for
which and
. Then, for any constant , the transformed
sequence with values satisfies .

Proof: Observe for later reference that the conditions
and im-

posed on the sequence can be translated into corresponding
conditions for the sequence

(46)

(47)

Consider the conditional expectation which
we want to show is smaller than . Writing

and using the fact that with
given, is a constant, we can write this expectation as

(48)

Focus now on the function . Because the exponential
function is convex, any point in the line that connects two points
in the graph of the exponential function lies above the func-
tion. For the line segment defined by the points
and this property can be written as

(49)

for any , or equivalently, for any with abso-
lute value . Further notice that according to (46), the
difference satisfies almost surely.
Therefore, we can make in (49) to conclude that
with probability 1

(50)

Since (50) holds for almost all differences , it must
also be true on expectation. Therefore

(51)

Substitute now the bound in (51) for the corresponding term in
(48) and subtract from both sides of the equation to obtain,
after grouping terms

(52)

Using the bound for in (47), we can bound the term
. This bound substituted in (52) yields

(53)

The desired result follows if the right hand side of (53) is non-
positive. Since , this imposes the following condition in
the constants , and

(54)

We interpret and as given constants for the sequence .
Thus, (54) implies that for any constant satisfying this in-
equality, the sequence satisfies . We will
see that the hypothesis is sufficient for (54)
to be true. To do so divide both sides of (54) by
and use the definitions of the hyperbolic tangent and
secant to conclude that (54) is equivalent to

(55)
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We square both sides of (55) which is valid because
for any , expand terms and use the relationship

to get that (54) is further equiv-
alent to

(56)

Notice now that the hyperbolic tangent satisfies
for any nonnegative . Therefore, if we guarantee

, the inequality in (56) will be also satisfied.
This latter condition is equivalent to . There-
fore, if the constant satisfies , the in-
equality in (56) is satisfied. Since (56) is equivalent to (54),

also implies (54) is satisfied, which in
turn implies because of (53). This is
the result we wanted to prove. Notice that the laxer condition

can be imposed on . The
condition suffices for our purposes and is
close to the condition in (56) for small values of .
Lemma 2 shows that a suitably chosen exponential transform

of a sequence of random variables that has
almost sure finite increments and strict expected decrease ad-
heres to a supermartingale-like inequality. From Assumption
(A5), we are given that increments of the process are al-
most surely finite. Since during the excursion, it holds

, it further follows from Lemma 1 that
is expected to decrease during the excursion. Hence, the

two hypotheses of Lemma 2 are satisfied for the excursion se-
quence , from where it follows that satis-
fies a supermartingale-like inequality. This observation is com-
bined with a stopping time argument and the use of Markov’s
inequality to prove Theorem 2.

Proof of Theorem 2: Our interest is in the excursion
starting at and finishing at time

where . During this proof,
we consider the process of optimality gaps starting
at given and the exponential transformation
with as given in the statement of
Theorem 2. We further define the stopping time

(57)

The stopping criterion is equivalent to
and corresponds to the end of the excursion at time [cf.
(43)]. In this case, the two stopping times and are equal,

. The stopping condition is equivalent to
and corresponds to the excursion exceeding the value

before time . In the first stopping case, the excursion fin-
ishes before reaching , while in the second case the excursion
reaches the value before finishing at . It follows that the
worst optimality gap during the excursion exceeds gamma, i.e.,

, if and only if the value , or equivalently if
. Thus, we can write the excursion probability in

(45) as

(58)

Also notice that is a properly defined stopping time in that it
is almost surely finite ([38], Ch. 4). This is true because Theorem

1 assures that for any for some
finite with probability 1. This is the first stopping condition in
(57).
Further define the stopped process that coincides with
before the stopping time and with the stopping value
afterwards, i.e.,

(59)

Wewill show that the stopped process is a supermartingale
and conclude the proof with a simple Markov’s inequality argu-
ment. Start by noticing that the bound (19) claimed by Lemma
1 can be equivalently written as

(60)

because is set if is given.
Consider the excursion starting at

and finishing at time . Since we are assuming by hypothesis
that , it follows that for all elements of
this excursion except , it holds .
Combining this observation with the bound in (60), we have that
for all , it holds

(61)

Further recalling that Assumption (A5) states that
it follows that during the

excursion the elements of the optimality gap satisfy the
conditions of Lemma 2 with and .
Consequently, when , the process satisfies the
supermatingale condition

(62)

When , the stopped process (59) is equal to the trans-
formed process hence holds
in this case. When the process has stopped

for because all values after the stopping time are
equal to . Therefore, a relationship analogous to the one
in (62) is also true for the stopped process,

(63)

The difference between (62) and (63) is that the former holds
for all , whereas the latter is true for all times. Applying
(63) recursively, it follows that a particular consequence of (63)
is for all , which implies that the same
is true for the value of at the stopping time ([39], Ch.
6),

(64)

If we now apply Markov’s inequality to the probability
in (58) we obtain

(65)
Substituting (65) for the right hand side of (58) and using

, the result follows.
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According to Theorem 2, the probability of being larger
than some arbitrary constant decreases exponentially. This
result characterizes process behavior outside the convergence
region. This is a bound on the worst optimality gap attained
during the process starting at a level set
and ending at or below the starting level set . The ex-
ponential bound in (45) is dependent on the coefficient

with larger corresponding to
smaller upper bounds. Accordingly, an increase in any of the
constants , or , increases the excursion probability
bound in (45) because it decreases the coefficient . This is
natural. An increase in the mean squared error implies more
variation in heuristic rational actions. Likewise, an increment
in increases the maximum possible suboptimality increase
between subsequent steps. Increasing results in functions
that change faster. The constant indicates how far away is
at the start of the excursion. Notice that since in (45) is also
proportional to , this does not necessarily mean that the bound
becomes worse for larger . Rather, the bound is more or less
invariant with respect to the starting point of the excursion.
Notice that since the proof of Theorem 2 uses the results in

Lemma 1 and Theorem 1 suitable variations of Remarks 2 and
3 hold for Theorem 2 as well. In particular, Theorem 2 holds
true if the network is not connected [cf. Remark 2]. If activation
probabilities are unequal, Theorem 2 follows with a modifica-
tion to the constant [cf. Remark 3].

V. SIMULATIONS

We further study the behavior of networks composed of
heuristic rational agents through numerical simulations. We use
the examples in Sections II-A and II-B, namely propagation
of opinions in social networks and MRF estimation with a
sensor network as case studies. We add a third case study
corresponding to cohesive foraging of animal herds or fish
schools. In this scenario, a group of animals balance attractive
forces to a food source with attractive and repulsive forces
between each other.
In all three test cases, we generate network connectivity using

a geometric model. We drop a group of agents on a rectan-
gular field of length and width . The coordinates of user
are chosen inside this rectangle uniformly at random. The neigh-
borhood set of agent consists of all agents positioned within
a cutoff distance of , i.e., .
We further assume agents become active independently of each
other and that times between activations of user are exponen-
tially distributed with parameter . This is equivalent to
Poisson activations at a rate for individual users and at a rate

for the network as a whole.

A. Opinion Propagation

Consider the model of opinion propagation with stubborn
agents presented in Section II-A with quadratic individual cost
functions. The network consists of agents forming a
connected network as described above. Fig. 2 shows network
structure on a 100 unit 100 unit two dimensional field. Lines
indicate connections between agents. There are two stubborn
agents in the set marked with dotted squares. Agent

Fig. 2. Example network connectivity for opinion propagation in social net-
works. A total of agents are randomly placed on a 100 unit 100
unit square. Connections are drawn between agents situated less than 20 units
apart. Two stubborn agents with coordinates and
have set extreme opinions and . The remaining nodes
are compliant and attempt to minimize a measure of network discordance. Color
encodes opinions at time for rational behavior (8) superimposed with
uniform additive noise in . Stubborn agents are influential among
agents within their close proximity.

1 located at has set opinion , whereas
agent 2 located at has fixed opinion .
The remaining agents are compliant. They start
with a random opinion uniformly drawn from . Opinions
are updated using the rational action in (8) superimposed with
zero mean noise. The noise is chosen as uniformly distributed
in .
The evolution of individual opinions during time units

is presented in Fig. 3 for (left), (middle), and
(right). With the chosen rate of activation ,

an average of 50 activations per agent are observed. Further
observe that corresponds to rational actions. In the plot
for , it is apparent that the actions of different agents
oscillate randomly around their rational actions shown on the
plot for . This is not so clear in the plot for
where the noise starts to be dominant. To further understand
behavior for varying levels of randomness refer to Fig. 4 which
illustrates the evolution of the normalized global optimality gap

in (7) for the noise levels
. Consistent with the results of Theorem 1, the

optimality gaps attained under various noise levels increase with
increasing values of . The variability around the near optimal
value also become larger when the mean square error bound ,
which is proportional to grows. This confirms the dependence
of the excursion probability upper bound on the variance
indicated by Theorem 2.
The emergence of three opinion clusters is clear after around

for the plots corresponding to and
in Fig. 3. Two of these clusters contain opinions between the
intervals and cor-
responding to strong support for the opinion of agents 1 and 2,
respectively. The third cluster contains opinions between the in-
tervals corresponding to weak support
for either stubborn agent. A small number of agents stay unclus-
tered. Clusters start loosing meaning in the plot for as
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Fig. 3. Agent opinions as a function of time for the network in Fig. 2. Lines represent the path of each agent’s opinion up until time . Opinions
are updated by rational action (8) superimposed with zero mean noise uniformly distributed in with (left), (middle), and
(right). Three main clusters are apparent when and with final opinions within the range and

, corresponding to strong support for stubborn agents’ opinions and and weak support for either stubborn agent.

Fig. 4. Normalized global optimality gap for opinion propagation with cost.
Opinions are updated by the rational action (8) superimposed with zero mean
noise uniformly distributed in with . The steady
state optimality gap increases with as predicted by Theorem 1.

the noise in the heuristic rational rule dominates attempts at op-
timality. Opinions are also color-coded in Fig. 2 for the
noise level . It is noticeable that agents in the clusters
with strong support for either opinion are in close proximity of
the corresponding stubborn agent. Strong supporters of agent 1,
i.e., those in the cluster , are located in
the lower-left quadrant. Strong supporters of agent 2, i.e., those
in the cluster , are located in the
upper-right quadrant. Weak supporters of either agent are lo-
cated in either the upper-left or the lower-right quadrant.
1) Small World Networks: We also consider the same

opinion propagation model in a small-world network, which
is thought to better capture the structure of a social network
[40]. A small-world network is constructed from a geometric
network by introducing a rewiring probability and going
through a cycle of random edge rewiring. In this cycle, an edge
is removed and reconnected to a random node with probability
. The addition of these connections reduces the average

path length of the network’s graph. Three networks resulting
from random rewiring of edges of the network in Fig. 2 with
probability are shown in Fig. 5(a)–(c). Individuals
update with respect to rational action (8) superimposed with

uniform noise between . The evolution of individual
opinions during time units for these three networks is
shown in Fig. 6(a)–(c), respectively. Different rewiring leads
to different steady state opinions. However, in all three cases,
the introduction of random links enhances opinion propagation
among clusters decreasing the influence of stubborn agents.
This is supported by the fact that the total number of strong
supporters of either extreme opinion drops from 41 in the
geometric network case with (cf. Fig. 3(b)) to 14 in
Fig. 6(a), 12 in Fig. 6(b), and 19 in Fig. 6(c). Also note that the
average opinions of individuals in the strong support clusters
become less extreme.
2) Agents Using Cost: We consider the same network

setup of Fig. 2 with agents using the cost function in (10)
and the heuristic rational rule in (12) instead of the cost. The
cost in (10) is not strongly convex and therefore theorems 1 and
2 do not apply. Fig. 7 illustrates the evolution of the normal-
ized global optimality gap when agents are rational as
per (11) and when they follow the heuristic rational rule in (12).
Heuristic rational agents attain a smaller global cost than ra-
tional agents. Deterministic coordinate descent fails in functions
that are not strongly convex because subsequent updates tend to
induce cycles that result in periodic oscillations. The random-
ness in the heuristic rational rule prevents this from happening
and leads to better performance than the one achieved by per-
fectly rational agents.

B. Temperature Field Estimation

As an example of MRF estimation as presented in
Section II-B, consider temperature sensors
placed on a 15 m 20 m field. Sensor observations are
corrupted by independent additive zero-mean Gaussian
noise. The observation energy function for agent is con-
sequently , with denoting
noise power. The MRF is also assumed to be Gaussian dis-
tributed which results in a quadratic field energy function

,
with representing a smoothing coefficient. Smaller
result in smoother fields. The log-likelihood function for
this estimation problem can be obtained by substituting

and



5408 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 10, OCTOBER 2012

Fig. 5. Opinion propagation in small-world networks. Edges in the network in Fig. 2 are rewired to a randomly selected node with probability to simulate
observed long-distance connections in social networks. Networks (a)–(c) are different random outcomes of this rewiring procedure. Color encodes opinions at time

as in Fig. 2.

Fig. 6. Agent opinions as a function of time for the networks in Fig. 5(a)–(c). Even though different rewiring leads to different specific behavior, common features
appear in small-world networks. The clusters of strong supporters in Fig. 3 become smaller and the opinion of agents in these clusters become milder. The cluster
of mild supporters becomes larger.

Fig. 7. Normalized global optimality gap for opinion propagation with cost.
Optimality gaps for rational updates as per (11) and heuristic rational updates
as per (12) are shown. A smaller optimality gap is achieved when agents follow
the heuristic rational rule.

into (14). Equivalently, the aggregate local cost in (15) for
agent is

(66)

The resulting rational action that optimizes (66) for agent
given neighboring states at time is

(67)

Equation (67) shows that the optimal estimate of agent is a
weighted average of its own measurement and the current
estimates of neighboring sensors. The measurement is
weighted by the smoothing coefficient and the neighboring
observations by the noise variance . Thus, either smaller or
larger increases the value placed on neighbors’ information.
Due to bandwidth limitations sensors quantize their observa-

tions before transmission. Thus, the signal received by sensor
from sensor is not the current state but a quantized ver-
sion that we can write as for some
quantization noise . The update in (67) is therefore not the
one carried out by sensor . Rather, the estimate of sensor is
updated to

(68)

Assuming the quantization noise has zero mean, i.e.,
, it follows that . We can then think of the
update in (68) as a heuristic rational version of the update in
(67). We can model communication noise in identical manner.
Numerical simulations for a WSN with sensors performing

the update in (68) to estimate a temperature field are shown in
Figs. 8–10. The temperature field is generated as a 15 m 20 m
grid with temperature values ranging in [0 F, 255 F]. Two heat
sources at locations and set the
temperature in these points to 255 F. Temperature drops from
these points at a rate of 25 F/m within an area of influence of



EKSIN AND RIBEIRO: DISTRIBUTED NETWORK OPTIMIZATION 5409

Fig. 8. Estimation of a temperature field with a sensor network. Two heat
sources located at (7 m, 14 m) and (12 m, 13 m) set temperatures at their
locations to 255 F. Temperature around these sources falls at a rate of 25 F/m
within the radius of 3 m from the sources and is set to 0 F at other locations.
The resulting temperature field is encoded according to the scale on the right.
A sensor network with is deployed to estimate this field with lines
representing network connectivity. Sensors estimate the temperature at their
location.

3 m from the sources. The sources do not influence the temper-
ature outside this area which is therefore set to 0 F; see Fig. 8.
The sensors are located at random positions in a 1 m
grid with communication between sensors occurring only be-
tween sensors located less than 1 m apart; see Fig. 8. Consis-
tent with the discussion leading to (68) the temperature field is
modeled as a uniform Gaussian MRF with smoothing param-
eter and observation noise as Gaussian with variance

. The quantization levels for temperature esti-
mates are integers in [0, 255].
Fig. 9(a)–(c) display sensor estimates at times ,

and , respectively. At time estimates are based
on local observations only and thereby show significant differ-
ence with respect to field values. By time the average
number of updates per sensor is just two but we already observe
a significant reduction of noise effects, which becomes more
substantial at time . Notice that the outline of the area
of influence of the heat sources is better defined in the actual
field than in the sensor estimates. This is because of the mis-
match between the way in which the field was generated and the
Gaussian MRF model presumed for its estimation. Fig. 10(a)
and (b) show the evolution of the global log-likelihood func-
tion and the local cost function

in (66) for a selected . The log-likelihoods
tend to decrease thereby resulting on more refined estimates.

C. Cohesive Foraging in Animal Networks

As a third example, consider the problem of cohesive for-
aging where a group of animals search collectively for a food
source.Models of swarming behavior in schools of fish, herds of
animals, flocks of birds, and colonies of bacteria are explained
through distance-dependent attraction and repulsion forces be-
tween individuals [10]–[12]. The attraction force between indi-
viduals at positions and increases with their separating

distance . A commonly used form for the poten-
tial associated with this force is
[13]. The repulsion force decreases with growing distance; a
frequent model being derived from the potential

[13]. These functions are chosen such that for
large distances between individuals attraction forces dominate
while repulsion is dominant at short distances. A third force
added to swarm foraging models results from an attractive po-
tential of the form , pulling individual towards
a goal destination representing, e.g., the location of a food
source [13]. Aggregating these three potentials we define the
cost function for agent as

(69)

where are positive constants. As in, e.g., [13], [21],
we assume the neighborhood structure is fixed and that network
agents know the relative position of their neighbors . Observe
that the cost in (69) is not convex. Since convexity was required
by hypotheses (A1), the results in theorems 1 and 2 are not valid
in this example.
For this example, we consider a local heuristic rational rule

where is a solution to

(70)

given and . In other words, is only guaranteed to be a
local minimum. Now, we assume that the animal can only reach
the position with some error that has mean zero yielding

. This position error could be due to precision
error of the animal’s visual perception or other external factors
such as geographical barriers.
We consider a herd of seven animals starting at random loca-

tions inside 1 m 1 m region. The herd network is completely
connected meaning each agent knows the relative position of
all other animals in the herd. The environment includes a food
source located at point that each agent is attracted
to. We let the positive constants of (69) be equal for all ani-
mals with values . Agents
update their position with respect to a uniform distribution in

with where is a solution
to (70). Precision error in animals’ visual perception is captured
by .
Network structure of seven animals at times

and are shown in Fig. 11(a)–(d). Animals indi-
cated by color coded filled circles start with random locations on
a 1 m 1 m region. Lines indicate connection between animals
displaying complete network structure. Food source located at

is indicated with bold circle. Observe that between
times and , the dominant forces on animal behavior
are food source attraction and attraction between individuals as
the individuals get closer to food source and each other. At time

, the network structure is elongated toward food source
indicating a strong attraction by the food source. As the herd gets
close to food source by time , inter-individual attraction
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Fig. 9. Sensor temperature field estimates at times (a), (b), and (c). Gaussian MRF has smoothing coefficient . Observation
noise power is equal to . Sensors update their temperature estimates using the heuristic rational update in (68) with quantization level .
Estimates are encoded using the same scale of Fig. 8. Sensor estimates become closer to field values as information from neighboring nodes is incorporated into
local estimates.

Fig. 10. Global (a) and individual (b) log-likelihoods for temperature field
estimation.

Fig. 11. Snapshots of herd network structure at times ,
and on a 4 m 2 m environment corresponding to (a)–(d), respectively.
A herd of is initially randomly located at a 1 m 1 m region. Network
is complete and fixed. Lines indicate existence of links between animals. Food
is bold circled at point . Filled circles are color coded to identify
each individual animal. Agents move toward food source while trying to even
out inter-individual attraction and repulsion forces.

and repulsion become the dominant forces guiding behavior.
Observe that at time , herd is gathered near the food

source and tries to maintain inter-individual distance that bal-
ances attraction and repulsion forces. Noise inhibits the agents
from making the right decision at all times which further affects
path of other agents, yet we still observe a final outcome that is
close to the case when the decision making is noise free. This
provides an explanation for observation of harmonic behavior
of the whole herd or school even when the individual actions
seem imperfect.

VI. CONCLUSION

We analyzed the convergence and excursion behavior of
heuristic rational rules (cf. Definition 1) in distributed network
optimization problems with global cost functions that are sums
of local nonlinear costs. We have shown that sequences of
heuristic rational actions performed individually at random
activation times guarantee visits to a near optimality region
infinitely often for almost all realizations of the process. This
region was completely characterized in terms of cost function
properties and the mean squared error of the heuristic rule with
respect to the optimal action. We also studied the path of the
optimality gap between visits to the near optimality region. We
showed that the worst yield achieved during excursions away
from optimality are exponentially bounded. An important con-
sequence of this result is that while deviations from optimality
are possible, they are rare.
We illustrated heuristic rational optimization using sce-

narios from social, communication, and biological networks
where heuristic rational actions can explain emergent behavior.
The social network example is the propagation of opinions
from stubborn agents. The communication network example
consisted of the estimation of a Markov random field using
a wireless sensor network. The biological network example
considered cohesive foraging herd behavior.
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