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Abstract
Optimal design of wireless systems in the presence of fading involves the instantaneous allocation of resources such
as power and frequency with the ultimate goal of maximizing long term system properties such as ergodic capacities
and average power consumptions. This yields a distinctive problem structure where long term average variables are
determined by the expectation of a not necessarily concave functional of the resource allocation functions. Despite
their lack of concavity it can be proven that these problems have null duality gap under mild conditions permitting
their solution in the dual domain. This affords a significant reduction in complexity due to the simpler structure of the
dual function. The article discusses the problem simplifications that arise by working in the dual domain and reviews
algorithms that can determine optimal operating points with relatively lightweight computations. Throughout the
article concepts are illustrated with the optimal design of a frequency division broadcast channel.

Introduction
Operating variables of a wireless system can be separated
in two types. Resource allocation variables p(h) determine
instantaneous allocation of resources like frequencies and
transmitted powers as a function of the fading coefficient
h. Average variables x capture system’s performance over
a large period of time and are related to instantaneous
resource allocations via ergodic averages. A generic rep-
resentation of the relationship between instantaneous and
average variables is

x ≤ E [f1 (h, p(h))] , (1)
where f1(h, p(h)) is a vector function that maps channel
h and resource allocation p(h) to instantaneous perfor-
mance f1(h, p(h)). The system’s design goal is to select
resource allocations p(h) to maximize ergodic variables x
in some sense.
An example of a relationship having the form in (1) is

a code division multiple access channel in which case h
denotes the vector of channel coefficients, p(h) the instan-
taneous transmitted power, f1(h, p(h)) the instantaneous
communication rate determined by the signal to interfer-
ence plus noise ratio, and x the ergodic rates determined
by the expectation of the instantaneous rates. The design
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goal is to allocate instantaneous power p(h) subject to a
power constraint so as to maximize a utility of the ergodic
rate vector x. This interplay of instantaneous actions to
optimize long term performance is pervasive in wireless
systems. A brief list of examples includes optimization
of orthogonal frequency division multiplexing [1], beam-
forming [2,3], cognitive radio [4,5], random access [6,7],
communication with imperfect channel state informa-
tion (CSI) [8,9], and various flavors of wireless network
optimization [10-18].
In many cases of interest the functions f1(h, p(h)) are

nonconcave and as a consequence finding the resource
allocation distribution p∗(h) that maximizes x requires
solution of a nonconvex optimization problem. This is fur-
ther complicated by the fact that since fading channels h
take on a continuum of values there is an infinite num-
ber of p∗(h) variables to be determined. A simple escape
to this problem is to allow for time sharing in order to
make the range of E [f1(h, p(h))] convex and permit solu-
tion in the dual domain without loss of optimality. While
the nonconcave function f1(h, p(h)) still complicates mat-
ters, working in the dual domain makes solution, if not
necessarily simple, at least substantially simpler. However,
time sharing is not easy to implement in fading channels.
In this article, we review a general methodology

that can be used to solve optimal resource alloca-
tion problems in wireless communications and net-
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working without resorting to time sharing [19,20].
The fundamental observation is that the range of
E [f1(h, p(h))] is convex if the probability distribution of
the channel h contains no points of positive probabil-
ity (Section “Duality in wireless systems optimization”).
This observation can be leveraged to show lack of dual-
ity gap of general optimal resource allocation problems
(Theorem 1) making primal and dual problems equiva-
lent. The dual problem is simpler to solve and its solu-
tion can be used to recover primal variables (Section
“Recovery of optimal primal variables”) with reduced
computational complexity due to the inherently sep-
arable structure of the problem Lagrangians (Section
“Separability”). We emphasize that this reduction in com-
plexity, as in the case of time sharing, just means that the
problem becomes simpler to solve. In many cases it also
becomes simple to solve, but this is not necessarily the
case.
We also discuss a stochastic optimization algorithm

to determine optimal dual variables that can operate
without knowledge of the channel probability distri-
bution (Section “Dual descent algorithms”). This algo-
rithm is known to almost surely converge to optimal
operating points in an ergodic sense (Theorem 5).
Throughout the article concepts are illustrated with the
optimal design of a frequency division broadcast channel
(Section “Frequency division broadcast channel” in
“Optimal wireless system design”, Section “Frequency
division broadcast channel” in “Recovery of optimal pri-
mal variables”, and Section “Frequency division broadcast
channel” in “Dual descent algorithms”).
One of the best known resource allocation problems

in wireless communications concerns the distribution
of power on a block fading channel using capacity-
achieving codes. The solution to this problem is easy
to derive and is well known to reduce to waterfill-
ing across the fading gain, e.g., [21, p. 245]. Since this
article can be considered as an attempt to generalize
this solution methodology to general wireless commu-
nication and networking problems it is instructive to
close this introduction by reviewing the derivation of
the waterfilling solution. This is pursued in the following
section.

Power allocation in a point-to-point channel
Consider a transmitter having access to perfect CSI h
that it uses to select a transmitted power p(h) to convey
information to a receiver. Using a capacity achieving code
the instantaneous channel rate for fading realization h is
r(h) = log(1 + hp(h)/N0) where N0 denotes the noise
power at the receiver end. A common goal is to maximize
the average rate r := E[ r(h)] with respect to the prob-
ability distribution mh(h) of the channel gain h—which
is an accurate approximation of the long term average

rate—subject to an average power constraint P0. We can
formulate this problem as the optimization program

P = maxE
[
log

(
1 + hp(h)

N0

)]

s.t. E [p(h)] ≤ q0. (2)

In most cases the fading channel h takes on a continuum
of values. Therefore, solving (2) requires the determina-
tion of a power allocation function p : R+ → R+

that maps nonnegative fading coefficients to nonnega-
tive power allocations. This means that (2) is an infi-
nite dimensional optimization problem which in principle
could be difficult to solve. Nevertheless, the solution to
this program is easy to derive and given by waterfilling
as we already mentioned. The widespread knowledge of
the waterfilling solution masks the fact that is is rather
remarkable that (2) is easy to solve and begs the question
of what are the properties that make it so. Let us then
review the derivation of the waterfilling solution in order
to pinpoint these properties.
To solve (2) we work in the dual domain. To work in

the dual domain we need to introduce the Lagrangian,
the dual function, and the dual problem. Introduce then
the nonnegative dual variable λ ∈ R+ and define the
Lagrangian associated with the optimization problem in
(2) as

L(p, λ) = E
[
log

(
1 + hp(h)

N0

)]
+ λ [q0 − E [p(h)]] .

(3)

The dual function is defined as the maximum value
of the Lagrangian across all functions p : R+ → R+,
which upon defining P := {p : p(h) ≥ 0} as the set of
nonnegative functions can be defined as

g(λ) :=max
p∈P

L(p, λ)

=max
p∈P

E
[
log

(
1 + hp(h)

N0

)]
+ λ [q0 − E[ p(h)] ] .

(4)

The dual problem corresponds to the minimization
of the dual function with respect to all nonnegative
multipliers λ,

D = min
λ≥0

g(λ) = min
λ≥0

max
p∈P

L(p, λ). (5)

Since the objective in (2) is concave with respect to
variables p(h) and the constraint is linear in p(h) the opti-
mization problem in (2) is convex and as such it has null
duality gap in the sense that P = D.
An entity that is important for the upcoming discus-

sion is the primal Lagrangian maximizer function p(λ) :
R+ → R+ whose values for given h are denoted as p(h, λ).
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This function is defined as the one that maximizes the
Lagrangian for given dual variable λ

p(λ) = argmax
p∈P

L(p, λ). (6)

Using the definition of the Lagrangianmaximizer function
we can write the dual function as g(λ) = L(p(λ), λ).
Computing values p(h, λ) of the Lagrangian maximizer

function p(λ) is easy. To see that this is true rewrite the
Lagrangian in (3) so that there is only one expectation

L(p, λ) = E
[
log

(
1 + hp(h)

N0

)
− λp(h)

]
+ λq0. (7)

With the Lagrangian written in this form we can see
that the maximization of L(p, λ) required by (6) can be
decomposed inmaximizations for each individual channel
realization,

max
p∈P

L(p, λ) = E
[
max
p(h)>0

log
(
1 + hp(h)

N0

)
−λp(h)

]
+λq0.

(8)
That the equality in (8) is true is a consequence of the fact
that the expectation operator is linear and that there are
no constraints coupling the selection of values p(h1) and
p(h2) for different channel realizations h1 '= h2. Func-
tional values p(h) in both sides of (8) are required to be
nonnegative but other than that we can select p(h1) and
p(h2) independently of each other as indicated in the right
hand side of (8).
Since the right hand side of (8) states that to maximize

the Lagrangian we can select functional values p(h) inde-
pendently of each other, values p(h, λ) of the Lagrangian
maximizer function p(λ) defined in (6) are given by

p(h, λ) = argmax
p(h)≥0

[
log

(
1 + hp(h)

N0

)
− λp(h)

]
. (9)

The similarity between (6) and (9) is deceiving as the
latter is a much easier problem to solve that involves a
single variable. To find the Lagrangian maximizer value
p(h, λ) operating from (9) it suffices to solve for the null of
the derivative with respect to p(h). Doing this yields the
Lagrangian maximizer

p(h, λ) =
[1
λ

− N0
h

]+
, (10)

where the operator [ x]+ := max(x, 0) denotes projection
onto nonnegative reals, which is needed because of the
constraint p(h) ≥ 0.
Of particular interest is the Lagrangian maximizer func-

tion p(λ∗) corresponding to the optimal Lagrange multi-
plier λ∗ := argminλ≥0 g(λ). Returning to the definition of
the dual function in (4) we can bound D = g(λ∗) as

D = max
p∈P

L(p, λ∗) ≥ L
(
p∗, λ∗) . (11)

Indeed, since D is given by a Lagrangian maximization it
must equal or exceed the values of the Lagrangian for any
function p, and for the optimal function p∗ in particular.
Considering the explicit Lagrangian expression in (3) we
can write L(p∗, λ∗) as

L(p∗, λ∗) = E
[
log

(
1+ hp∗(h)

N0

)]
+λ∗ [

q0 − E
[
p∗(h)

]]
.

(12)
Observe that since p∗ is the optimal power allocation
function it must satisfy the power constraint implying that
it must be q0 − E [p∗(h)] ≥ 0. Since the optimal dual
variable satisfies λ∗ ≥ 0 their product is also nonnegative
allowing us to transform (12) into the bound

L
(
p∗, λ∗) ≥ E

[
log

(
1 + hp∗(h)

N0

)]
= P, (13)

where the equality is true because P and p∗ are the otpimal
value and arguments of the primal optimization problem
(2). Combining the bounds in (11) and (13) yields

D = max
p∈P

L
(
p, λ∗) ≥ L

(
p∗, λ∗) ≥ P. (14)

Using the equivalence P = D of primal and dual optimum
values it follows that the inequalities in (13) must hold as
equalities. The equality maxp∈P L(p, λ∗) = L(p∗, λ∗), in
particular, implies that the function p∗ is the Lagrangian
maximizing function corresponding to λ = λ∗, i.e.,

p∗ = p
(
λ∗) = argmax

p
L

(
p, λ∗) . (15)

The important consequence of (15) follows from the fact
that the Lagrangian maximizer function p (λ∗) is easy to
compute using the decomposition in (9). By extension, if
the optimal multiplier λ∗ is available, computation of the
optimal power allocation function p∗ also becomes easy.
Indeed, making λ = λ∗ in (9) we can determine values
p∗(h) of p∗ as

p∗(h) = p(h, λ∗) = argmax
p(h)≥0

[
log

(
1+ hp(h)

N0

)
− λ∗p(h)

]
,

(16)
which are explicitly given by (10) with λ = λ∗.
To complete the problem solution we still need to deter-

mine the optimal multiplier λ∗. We show a method for
doing so in Section “Dual descent algorithms”, but it is
important to recognize that this cannot be a difficult prob-
lem because the dual function is single-dimensional and
convex—dual functions of maximization problems are
always convex. This has to be contrasted with the infi-
nite dimensionality of the primal problem. By working in
the dual domain we reduce the problem of determining
the infinite dimensional optimal power allocation func-
tion to the determination of the one dimensional optimal
Lagrange multiplier λ∗.
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Recapping the derivation of the optimal power alloca-
tion p∗, we see that there are three conditions that make
(18) simple:

(C1) Since the optimization problem is convex it is
equivalent to its Lagrangian dual implying that
optimal primal variables can be determined as
Lagrangian maximizers associated with the
optimal multiplier λ∗ [cf. (11)–(15)].

(C2) Due to the separable structure of the Lagrangian,
determination of the optimal power allocation
function is carried out through the solution of
per-fading state subproblems [cf. (6)–(9)].

(C3) Because there is a finite number of constraints the
dual function is finite dimensional even though
there is an infinite number of primal variables.

Most optimization problems in wireless systems are
separable in the sense of (C2) and have a finite number
of constraints as [cf. (C3)] but are typically not convex
[cf. (C1)].
To illustrate this latter point consider a simple variation

of (2) where instead of using capacity achieving codes we
use adaptive modulation and coding (AMC) relying on a
set of L communication modes. The l-th mode supports
a rate αl and is used when the signal to noise ratio (SNR)
at the receiver end is between βl−1 and βl. Letting γ be
the received SNR and I(E) denote the indicator function
of the event E , the communication rate function C(γ ) for
AMC can be written as

CAMC(γ ) =
L∑

l=1
αlI

(
βl ≤ γ < βl+1

)
. (17)

The corresponding optimal power allocation problem
subject to average power constraint q0 can now be formu-
lated as

P = maxE
[ L∑

l=1
αlI

(
βl ≤ hp(h)

N0
< βl+1

)]

s.t. E [p(h)] ≤ q0. (18)

Similar to (2) the dual function of the optimization prob-
lem in (18) is one dimensional and its Lagrangian is sepa-
rable in the sense that we can find Lagrangian maximizers
by performing per-fading state maximizations. Alas, the
problem is not convex because the AMC rate function
C(γ ) is not concave, in fact, it is not even continuous.
Since it does not satisfy (C1), solving (18) in the

dual domain is not possible in principle. Nevertheless
the condition that allows determination of p∗(h) as the
Lagrangian maximizer p(h, λ∗) [cf. (16)] is not the convex-
ity of the primal problem but the lack of duality gap. We’ll
see in Section “Duality in wireless systems optimization”
that this problem does have null duality gap as long as

the probability distribution of the channel h contains
no points of strictly positive probability. Thus, the solu-
tion methodology in (3)-(16) can be applied to solve (18)
despite the discontinuous AMC rate function C(γ ). This
is actually a quite generic property that holds true for opti-
mization problems where nonconcave functions appear
inside expectations. We introduce this generic problem
formulation in the next section.

Optimal wireless system design
Let us return to the relationship in (1) where h denotes
the random fading state that ranges on a continuous space
H, p(h) the instantaneous resource allocation, f1(h, p(h))

a vector function mapping h and p(h) to instantaneous
system performance, and x an ergodic average. The expec-
tation in (1) is with respect to the joint probability distri-
butionmh(h) of the vector channel h.
It is convenient to think of f1(h, p(h)) as a family of func-

tions indexed by the parameter h with p(h) denoting the
corresponding variables. Notice that there is one vector
p(h) per fading state h, which translates into an infinite
number of resource allocation variables if h takes on an
infinite number of values. Consequently, it is adequate to
refer to the set p := {p(h)}h∈H of all resource alloca-
tions as the resource allocation function. The number of
ergodic limits x of interest, on the other hand, is assumed
finite.
Instantaneous resource allocations p(h) are further con-

strained to a given bounded set P(h). These restrictions
define a set of admissible resource allocation functions
that we denote as

P := {p : p(h) ∈ P(h), for allh ∈ H}. (19)

Variables p(h) determine system performance over short
periods of times. As such, they are of interest to the sys-
tem designer but transparent to the end user except to
the extent that they determine the value of ergodic vari-
ables x. Therefore, we adopt as our design objective the
maximization of a concave utility function f0(x) of the
ergodic average x. Putting these preliminaries together we
write the following program as an abstract formulation of
optimal resource allocation problems in wireless systems

P = max f0(x)
s.t. x ≤ E [f1(h, p(h))] , f2(x) ≥ 0,

x ∈ X , p ∈ P , (20)

where we added further constraints on the set of ergodic
averages x. These constraints are in the form of a bounded
convex set inclusion x ∈ X and a concave function
inequality f2(x) ≥ 0. In the problem formulation in (20)
the set X is convex and the functions f0(x) and f2(x) are
concave. The family of functions f1(h, p(h)) is not nec-
essarily concave with respect to p(h) and the set P is
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not necessarily convex. The sets X and P are assumed
compact to guarantee that x and p(h) are finite. For the
expectation in (20) to exist we need to have f1(h, p(h))

integrable with respect to the probability distribution
mh(h) of the vector channel h. This imposes a (mild)
restriction on the functions f1(h, p(h)) and the power allo-
cation function p. Integrability is weaker than continuity.
For future reference define x∗ and p∗ as the arguments

that solve (20)
(x∗, p∗) = argmax f0(x)

s.t x ≤ E [f1(h, p(h))] , f2(x) ≥ 0,
x ∈ X , p ∈ P . (21)

The configuration pair (x∗, p∗) attains the optimum
value P = f0(x∗) and satisfies the constraints x∗ ≤
E [f1 (h, p∗(h))] and f2(x∗) ≥ 0 as well as the set con-
straints x∗ ∈ X , and p∗ ∈ P . Observe that the pair (x∗, p∗)
need not be unique. It may be, and it is actually a common
occurrence in practice, that more than one configuration
is optimal. Thus, (21) does not define a pair of variables
but a set of pairs of optimal configurations. As it does not
lead to confusion we use (x∗, p∗) to represent both, the set
of optimal configurations and an arbitrary element of this
set.
To write the Lagrangian we introduce a nonnegative

Lagrange multiplier ! =
[
λT1 , λT2

]T where λ1 ≥ 0 is asso-
ciated with the constraint x ≤ E [f1 (h, p(h))] and λ2 ≥ 0
with the constraint f2(x). The Lagrangian of the primal
optimization problem in (20) is then defined as
L(x, p,!) := f0(x) +λT1 [E (f1 (h, p(h)))−x] + λT

2 f2(x).
(22)

The corresponding dual function is the maximum of the
Lagrangian with respect to primal variables x ∈ X and
p ∈ P

g(!) := max
x∈X ,p∈P

L(x, p,!). (23)

The dual problem is defined as the minimum value of the
dual function over all nonnegative dual variables

D = min
!≥0

g(!), (24)

and the optimal dual variables are defined as the argu-
ments that achieve the minimum in (24)

!∗ := argmin
!≥0

g(!). (25)

Notice that the optimal dual argument !∗ is a set as in the
case of the primal optimal arguments because there may
be more than one vector that achieves the minimum in
(24). As we do with the optimal primal variables (x∗, p∗),
we use !∗ to denote the set of optimal dual variables and
an arbitrary element of this set. A particular example of
this generic problem formulation is presented next.

Frequency division broadcast channel
A common access point (AP) administers a power budget
q0 to communicate with a group of J nodes. The physical
layer uses frequency division so that at most one termi-
nal can be active at any given point in time. The goal
is to design an algorithm that allocates power and fre-
quency to maximize a given ergodic rate utility metric
while ensuring that rates are at least rmin and not more
than rmax.
Denote as hi the channel to terminal i and define the

vector h :=
[
h1 . . . , hJ

]T grouping all channel realiza-
tions. In any time slot the AP observes the realization
h of the fading channel and decides on suitable power
allocations pi(h) and frequency assignments αi(h). Fre-
quency assignments αi(h) are indicator variables αi(h) ∈
{0, 1} that take value αi(h) = 1 when information is
transmitted to node i and αi(h) = 0 otherwise. If
αi(h) = 1 communication towards i ensues at power
pi(h) resulting in a communication rate C(hipi(h)/N0)
determined by the SNR hipi(h)/N0. The specific form of
the function C(hipi(h)/N0)mapping channels and powers
to transmission rates depends on the type of modula-
tion and codes used. One possibility is to select capacity
achieving codes leading to C(hipi(h)/N0) = log(1 +
hipi(h)/N0). A more practical choice is to use AMC in
which case C(hipi(h)/N0) = CAMC(hipi(h)/N0) with
CAMC(hipi(h)/N0) as given in (17).
Regardless of the specific form of C(hipi(h)/N0) we can

write the ergodic rate of terminal i as

ri = E
[
αi(h)C

(hipi(h)

N0

)]
. (26)

The factor C(hipi(h)/N0) is the instantaneous rate
achieved if information is conveyed. The factor αi(h)

indicates wether this information is indeed conveyed or
not. The expectation weights the instantaneous capacity
across fading states and is equivalent to the consideration
of an infinite horizon time average.
Similarly, pi(h) denotes the power allocated for commu-

nication with node i, but this communication is attempted
only if αi(h) = 1. Thus, the instantaneous power uti-
lized to communicate with i for channel realization h is
αi(h)pi(h). The total instantaneous power is the sum of
these products for all i and the long term average power
consumption can be approximated as the expectation

E
[ J∑

i=1
αi(h)pi(h)

]

≤ q0, (27)

that according to the problem statement cannot exceed
the budget q0.
To avoid collisions between communication attempts

the indicator variables αi(h) are restricted so that at
most one of them is 1. Define the vector α(h) :=
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[
α1(h), . . . , αJ(h)

]T corresponding to values of the
function α :=

[
α1, . . . , αJ

]T and introduce the set of
vector functions

A :=
{
α : α(h) ∈ {0, 1}, 1Tα(h) ≤ 1

}
. (28)

We can now express the frequency exclusion constraints
as α ∈ A.
We still need to model the restriction that the achieved

capacity ri needs to be between rmin and rmax but this is
easily modeled as the constraint rmin ≤ ri ≤ rmax. Defin-
ing the vector r = [

r1, . . . , rJ
]T this constraint can be

written as r ∈ R with the setR defined as

R :=
{
r = [

r1, . . . , rJ
]T : rmin ≤ ri ≤ rmax

}
. (29)

We finally introduce a monotonic nondecreasing utility
functionU(ri) to measure the value of rate ri and formally
state our design goal as the maximization of the aggregate
utility ∑J

i=1 U(ri). Using the definitions in (26)–(29) the
operating point that maximizes this aggregate utility for
a frequency division broadcast channel follows from the
solution of the optimization problem

P = max
J∑

i=1
U(ri)

s.t ri ≤ E
[
αi(h)C

(hipi(h)

N0

)]
,

q0 ≥ E
[ J∑

i=1
αi(h)pi(h)

]

,

r ∈ R, α ∈ A, (30)

where we relaxed the rate expression in (26) to an inequal-
ity constraint, which we can do without loss of optimality
because the utility U(ri) is monotonic nondecreasing.
The problem formulation in (30) is of the form in (20).

The ergodic rates r in (30) are represented by the ergodic
variables x in (20) whereas the power and frequency
allocation functions p and α of (30) correspond to the
resource allocation function p of (20). The set R maps
to the set X and the set A to the set P . There are no
functions in (30) taking the place of the function f2(x)
of (20). The function f1(h, p(h)) in (20) is a placeholder
for the stacking of the functions αi(h)C(hipi(h)/N0) for
different i and the negative of the power consumptions
−∑J

i=1 αi(h)pi(h) in (30). The power constraint q0 ≥
E

[∑J
i=1 αi(h)pi(h)

]
is not exactly of the form in (1)

because q0 is a constant not a variable but this doesn’t
alter the fundamentals of the problem. The functions
αi(h)C(hipi(h)/N0) are not concave and the set A is not
convex. This makes the program in (30) nonconvex but is
consistent with the restrictions imposed in (20).

Towrite the Lagrangian corresponding to this optimiza-
tion problem introduce multipliers λ := [

λ1, . . . , λJ
]T

associated with the capacity constraints and µ associ-
ated with the power constraint. The Lagrangian is then
given by

L(r,p,α,λ,µ) =
J∑

i=1
U(ri) + λi

[
E

[
αi(h)C

(hipi(h)

N0

)]
− ri

]

+ µ

[

q0 − E
[ J∑

i=1
αi(h)pi(h)

]]

. (31)

The dual function, dual problem, and optimal dual
arguments are defined as in (22)–(25) by replacing
L(r, p, α, λ,µ) for L(x, p,!). Since (30) is a nonconvex
program we do not know if the dual problem is equiva-
lent to the primal problem. We explore this issue in the
following section.

Duality in wireless systems optimization
For any optimization problem the dual minimum D pro-
vides an upper bound for the primal optimum value P.
This is easy to see by combining the definitions of the dual
function in (23) and the Lagrangian in (22) to write
g(!) = max

x∈X ,p∈P
f0(x)+λT

1 [E (f1 (h, p(h)))−x]+λT
2 f2(x).

(32)
Because the dual function value g(!) is obtained by max-
imizing the right hand side of (32), evaluating this expres-
sion for arbitrary primal variables yields an upper bound
on g(!). Using a pair (x∗, p∗) of optimal primal arguments
as this arbitrary selection yields the inequality
g(!) ≥ f0(x∗) + λT

1
[
E

(f1
(h, p∗(h)

))− x∗] + λT
2 f2(x∗).

(33)
Since the pair x∗, p∗ is optimal, it is feasible, which means
that we must have E [f1 (h, p∗(h))] − x∗ ≥ 0 and f2(x∗) ≥
0. Lagrange multipliers are also nonnegative according to
definition. Therefore, the last two summands in the right
hand side of (33) are nonnegative from which it follows
that

g(!) ≥ f0(x∗) = P. (34)
The inequality in (34) is true for any ! and therefore true
for ! = !∗ in particular. It then follows that the dual
optimum D upper bounds the primal optimum P,

D ≥ P, (35)
as we had claimed. The differenceD-P is called the duality
gap and provides an indication of the loss of optimality
incurred by working in the dual domain.
For the problem in (20) the duality gap is null as long

as the channel probability distribution mh(h) contains no
point of positive probability as we claim in the following
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theorem which is a simple generalization of a similar
result in [20].
Theorem 1. Let P denote the optimum value of the primal
problem (20) and D that of its dual in (24) and assume
there exists a strictly feasible point (x0, p0) that satisfies
the constraints in (20) with strict inequality. If the channel
probability distributionmh(h) contains no point of positive
probability the duality gap is null, i.e.,

P = D. (36)

The condition on the channel distribution not hav-
ing points of positive probability is a mild requirement
satisfied by practical fading channel models including
Rayleigh, Rice, and Nakagami. The existence of a strictly
feasible point (x0, p0) is a standard constraint qualification
requirement which is also not stringent in practice.
In order to prove Theorem 1 we take a detour

in Section “Lyapunov’s convexity theorem” to define
atomic and nonatomic measures along with the pre-
sentation of Lyapunov’s Convexity Theorem. The proof
itself is presented in Section “Proof of Theorem 1”.
The implications of Theorem 1 are discussed in
Sections “Recovery of optimal primal variables” and
“Dual descent algorithms”.

Lyapunov’s convexity theorem
The proof of Theorem 1 uses a theorem by Lyapunov
concerning the range of nonatomic measures [22]. Mea-
sures assign strictly positive values to sets of a Borel field.
When all points have zero measure the measure is called
nonatomic as we formally define next.
Definition 1 (Nonatomic measure). Let w be a measure
defined on the Borel field B of subsets of a space X . Mea-
sure w is nonatomic if for any measurable set E0 ∈ B with
w(E0) > 0, there exist a subset E of E0; i.e., E ⊂ E0, such
that w(E0) > w(E) > 0.
Familiar measures are probability related, e.g., the prob-

ability of a set for a given channel distribution. To build
intuition on the notion of nonatomic measure consider a
random variable X taking values in [ 0, 1] and [ 2, 3]. The
probability of landing in each of these intervals is 1/2
and X is uniformly distributed inside each of them; see
Figure 1. The space X is the real line, and the Borel field
B comprises all subsets of real numbers. For every subset
E ∈ B define the measure of E as twice the integral of x,
weighted by the probability distribution of X on the set E,
i.e.,

wX(E) := 2
∫

E

xdX. (37)

Note that, except for the factor 2, the value of wX(E)

represents the contribution of the set E to the expected
value of X and that when E is the whole space X , it holds

0 1/2 1 3/2 2 5/2 3 7/2

1/2

Figure 1 Nonatomic measure. The random variable X is uniformly
distributed in [ 0, 1]∪[ 2, 3]. The measure wX(E) := 2

∫
E xdX is

nonatomic because all sets of nonzero probability include a smaller
set of nonzero probability. Lyapunov’s convexity theorem
(Theorem 2) states that the measure rangeW := {wX(E) : E ∈ B} is
convex. The range of wX is the, indeed convex, interval [ 0, 3].

wX(X ) = 2EX(x). According to Definition 1, wX(E) is
a nonatomic measure of elements of B. Every subset E0
with wX(E0) > 0 includes at least an interval (a, b). The
measure of the set E := E0 − ((a + b)/2, b) formed by
removing the upper half of (a, b) from E0 is wX(E) =
wX(E0) − (b− a)/2. The measure of E satisfies wX(E) > 0
as required for wX(E) to be nonatomic.
To contrast this with an example of an atomic mea-

sure consider a random variable Y landing equiprobably
in [ 0, 1] or 5/2; see Figure 2. In this case, the measure
wY (E) := 2

∫
E ydY is atomic because the set E0 = {5/2}

has positive measure wY (E) = 1. The only set E ⊂ E0 is
the empty set whose measure is null.
The difference between the distributions of X and Y is

that Y contains a point of strictly positive probability, i.e.,
an atom. This implies presence of delta functions in the
probability density function of Y . Or, in a rather cleaner
statement the cumulative distribution function (cdf) of X
is continuous whereas the cdf of Y is not.
Lyapunov’s convexity theorem introduced next refers to

the range of values taken by (vector) nonatomic measures.

0 1/2 1 3/2 2 5/2 3 7/2

1/2

Figure 2 Atomic measure. The random variable Y lands with equal
probability in Y = 5/2 and uniformly in the interval [ 0, 1]. The
measure wY (E) := 2

∫
E ydY is atomic because the set {1} has strictly

positive probability and no set other than the empty set is strictly
included in {1}. Theorem 2 does not apply. The range of wY (E) is the
nonconvex union of the intervals [ 0, 1/2] and [ 5/2, 3].



Ribeiro EURASIP Journal onWireless Communications andNetworking 2012, 2012:272 Page 8 of 19
http://jwcn.eurasipjournals.com/content/2012/1/272

Theorem 2 (Lyapunov’s convexity theorem [22]). Con-
sider nonatomicmeasures w1, . . . ,wn on the Borel fieldB of
subsets of a spaceX and define the vectormeasurew(E) :=
[w1(E), . . . ,wn(E)]T . The range W := {w(E) : E ∈ B} of
the measure w is convex. I.e., if w(E1) = w1 and w(E2) =
w2, then for any α ∈[ 0, 1] there exists E0 ∈ B such that
w(E0) = αw1 + (1 − α)w2.
Returning to the probability measures defined in terms

of the probability distributions of the random variables X
and Y , Theorem 2 asserts that the range of wX(E), i.e., the
set of all possible values taken by wX is convex. In fact, it
is not difficult to verify that the range of wX is the convex
interval [ 0, 3] as shown in Figure 1. Theorem 2 does not
claim anything about wY . In this case, it is easy to see that
the range of wY is the (non-convex) union of the intervals
[ 0, 1/2] and [ 5/2, 3]; see Figure 2.

Proof of Theorem 1
To establish zero duality gap we will consider a perturbed
version of (20) obtained by perturbing the constraints
used to define the Lagrangian in (22). The perturbation
function P($) assigns to each (perturbation) parame-
ter set $ := [

δT1 , δT2
]T the solution of the (perturbed)

optimization problem

P($) = max f0(x)
s.t. E [f1 (h, p(h))] − x ≥ δ1, f2(x) ≥ δ2,

x ∈ X , p ∈ P . (38)

The perturbed problem in (38) can be interpreted as a
modified version of (20), where we allow the constraints
to be violated by $ amounts. To prove that the duality gap
is zero, it suffices to show that P($) is a concave function
of $; see, e.g., [23].
Let $ =[ δT1 , δT2 ]T and $′ =[ δ′T

1 , δ′T
2 ]T be an arbi-

trary given pair of perturbations. Let (x, p) be a pair of
ergodic limits and resource allocation variables achieving
the optimum value P($) corresponding to perturbation
$. Likewise, denote as (x′, p′) a pair that achieves the opti-
mum value P($′) corresponding to perturbation $′. For
arbitrary α ∈[ 0, 1], we are interested in the solution of (38)
under perturbation $α := α$ + (1 − α)$′. In particular,
to show that the perturbation function P($) is concave we
need to establish that

P ($α) = P
[
α$ + (1 − α)$′]

≥ αP ($) + (1 − α)P
(
$′) . (39)

The roadblock to establish concavity of the perturbation
functions is the constraint x ≤ E [f1 (h, p(h))]. More
specifically, the difficulty with this constraint is the ergodic
limit E [f1 (h, p(h))]. Let us then isolate the challenge by
defining the ergodic limit span

Y := {y ∃ p ∈ P for which y = E [f1 (h, p(h))]
}
. (40)

The set Y contains all the possible values that the expec-
tation E [f1 (h, p(h))] can take as the resource allocation
function p varies over the admissible set P . When the
channel distributionmh(h) contains no points of positive
probability, the setY is convex as we claim in the following
theorem.
Theorem 3. Let Y be ergodic limit span set in (40). If the
channel probability distribution mh(h) contains no point
of positive probability the set Y is convex.
Before proving Theorem 3 let us apply it to complete the

proof of Theorem 1. For doing that consider two arbitrary
points y ∈ Y and y′ ∈ Y . If these points belong to Y there
exist respective resource allocation functions p ∈ P and
p′ ∈ P such that

y = E [f1(h, p(h))] , y′ = E
[f1(h, p′(h))

]
. (41)

IfY is a convex set as claimed by Theorem3, wemust have
that for any given α the point yα := αy + (1 − α)y′ also
belongs to Y . In turn, this means there exists a resource
allocation function pα ∈ P for which

yα := αE [f1 (h, p(h))]+ (1−α)E
[f1

(h, p′(h)
)]

= E [f1(h, pα(h))] . (42)

Further define the ergodic limit convex combination xα :=
αx + (1 − α)x′. We first show that the pair (xα , pα) is
feasible for the problem for perturbation $α .
The convex combination satisfies the constraint xα ∈ X

because the set X is convex. We also have f2(xα) ≥ δ2,α
because the function f2(x) is concave. To see that this
is true simply notice that concavity of f2(x) implies that
f2(xα) = f2[ αx + (1 − α)x′]≥ αf2(x) + (1 − α)f2(x′).
But f2(x) ≥ δ2 and f2(x′) ≥ δ′

2 because x and x′ are fea-
sible in (38) with perturbations $ and $′. Substituting
these latter two inequalities into the previous one yields
f2(xα) ≥ αδ2+(1−α)δ ′

2 = δ2,α according to the definition
of $α .
We are left to show that the pair (xα , pα) satisfies the

constraint E [f1 (h, p(h))] − x ≤ δ1,α . For doing so recall
that since (x, p) is feasible for perturbation % and (x′, p′)
is feasible for perturbation %′ we must have

E [f1 (h, p(h))] − x ≥ δ1,
E

[f1
(h, p′(h)

)]
− x′ ≥ δ′

1. (43)

Perform a convex combination of the inequalities in (43)
and use the definitions of xα := αx+ (1−α)x′ and δ1,α :=
αδ1 + (1 − α)δ′

1 to write

αE [f1 (h, p(h))]+ (1−α)E
[f1

(h, p′(h)
)]

− xα ≥ δ1,α .
(44)

Combining (42) and (44) it follows that E [f1 (h, pα(h))]−
xα ≤ δ1,α completing the proof that the pair (xα , pα) is
feasible for the problem for perturbation $α .
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The utility yield of this feasible pair is f0(xδ) which we
can bound as

f0(xα) ≥ αf0(x) + (1 − α)f0(x′). (45)

Since (x, p) is optimal for perturbation $ we have f0(x) =
P($) and, likewise, f0(x′) = P($′). Further noting that the
optimal yield P($α) for perturbation $α must exceed the
yield f0(xα) of feasible point xα we conclude that

P($α) ≥ αP($) + (1 − α)P($′). (46)

The expression in (46) implies that P($) is a concave
function of the perturbation vector $. The duality gap is
therefore null as stated in (36).
We proceed now to the proof of Theorem 3.

Proof. (Theorem 3) Consider two arbitrary points y ∈
Y and y′ ∈ Y . If these points belong tho Y there exist
respective resource allocation functions p ∈ P and p′ ∈ P
such that

y = E [f1(h, p(h))] , y′ = E
[f1(h, p′(h))

]
. (47)

To prove that Y is a convex set we need to show that for
any given α the point yα := αy + (1 − α)y′ also belongs
to Y . In turn, this means we need to find a resource
allocation function pα ∈ P for which

yα := αE [f1 (h, p(h))]+ (1−α)E
[f1

(h, p′(h)
)]

= E [f1(h, pα(h))] . (48)

For this we will use Theorem 2 (Lyapunov’s convexity
theorem). Consider the space of all possible channel real-
izations H, and the Borel field B of all possible subsets of
H. For every s et E ∈ B define the vector measure

w(E) :=




∫

E

f1(h, p(h))dmh ,
∫

E

f1(h, p′(h))dmh



 ,

(49)

where the integrals are over the set E with respect to the
channel distribution mh(h). A vector of channel realiza-
tions h ∈ H is a point in the space H. The set E is
a collection of vectors h. Each of these sets is assigned
vector measure w(E) defined in terms of the power distri-
butions p(h) and p′(h). The entries of w(E) represent the
contribution of realizations h ∈ E to the ergodic limits in
(48). The first group of entries measure such contributions
when the resource allocation is p(h). Likewise, the second
group of entries of w(E) denote the contributions to the
ergodic limits of the resource distribution p′(h).
Two particular sets that are important for this proof are

the empty set, E = ∅, and the entire space E = H. For E =
H, the integrals

∫
E(·)dmh =

∫
H(·)dmh in (49) coincide

with the expected value operators E(·) in (47). We write
this explicitly as

w(H) =
[
E [f1(h, p(h))] ,E

[f1(h, p′(h))
]]

= [ y, y′] .
(50)

For E = ∅, or any other zero-measure set for that matter,
we have w(∅) = 0.
The measure w(E) is nonatomic. This follows from the

fact that the channel distribution contains no points of
positive probability combined with the requirement that
the resource allocation values p(h) belong to the bounded
sets P(h). Combining these two properties it is easy to see
that that there are no channel realizations with positive
measure, i.e., w(h) = 0 for all h ∈ H. This is sufficient to
ensure that w(E) is a nonatomic measure.
Being w(E) nonatomic it follows from Theorem 2 that

the range of w is convex. Hence, the vector
w0 = αw(H) + (1 − α)w(∅) = αw(H), (51)

belongs to the range of possible measures. Therefore,
there must exist a set E0 such that w(E0) = w0 = αw(H).
Focusing on the entries of w(E0) that correspond to the
resource allocation function p it follows that

∫

E0

f1(h, p(h))dmh = αE [f1(h, p(h))] . (52)

The analogous relation holds for the entries of w(E0) cor-
responding to p′, i.e., (52) is valid if p(h) is replaced by
p′(h) but this fact is inconsequential for this proof.
Consider now the complement set Ec0 defined as the set

for which E0 ∪ Ec0 = H and E0 ∩ Ec0 = ∅. Given this def-
inition and the additivity property of measures, we arrive
at w(E0)+w(Ec0) = w(H). Combining the latter with (51),
yields

w(Ec0) = w(H) − w(E0) = (1 − α)w(H). (53)
We mimick the reasoning leading from (51) to (52), but
now we restrict the focus of (53) to the second entries of
w(Ec0). It therefore follows that

∫

Ec0

f1(h, p′(h))dmh = (1 − α)E
[f1(h, p′(h))

]
. (54)

Define now power distributions pα(h) coinciding with
p(h) for channel realization h ∈ E0 and with p′(h) when
h ∈ Ec0, i.e.,

pα(h) =
{ p(h) h ∈ E0 ,
p′(h) h ∈ Ec0 .

(55)

The resource distribution pα satisfies the set constraint
pα ∈ P in (19). Indeed, to see that pα(h) ∈ P(h) for all
h ∈ H note that p(h) and p′(h) are feasible in their respec-
tive problems and as such p(h) ∈ P(h) and p′(h) ∈ P(h)
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for all channels h ∈ H. Because for given channel realiza-
tion h it holds that either pα(h) = p(h) when h ∈ E0 or
pα(h) = p′(h) when h ∈ Ec0 it follows that pα(h) ∈ P(h)

for all channel realizations h ∈ E0 ∪Ec0 = H. According to
the definition in (19) this implies that pα ∈ P .
Let us now ponder the ergodic limit E [f1(h, pα(h))]

associated with power allocation pα(h).
Using (52) and (54), the average link capacities for power

allocation pα(h) can be expressed in terms of p(h), p′(h)

as

E [f1 (h, pα(h))]

=
∫

E0

f1(h, pα(h))dmh +
∫

Ec0

f1(h, pα(h))dmh

=
∫

E0

f1(h, p(h))dmh +
∫

Ec0

f1(h, p′(h))dmh

= αE [f1(h, p(h))] + (1 − α)E
[f1(h, p′(h))

]
.
(56)

The first equality in (56) holds becauset the space H is
divided into E0 and its complement Ec0. The second equal-
ity is true because when restricted to E0, pα(h) = p(h);
and when restricted to Ec0, pα(h) = p′(h). The third
equality follows from (52) and (54).
Comparing (56) with (48) we see that the power alloca-

tion pα yields ergodic limit yα . Therefore yα ∈ Y implying
convexity of Y as we wanted to show.

Recovery of optimal primal variables
Having null duality gap means that we can work in the
dual domain without loss of optimality. In particular,
instead of finding the primal maximum P we can find the
dual minimum D, which we know are the same according
to Theorem 1. A not so simple matter is how to recover
an optimal primal pair (x∗, p∗) given an optimal dual
vector !∗. Observe that recovering optimal variables
is more important than knowing the maximum yield
because optimal variables are needed for system imple-
mentation. In this section we study the recovery of
optimum primal variables (x∗, p∗) from a given optimal
multiplier !∗.
Start with an arbitrary, not necessarily optimal, multi-

plier ! and define the primal Lagrangian maximizer set
as

(x(!), p(!)) = argmax
x∈X ,p∈P

L(x, p,!). (57)

The elements of (x(!), p(!)) yield the maximum possi-
ble Lagrangian value for given dual variable. Comparing
the definition of the dual function in (23) and that of the

Lagrangian maximizers in (57) it follows that we can write
the dual function g(!) as

g(!) = L (x(!), p(!),!) . (58)
Particular important pairs of Lagrangian maximizers are
those associated with a given optimal dual variable !∗.
As we show in the following theorem, these variables are
related with the optimal primal variables (x∗, p∗).
Theorem 4. For an optimization problem of the form in
(20) let

(x(!∗), p(!∗)
)
denote the Lagrangian maximizer

set as defined in (57) corresponding to a given optimalmul-
tiplier!∗. The optimal argument set (x∗, p∗) is included in
this set of Lagrangian maximizers, i.e.,

(x∗, p∗) ⊆
(x(!∗), p(!∗)

)
. (59)

Proof. Reinterpret (x∗, p∗) as a particular pair of opti-
mal primal arguments. Start by noting that the value of
the dual function g(!∗) can be upper bounded by the
Lagrangian evaluated at (x, p) = (x∗, p∗)

g(!∗) = max
x∈X ,p∈P

L(x, p,!∗) ≥ L(x∗, p∗,!∗). (60)

Indeed, the inequality would be true for any x ∈ X and
p ∈ P because that is what being the maximum means.
Consider now the LagrangianL(x∗, p∗,!∗) that accord-

ing to (22) we can explicitly write as
L(x∗, p∗,!∗) (61)

= f0(x∗) + λ∗
1
T [

E
(f1

(h, p∗(h)
)) − x∗]+λ∗

2
T f2(x∗).

Since the pair (x∗, p∗) is an optimal argument of (20) we
must have E (f1 (h, p∗(h))) − x∗ ≥ 0 and f2(x∗) ≥ 0. The
multipliers also satisfy λ∗

1 ≥ 0 and λ∗
2 ≥ 0 because they are

required to be nonnegative. Thus, the last two summands
in (61) are nonnegative from where it follows that

L(x∗, p∗,!∗) ≥ f0(x∗). (62)
Combining (60) and (62) and using the definitions g(!∗)
and P = f0(x∗) yields

D = g(!∗) ≥ L(x∗, p∗,!∗) ≥ f0(x∗) = P. (63)
But since according to Theorem 1 the duality gap is null

D = P and the inequalities must hold hold as equalities.
In particular, we have

g(!∗) = L(x∗, p∗,!∗), (64)
which according to (58) means the pair (p∗,!∗) is a
Lagrangian maximizer associated with! = !∗. Since this
is true for any pair of optimal variables (p∗,!∗) it follows
that the set (p∗,!∗) is included in the set of Lagrangian
maximizers

(x(!∗), p(!∗)
)
as stated in (59).

According to (59) optimal arguments (x∗, p∗) can be
recovered from Lagrangian maximizers

(x(!∗), p(!∗)
)

associated with optimal multipliers. One has to take care
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to interpret this set inclusion properly. Equation (59)
does not mean that we can always compute (x∗, p∗) by
finding Lagrangian maximizers and as such it may or may
not be a useful result. If the Lagrangian maximizer pair
is unique then the set

(x(!∗), p(!∗)
)
is a singleton and

by extension so is the (included) set (x∗, p∗) of optimal
primal variables. In this case Lagrangian maximizers
can be used as proxies for optimal arguments. When the
set

(x(!∗), p(!∗)
)
is not a singleton this is not possible

and recovering optimal primal variables from optimal
multipliers !∗ is somewhat more difficult.
In general, problems in optimal wireless networking

are such that the Lagrangian maximizer resource alloca-
tion functions p(!∗) are unique to within a set of zero
measure. The ergodic limit Lagrangian maximizers x(!∗),
however, are not unique in many cases. This is more a nui-
sance than a fundamental problem. Algorithms that find
primal optimal operating points regardless of the charac-
teristics of the set of Lagrangian maximizers are studied
in Section “Dual descent algorithms”.

Separability
To determine the primal Lagrangian maximizers in (57) it
is convenient to reorder terms in the definition in (22) to
write

L(x,p,!) (65)
:= f0(x) − λT1 x+λT2 f2(x)+

[
E

(
λT
1 f1 (h, p(h))

)]
.

We say that in (22) the Lagrangian is grouped by dual
variables because each dual variable appears in only one
summand. The expression in (65) is grouped by primal
variables because each summand contains a single primal
variable if we interpret f0(x) − λT

1 x + λT2 f2(x) as a single
term and the expectation as a weighted sum—which is not
true, but close enough for an intuitive interpretation.
Writing the Lagrangian as in (65) simplifies computa-

tion of Lagrangian maximizers. Since there are no con-
straints coupling the selection of optimal x and p in (65)
we can separate the determination of the pair (x(!), p(!))

in (57) into the determination of the ergodic limits

x(!) = argmax
x∈X

f0(x) − λT1 x + λT
2 f2(x) (66)

and the resource allocation function

p(!) = argmax
p∈P

E
(
λT
1 f1 (h, p(h))

)
. (67)

The computation of the resource allocation function in
(67) can be further separated. The set P as defined in
(19) constrains separate values p(h) of the function p but
doesn’t couple the selection of p(h1) and p(h2) for differ-
ent channel realizations h1 '= h2. Further observing that

expectation is a linear operation we can separate (67) into
per-fading state subproblems of the form

p(h,!) = argmax
p(h)∈P(h)

λT1 f1 (h, p(h)) . (68)

The absence of coupling constraints in the Lagrangian
maximization, which permits separation into the ergodic
limit maximization in (66) and the per-fading maximiza-
tions in (68), is the fundamental difference between (57)
and the primal problem in (20). In the latter, the selec-
tion of optimal x∗ and p∗ as well as the selection of p(h1)
and p(h2) for different channel realizations h1 '= h2 are
coupled by the constraint x ≤ E [f1 (h, p(h))].
The decomposition in (68) is akin to the decomposition

in (16) for the particular case of a point to point channel
with capacity achieving codes. It implies that to determine
the optimal power allocation p∗ it is convenient to first
determine the optimal multiplier !∗. We then proceed to
exploit the lack of duality gap and the separable structure
of the Lagrangian to compute values p∗(h) of the opti-
mal resource allocation independently of each other. The
computation of optimal ergodic averages is also separated
as stated in (66). This separation reduces computational
complexity because of the reduced dimensionality of (66)
and (68) with respect to that of (20).
For the separation in (66) and (68) to be possible we

just need to have a nonatomic channel distribution and
ensure existence of a strictly feasible point as stated in the
hypotheses of Theorem 1. These two properties are true
for most optimal wireless communication and network-
ing problems. A particular example is discussed in the
following section.

Frequency division broadcast channel
Consider the optimal frequency division broadcast chan-
nel problem in (30) whose Lagrangian L(r, p, α, λ,µ) is
given by the expression in (31). Terms in L(r, p, α, λ,µ)

can be rearranged to uncover the separable structure of
the Lagrangian

L(r, p, α, λ,µ) =
J∑

i=1
(U(ri) − λiri) + µq0

− E
[ J∑

i=1
αi(h)

[
λiC

(hipi(h)

N0

)
−µpi(h)

]]

.

(69)
This rearrangement is equivalent to the generic transfor-
mation leading from (22) to (65). As we observed after (65)
the computation of Lagrangian maximizing ergodic lim-
its and resource allocation functions can be separated as
can the computation of resource allocation values corre-
sponding to different fading channel realizations. This is
the case in this particular example. In fact, there is more
separability to be exploited in (69).
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With regards to primal ergodic variables r notice that
each Lagrangian maximizing rate ri(λ,µ) depends only
on λi and that we can compute each ri(λ,µ) = ri(λi)
separately as

ri(λi) = argmax
ri∈[rmin,rmax]

U(ri) − λiri. (70)

This can be easily computed as U(ri) is a one dimen-
sional concave function. As a particular case consider the
identity utility U(ri) = ri. Since the Lagrangian becomes
a linear function of ri, the maximum occurs at either
rmax or rmin depending on the sign of 1 − λi. When
λi = 1 the Lagrangian becomes independent of ci. In this
case any value in the interval [ rmin, rmax] is a Lagrangian
maximizer. Putting these observations together we have

ri(λi) =






rmax if λi < 1,
[rmin, rmax] if λi = 1,
rmin if λi > 1.

(71)

Notice that the Lagrangian maximizer ri(λi) is not unique
if λi = 1. Therefore, if λ∗

i = 1 it is not possible to recover
the optimal rate r∗i from the Lagrangian maximizer ri(λ∗

i )
corresponding to the optimal multiplier. In fact, an opti-
mal multiplier λ∗

i = 1 is uninformative with regards to the
optimal ergodic rate as it just implies that r∗i ∈[ rmin, rmax]
which we know is true because this is the feasible range of
ri. If you think this is an unlikely scenario because it is too
much of a coincidence to have λ∗

i = 1, think again. Having
λ∗
i = 1 is the most likely situation. If λ∗

i '= 1 the opti-
mal rate r∗i is either r∗i = rmax or r∗i = rmin. However, the
capacity bounds rmin and rmax are selected independently
of the remaining system parameters. It is quite unlikely—
indeed, not true in most cases—that the optimal power
and frequency allocation yields a rate r∗i determined by
these arbitrarily selected parameters.
As we observed in going from (67) to (68) determination

of the optimal power and frequency allocation functions
requiresmaximization of the terms inside the expectation.
These implies solution of the optimization problems

p(h, λ,µ), α(h, λ,µ) = argmax
J∑

i=1
αi(h)

[
λiC

(hipi(h)

N0

)
− µpi(h)

]
.

s.t. αi(h) ∈ {0, 1}, 1Tα(h) ≤ 1, (72)

where we opened up the constraint α ∈ A into its per-
fading state components.
The maximization in (72) can be further simplified.

Begin by noting that irrespectively of the value of α(h) the
best possible power allocation pi(h, λ,µ) of terminal i is

the one that maximizes its potential contribution to the
sum in (72), i.e.,

pi(h, λ,µ) = argmax
pi(h)

[
λiC

(hipi(h)

N0

)
− µpi(h)

]
.

(73)

If αi(h) = 1 this contribution is added to the sum in (72).
If it is multiplied by αi(h) = 0 it is not added to the sum in
(72). Either way pi(h, λ,µ) as given by (73) is the optimal
power allocation for terminal i.
To determine the frequency allocation α(h, λ,µ) define

the discriminants

di(h, λ,µ) := max
pi(h)

[
λiC

(hipi(h)

N0

)
− µpi(h)

]
, (74)

which we can use to rewrite (72) as

α(h, λ,µ) = argmax
J∑

i=1
αi(h)di(h, λ,µ).

s.t. αi(h) ∈ {0, 1}, 1Tα(h) ≤ 1.
(75)

Since atmost one αi(h) = 1 in (75), the bestwe can do is to
select the terminal with the largest discriminant when that
discriminant is positive. If all discriminants are negative
the best we can do is to make αi(h) = 0 for all i.
The Lagrangian maximizers pi(h, λ,µ) and α(h, λ,µ) in

(73) and (75) are almost surely unique for all values of λ
and µ. In particular, optimal allocations p∗

i (h) and α∗(h)

can be obtained by making λ = λ∗ and µ = µ∗ in
(73)–(75).

Dual descent algorithms
Determining optimal dual variables !∗ is easier than
determining optimal primal pairs (p∗, x∗) because there
are a finite number of multipliers and the dual function
is convex. If the dual function is convex descent algo-
rithms are guaranteed to converge towards the optimum
value, which implies we just need to determine descent
directions for the dual function.
Descent directions for the dual function can be con-

structed from the constraint slacks associated with the
Lagrangian maximizers. To do so, consider a given !
and use the definition of the Lagrangian maximizer pair
(x(!), p(!)) in (57) to write the dual function as

g(!) = f0(x(!)) (76)
+λT

1 [E (f1 (h, p(h,!)))−x(!)]+λT
2 f2(x(!)).

Further consider the Lagrangian L (x(!), p(!),M) evalu-
ated at an arbitrary multiplier M =[µT

1 ,µT
2 ]T and primal

Lagrangianmultipliers corresponding to the given!. This
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Lagrangian lower bounds the dual function value g(M) =
maxL(x, p,M) which allows us to write

g(M) ≥ f0(x(!)) (77)
+µT

1 [E (f1 (h, p(h,!)))−x(!)]+µT
2 f2(x(!)).

Subtracting (76) from (77) yields
(µ1 − λ1)T [E (f1 (h, p(h,!))) − x(!)]

+(µ2−λ2)T f2(x(!)) ≤ g(M) − g(!).
(78)

Defining the vector s̃(!) =[ s̃T1 (!), s̃T2 (!)]T with compo-
nents

s̃1(!) := E (f1 (h, p(h,!))) − x(!),
s̃2(!) := f2(x(!)), (79)

and recalling the multiplier definitions M =[µT
1 ,µT

2 ]T
and ! =[ λT1 , λT2 ]T we can write

s̃T (!)(M − !) ≤ g(M) − g(!). (80)
If the dual function g(!) is differentiable, the expression
in (80) implies that s̃(!) = ∇g(!) is its gradient. If the
dual function is nondifferentiable s̃(!) defines a subgradi-
ent of the dual function. In either case −s̃(!) is a descent
direction of the dual function. This can be verified by sub-
stituting M = !∗ in (80) to conclude that for any ! /∈ !∗

it must be
s̃T (!)(!∗ − !) ≤ g(!∗) − g(!) < 0. (81)

Since the inner product of s̃(!) and (!∗ − !) is negative
the vectors−s̃(!) and (!∗−!) form an angle smaller than
π/2. This can be interpreted as meaning that standing at
!, the vector −s̃(!) points in the direction of !∗.
Having a descent direction available we can introduce

a time index t and a stepsize εt to define the dual sub-
gradient descent algorithm as the one with iterates λ(t)
obtained through recursive application of

λ(t + 1) = [λ(t) − εt s̃ (!(t))]+ . (82)
This algorithm is known to converge to optimal dual
variables if the stepsize vanishes at a nonsummable rate
and to approach !∗ if the stepsize is constant; see e.g.,
[20, Section 6].
A problem in implementing (82) is that computing

the subgradient component s̃1(!) in (79) is costly. To
compute s̃1(!), we need to evaluate the expectation
E [f1 (h, p(h,!))] where each of the resource allocations
p(h,!) follows from the solution of the optimization
problem in (68). Therefore, to approximate the expec-
tation E [f1 (h, p(h,!))] we need to determine p(h,!)

for a grid of channel values, which gets impractical if
h has large dimension. A Montecarlo approximation of
E [f1 (h, p(h,!))] could be computed but that is also
costly. Furthermore, to compute E [f1 (h, p(h,!))] we

need to know the probability distribution mh(h) which
needs to be estimated from channel observations. To over-
come these difficulties we replace the gradient s̃ (!(t))
in (82) by a stochastic subgradient as we discuss in the
following section.

Stochastic subgradient descent
Consider a given channel realization h and given multi-
plier ! and define the vector

s1(h,!) := f1 (h, p(h,!)) − x(!)). (83)
This definition is made such that the expected value of
s1(h,!) with respect to the channel distribution is the
subgradient component s̃1(!) in (79). Thus, if we define
the vector s(h,!) =[ sT1 (h,!), sT2 (!)]T with s1(h,!) as in
(83) and s2(!) = s̃2(!) = f2(x(!)) we have

E [s(h,!)] = s̃(!). (84)
Formally, (84) implies that s(h,!) is a stochastic subgra-
dient of the dual function. Intutively, (84) implies that
s(h,!) is an average descent direction of the dual function
because its expectation is a descent direction. Thus, if we
draw independent channel realizations h(t) and replace
s̃ (!(t)) for s (h(t),!(t)) in (82) we expect to observe
some sort of convergence towards optimummultipliers.
The advantage of this substitution is that to compute the

stochastic subgradient s(h,!), we do not need to evaluate
an expectation as in the case of the subgradient s̃(!). As
a consequence, using stochastic subgradients as descent
directions results in an algorithm that is computationally
lighter. Perhaps more important, we can operate with-
out knowledge of the channel probability distribution if
we use the current channel realization h(t) as our chan-
nel sample. These observations motivate the introduction
of the following dual stochastic subgradient descent algo-
rithm.

(S1) Primal iteration. Given multipliers!(t) observe cur-
rent channel realization h(t) and determine primal
Lagrangian maximizers [cf. (66) and (68)]

x(t) := x(!(t))
= argmax

x∈X
f0(x) − λT1 (t)x + λT

2 (t)f2(x),
p(t) := p (h(t),!(t))

= argmax
p(h(t))∈P(h(t))

λT1 (t)f1 (h(t), p(h(t))) . (85)

(S2) Dual stochastic subgradient. With the Lagrangian
maximizers determined by (85) compute the stochastic
subgradient s (h(t),!(t)) = [sT1 (h(t),!(t)) , sT2 (!(t))

]T

of the dual function with components [cf. (83) and (79)]
s1 (h(t),!(t)) = f1 [h(t), p (h(t),!(t))] − x(!(t)),

s2(!(t)) = f2(x(!(t))). (86)
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(S3) Dual iteration. With stochastic subgradients as in
(86) and given step size ε descend in the dual domain
along the direction −s(t) [cf. (82)]

!(t + 1) = [!(t) − εt s (h(t),!(t))]+

=



!1(t)−εt [f1 [h(t),p (h(t),!(t))]−x(!(t))]

!2(t)−εt f2(x(!(t)))




+

.

(87)

The core of the dual stochastic subgradient descent
algorithm is the dual iteration (S3). The purpose of the
primal iteration (S1) is to compute the stochastic sub-
gradients in (S2) that are needed to implement the dual
descent update in (S3). We can think of the primal vari-
ables x(!(t)) and p (h(t),!(t)) as a byproduct of the
descent implementation.
Convergence properties depend on whether constant

or time varying step sizes are used. If the stepsizes εt
form a nonsummable but square summable series, i.e.,∑∞

t=0 ε(t) = ∞ and ∑∞
t=0 ε2(t) < ∞, then using a sim-

ple supermartingale argument it can be shown that !(t)
converges to !∗ almost surely [24]. If constant stepsizes
εt = ε for all t are used, !(t) does not converge to !∗

but it can be shown that !(t) visits a neighborhood of the
optimalmultiplier set!∗ [19, Appendix]. Excursions away
from this set are possible, but the set is visited infinitely
often. The suboptimality of this set is controlled by the
step size ε.
If !(t) approaches or converges to !∗ it follows as a

consequence of Theorem 4 that an optimal primal pair
(x∗, p∗) can be computed from the Lagrangian maximiz-
ers if the latter are unique. Observe that this does not
require a separate computation because the Lagrangian
maximizers are computed in the primal iteration (S1).
One may question that at time t we do not compute
the Lagrangian maximizer function p(!(t)) but just the
single value p(h(t),!(t)). However, h(t) is the channel
realization at time t which means that p (h(t),!(t)) is the
value we need to compute to adapt to the current channel
realization.
This permits reinterpretation of (S1)–(S3) as a policy

to determine wireless systems’ operating points. At time
t we observe current channel realization h(t) and deter-
mine resource allocation p (h(t),!(t)) which we proceed
to implement in the current time slot. In this case the
core of the algorithm is the primal iteration (S1) and the
dual variable !(t) is an internal state that determines the
operating point. Steps (S2) and (S3) are implemented to
update this internal state so that as time progresses !(t)
approaches !∗ and the policy becomes optimal because
it chooses the best possible resource allocation adapted to
the current channel realization h(t).

The reinterpretation of (S1)–(S3) as a policy to deter-
mine resource allocations p(t) = p (h(t),!(t)) associ-
ated with observed channel realizations h(t) motivates a
redefinition of the concept of solution to the wireless opti-
mization problem in (20). In principle, solving (20) entails
finding the optimal resource allocation p∗ and the optimal
ergodic average x∗ such that the problem constraints are
satisfied and P = f0(x∗) [cf. (21)]. Heeding the interpre-
tation of dual stochastic subgradient descent as a policy,
we are interested in the optimality of the sequences of
power allocations p(N) := {p(t)}t∈N and average vari-
ables x(N) := {x(t)}t∈N generated by (S1)–(S3). Further
notice that since (S1)–(S3) is a stochastic algorithm the
sequences p(N) and x(N) generated in a particular run are
instantiations of respective random processes P(N) and
X(N). We are therefore interested in the optimality of the
processes P(N) and X(N).
To be more specific consider the channel stochastic

process H(N) whose instances are sequences of channel
realizations h(N) := {h(t)}t∈N drawn independently from
the channel probability distribution mh(h). Suppose we
are also given a sequence of variables x(N) := {x(t)}t∈N
drawn from a stochastic processX(N) and a resource allo-
cation function p(h) that dictates allocation of resources
p(h(t)) for channel realization h(t). Assuming that the
processX(N) is ergodic, the constraint x ≤ E [f1 (h, p(h))]
is equivalent to

lim
t→∞

1
t

t∑

u=1
x(u) ≤ lim

t→∞
1
t

t∑

u=1
f1 (h(u), p(h(u))) a.s.

(88)

Indeed, since X(N) and H(N) are ergodic
processes the limit limt→∞ 1

t
∑t

u=1 x(u) is a con-
stant that we could denote by x and the limit
limt→∞ 1

t
∑t

u=1 f1 (h(u), p(h(u))) is equivalent to the
expectation E [f1 (h, p(h))].
Writing the constraint x ≤ E [f1 (h, p(h))] in the more

cumbersome form shown in (88) has the advantage that
the latter can be generalized to cases in whichwe are given
stochastic processes P(N) and X(N) in which X(N) is not
necessarily ergodic and realizations p(t) of the process
P(N) are more general than just functions of the chan-
nel state h(t). This concept of solution is formally defined
next.
Definition 2. Consider the channel stochastic process
H(N) whose instances are sequences h(N) := {h(t)}t∈N
drawn independently from the channel probability distri-
bution mh(h). We say the stochastic processes P†(N) and
X†(N) with realizations p†(N) := {p†(t)}t∈N and x†(N) :=
{x†(t)}t∈N solve the optimization problem in (20) if

(i) Instantaneous feasibility. Sequence values satisfy the
set constraints x†(t) ∈ X , p†(t) ∈ P(h(t)) for all times t.
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(ii) Almost sure average feasibility. Ergodic limits of
sequences x†(N) and p†(N) are feasible with probability 1,
i.e.,

lim
t→∞

1
t

t∑

u=1
x†(u) ≤ lim

t→∞
1
t

t∑

u=1
f1

(
h(u), p†(u)

)
a.s.,

(89)

f2
[
lim
t→∞

1
t

t∑

u=1
x†(u)

]
≥ 0 a.s.

(90)
(iii) Almost sure optimality. The yield of the ergodic
limit of x(N) is almost surely optimal, i.e,

P = f0
[
lim
t→∞

1
t

t∑

u=1
x†(u)

]
a.s. (91)

If the stochastic process X†(N) is ergodic and the pro-
cess P†(N) is such that realizations p†(t) = p†(h(t))
are functions of current channel states, Definition 2 is
equivalent to (21) with x∗ = limt→∞ 1

t
∑t

u=1 x†(u) and
p∗(h(t)) = p†(h(t)). Definition 2 is more general because
it allows correlation between values of X(N) and lets p(t)
be more complex than just a function of the current
channel realization h(t). This added generality is needed
because processesP(N) andX(N) defined as per (S1)–(S3)
yield correlated processes P(N) and X(N) in which p(t)
is a function of the current channel realization h(t) and
the current Lagrange multiplier !(t). Processes P(N) and
X(N) are close to optimal in the sense of Definition 2 as
we describe in the following theorem.
Theorem 5 (Ergodic stochastic optimization [19]).
Consider the optimization problem in (20) as well as pro-
cesses P(N) and X(N) generated by the stochastic dual
descent algorithm (S1)–(S3). Let Ŝ2 ≥ E

[‖s (h,!)‖2
]
be a

bound on the second moment of the norm of the stochas-
tic subgradients s (h,!) and assume the same hypotheses
of Theorem 1. Sequences P(N) and X(N) are such that:

(i) Feasibility. Items (i) and (ii) of Definition 2 hold true.
(ii) Near optimality. The ergodic average of x(t) almost
surely converges to a value with optimality gap smaller
than εŜ2/2, i.e,

P − f0
[

lim
t→∞

1
t

t∑

u=1
x(u)

]

≤ εŜ2
2 a.s. (92)

The sequences p(N) and x(N) satisfy the constraints
in (89) and (90) almost surely and the objective function
evaluated at the ergodic limit x̄ := (1/t) ∑t

u=1 x(u) is
within εŜ2/2 of optimal. SinceX andP are compact sets it
follows that the bound Ŝ2 is finite. Therefore, reducing ε it
is possible tomake f0(x̄) arbitrarily close to P and as a con-
sequence the sequences p(N) and x(N) arbitrarily close to

optimal. It follows that the processes P(N) and X(N) gen-
erated by (S1)–(S3) are arbitrarily close to processesP†(N)

and X†(N) that are optimal in the sense of Definition 2.
Variables p∗ and x∗ optimal in the sense of (21) are

not computed by (S1)–(S3). Rather, (89) implies that,
asymptotically, (S1)–(S3) is drawing resource allocation
realizations p(t) = p (h(t),!(t)) and variables x(t) :=
x(!(t)) that are close to optimal as per Definition 2. The
important point here is that having a procedure to gen-
erate stochastic processes close to optimal in the sense of
Definition 2 is sufficient for practical implementation.
An example application of the dual stochastic subgradi-

ent descent algorithm (S1)–(S3) is discussed in the next
section.

Frequency division broadcast channel
To implement dual stochastic descent for the frequency
division broadcast channel we need to specify the pri-
mal iteration (S1) and the dual iteration (S2). To specify
the primal iteration (S1) we need to compute Lagrangian
maximizers for which it suffices to recall the expres-
sions in Section “Frequency division broadcast channel”
of “Recovery of optimal primal variables”. For the ergodic
rate ri we make λi = λi(t) in (70) to conclude that the
primal iterate ri(t) = ri(λi(t)) is

ri(t) = argmax
ri∈[rmin,rmax]

U(ri) − λi(t)ri. (93)

For the power allocations pi(t) = pi(h(t), λ(t),µ(t)) and
the frequency assignments α(t) = α(h(t), λ(t),µ(t)) we
need to set the multipliers to λ = λ(t) and µ = µ(t) and
also set the value of the channel to its current state h =
h(t). This substitution in (73) yields the power allocation

pi(t) = argmax
pi(h(t))

[
λi(t)C

(hi(t)pi(h(t))
N0

)
−µpi(h(t))

]
.

(94)

To determine the frequency assignments α(t)we first sub-
stitute λ = λ(t), µ = µ(t), and h = h(t) in (74) to
compute the discriminants di(t) = di(h(t), λ(t),µ(t))

di(t) := max
pi(h(t))

[
λi(t)C

(hi(t)pi(h(t))
N0

)
− µpi(h(t))

]
,

(95)

from where we conclude that the frequency assignment
α(t) = α(h(t), λ(t),µ(t)) is given by the solution of [cf.
(75)]

α(t) = argmax
J∑

i=1
αi(h(t))di(t).

s.t. αi(h(t)) ∈ {0, 1}, 1Tα(h(t)) ≤ 1.
(96)



Ribeiro EURASIP Journal onWireless Communications andNetworking 2012, 2012:272 Page 16 of 19
http://jwcn.eurasipjournals.com/content/2012/1/272

Recall that since at most one αi(h) = 1 in (96), the optimal
frequency allocation is to make αi(h) = 1 for the termi-
nal with the largest discriminant when that discriminant is
positive. If all discriminants are negative we make αi(h) =
0 for all i.
The ESO algorithm for optimal resource allocation in

broadcast channels is completed with an iteration in the
dual domain [cf. (83) and (87)]

λi(t+1) =
[
λi(t) − ε

[
αi(t)C

(hipi(t)
N0

)
− ri(t)

]]+
,

µ(t+1) =
[
µ(t) − ε

[
q0 −

J∑

i=1
αi(t)pi(t)

]]+

. (97)

As per Theorem 5 iterative application of (93)–(97) yields
sequences ri(t), αi(t) and pi(t) such that: (i) The sum util-
ity for the ergodic limits of ri(t) is almost surely within
a small constant of optimal; (ii) The power constraint in
(27) and the rate constraints in (26) are almost surely sat-
isfied in an ergodic sense. This result is true despite the
presence of the non-convex integer constraint α ∈ A,
the non-concave functionC(hipi(t)/N0), the lack of access
to the channel’s probability distribution, and the infinite
dimensionality of the optimization problem.

Numerical results
The dual stochastic subgradient descent algorithm for
optimal resource allocation in frequency division broad-
cast channels defined by (93)–(97) is simulated for a sys-
temwith J = 16 nodes. ThreeAMCmodes corresponding
to capacities 1, 2 and 3 bits/s/Hz are used with transitions
at SINR 1, 3 and 7. Fading channels are generated as i.i.d.
Rayleigh with average powers 1 for the first four nodes,
i.e., j = 1, . . . , 4, and 2, 3 and 4 for subsequent groups of 4
nodes. Noise power isN0 = 1 and average power available
is q0 = 3. Rate of packet acceptance is constrained to be
0 ≤ ri(t) ≤ 2 bits/s/Hz. The optimality criteria is propor-
tional fair scheduling, i.e., Ui(ri) = log(ri) for all i. Steps
size is ε = 0.1.
Figure 3 shows evolution of dual variables λi(t) and cor-

responding rates ri(t) for representative nodes i = 1 with
average channels Eh1(t) = 1 and i = 9 with Eh9(t) = 3.
The time average rate r̄i(t) := (1/t) ∑t

u=1 ri(u) is also
shown. Neither multipliers λi(t) nor rates ri(t) converge,
but ergodic rates r̄i(t) do converge. Multiplier λ1(t) asso-
ciated with node 1 is larger thanmultiplier λ9(t) of node 9.
This improves fairness of resource allocation by increas-
ing the chances of allocating user 1 even when the channel
h1(t) is smaller than h9(t)—recall that channel h9(t) is
stronger on average. Convergence of the algorithm is rat-
ified by Figures 4 and 5. Figure 4 shows evolution of
the objective ∑J

i=1 Ui(r̄i(t)) and the dual function value
g(t) := g (λ(t),µ(t)). Notice that the objective value is
decreasing towards the maximum objective. This is not
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Figure 3 Primal and dual iterates in dual stochastic gradient
descent. Evolution of dual variables λi(t) and rates ri(t) for
representative nodes with average channels Eh1(t) = 1 and
Eh9(t) = 3 for the algorithm in (93)–(97) are shown. Multipliers λi(t)
and capacities ci(t) do not converge, but ergodic rates c̄i(t) do.

a contradiction, because variables r̄i(t) are infeasible but
approach feasibility as t grows. The dual function’s value
is an upper bound on the maximum utility and it can be
observed to approach the objective as t grows. Eventually,
the objective value becomes smaller than the dual value as
expected. Figure 5 corroborates satisfaction of the power
constraint in (27) and the rate constraints in (26). The
amount by which the power constraint (27) is violated is
shown in the top. In the bottom we show the correspond-
ing figure for the rate constraint in (26). Since there are

Figure 4 Optimal frequency division broadcast channel.
Objective value

∑J
i=1 Ui(c̄i(t)) and dual function’s value

g(t) := g (λ(t),µ(t)) for the algorithm in (93)–(97) are shown along
with lines marking optimal utility and 90% of optimal yield. Utility
yield becomes optimal as time grows.



Ribeiro EURASIP Journal onWireless Communications and Networking 2012, 2012:272 Page 17 of 19
http://jwcn.eurasipjournals.com/content/2012/1/272

Figure 5 Power and capacity constraints. Feasibility as time grows
is corroborated for the power constraint in (27) (top) and rate
constraints in (26) (bottom). For the rate constraint we show the
maximum and minimum value of constraint violation.

J of these constraints we show the minimum and max-
imum violation. All constraints are satisfied as t grows.
Resulting power allocations appear in Figure 6 for a chan-
nel with average power Ehif (t) = 1 and for a channel
with Ehif (t) = 2. Power allocation is opportunistic in
that power is allocated only when channel realizations are
above average.

Conclusions
This article reviews recent results which state that prob-
lems of the form in (20) in which nonconcave functions
appear inside expectations have null duality gap as long
as the probability distribution of the fading coefficient h
contains no points of strictly positive probability. Lack of
duality gap permits solution in the dual domain leading to
a substantial reduction in the computational cost of deter-
mining optimal operating points of the wireless system.
Working in the dual domain leads to a solution method-
ology that can be interpreted as a generalization of the
derivation of the waterfilling power allocation in point to
point channels reviewed in Section “Power allocation in a
point-to-point channel”.
Specifically, the problem of determining the optimal

resource allocation function p∗ in (20) is challenging due
to its infinite dimensionality and lack of convexity. How-
ever, in the dual domain we need to determine the optimal
multiplier !∗ that minimizes the dual function in (23).

This is simpler because the dual function is convex and
finite dimensional. Once we have found an optimal dual
variable we can determine optimal operating points as
Lagrangian maximizers. In doing so we can exploit the
separable structure of the Lagrangian to decompose the
optimization problem into the per fading state subprob-
lems in (68). We emphasize that solving the optimization
programs in (68) is not necessarily easy if the dimen-
sionality of h is large. Nevertheless solving (68) is always
simpler than solving (20) and in some cases plain sim-
ple. Lack of duality gap and Lagrangian separability are
further exploited to propose the dual stochastic subgra-
dient descent algorithm (S1)–(S3) which converges to an
optimal operating point with probability 1 in an ergodic
sense.
There are three key points that permit the develop-

ment of the solutionmethodology outlined in the previous
paragraph:

Nonatomic fading distribution. A nonatomic fading dis-
tribution leads to the lack of duality gap. The fact that
P = D, i.e., that primal and dual optimal values are the
same, is what allows us to work in the dual domainwithout
loss of optimality. In formal terms, lack of duality gap is the
tool that we used to recover the optimal primal variables
(x∗, p∗) from the optimal dual variable !∗ by determining
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Figure 6 Power allocations. Power allocated as a function of
channel realization is shown for channels with average power
Ehif (t) = 1 (top) and Ehif (t) = 2 (bottom). The resulting power
allocation is opportunistic in that power is allocated only when
channel realizations are above average.
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the primal Lagrangian maximizers for L(x, p,!∗)
[cf. Theorem 4]. It is important to distinguish between
convexity of the optimization problem and lack of dual-
ity gap. Null duality gap may follow from convexity, but
convexity is rare in wireless communications systems.
Lack of duality gap can also follow from a nonatomic
fading distribution, which is a common occurrence in
wireless systems.

Lagrangian Separability. According to Theorem 4 null
duality gap permits computation of the optimal pair
(x∗, p∗) as the Lagrangian maximizers (x(!∗), p(!∗)).
This is not a simplification per se but leads to a simplifi-
cation because the computation of the Lagrangian max-
imizer function p(!∗) can be separated into per fading
state problems whose solution determines values p(h,!∗)
of this function [cf. (66)–(68)]. The Lagrangian is sep-
arable in this sense because neither the constraints nor
the objective function involve a nonlinear function cou-
pling the selection of values p(h1) and p(h2) for different
channel realizations h1 '= h2. Whenever p(h1) and p(h2)
appear as part of the same constraint they appear as dif-
ferent terms of an expectation operation. This absence of
coupling is what permits exchanging the order of max-
imization and expectation in going from (67) to (68).

Finite number of constraints. Working in the dual domain
is simpler than working in the primal domain because
the dual function is finite dimensional whereas the primal
problem is infinite dimensional. We have a finite dimen-
sional dual function as long as the original optimization
problem has a finite number of constraints.

Nonatomic fading distributions, Lagrangian separabil-
ity, and having a finite number of constraints are prop-
erties that appear in many, indeed most, problems in
optimal design of wireless systems. In such cases the
methodology described in this article can be applied to
their solution.

Further reading
The use of dual problems as a shortcut to solve opti-
mization problems in communications has a rich history
[25-28]; see also [29] for a comprehensive treatment. Lack
of duality gap in non-convex optimization problems has
also been observed in the context of asymmetric digital
subscriber lines [30,31]. In network optimization lack of
duality gap leads to the optimality of layered architectures
which renders the complexity of wireless networking
essentially identical to the complexity of physical layer
optimization [32-35]. For the use of techniques discussed
here in the solution of specific problems we refer the
reader to [36-42]. For further details on dual stochas-
tic sub gradient descent, the literature on convergence

of subgradient descent algorithms [43-45], and stochastic
subgradient descent [46-49] is of interest.
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