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Abstract—This paper studies optimal transmission over wireless
channels with imperfect channel state information available at the
transmitter side in the context of point-to-point channels, mul-
tiuser orthogonal frequency division multiplexing, and random
access. Terminals adapt transmitted power and coding mode
to channel estimates in order to maximize expected throughput
subject to average power constraints. To reduce the likelihood of
packet losses due to the mismatch between channel estimates and
actual channel values, a backoff function is further introduced
to enforce the selection of more conservative coding modes. Joint
determination of optimal power allocations and backoff functions
is a nonconvex stochastic optimization problem with infinitely
many variables that despite its lack of convexity is part of a class
of problems with null duality gap. Exploiting the resulting equiv-
alence between primal and dual problems, we show that optimal
power allocations and channel backoff functions are uniquely
determined by optimal dual variables. This affords considerable
simplification because the dual problem is convex and finite
dimensional. We further exploit this reduction in computational
complexity to develop iterative algorithms to find optimal oper-
ating points. These algorithms implement stochastic subgradient
descent in the dual domain and operate without knowledge of the
probability distribution of the fading channels. Numerical results
corroborate theoretical findings.

Index Terms—Imperfect channel state information, orthogonal
frequency division multiplexing, random access, resource alloca-
tion, system level optimization.

I. INTRODUCTION

A DAPTING transmission parameters such as power and
rate to time-varying channel conditions can significantly

improve the performance of wireless communication systems,
e.g., [3]. Although accurate channel state information (CSI) is
essential to achieve this goal, perfect CSI is rarely available in
practice due to estimation errors and, perhaps more fundamen-
tally, to feedback delay. Algorithms to handle imperfect CSI in
the transmission over wireless channels are the subject matter
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of this paper. We focus on three types of channels: single user
point-to-point block fading channels [4], multiuser downlink
orthogonal frequency division multiplexing (OFDM) [5], and
multiuser uplink random access (RA) [6]. In all three cases we
develop algorithms adapting to imperfect CSI that maximize er-
godic throughputs subject to average power constraints.
As in the case of perfect CSI, transmitters adapt their power

and coding mode to channel observations in order to exploit
favorable channel conditions. However, due to the inaccuracy
of imperfect CSI, channel outages occur when the rate selected
turns out too aggressive for the actual channel realization. From
a practical perspective it is recognized that to mitigate the nega-
tive effect of outages caused by imperfect CSI a channel backoff
function is needed to enforce the selection of more conservative
coding modes; see e.g., [7]. Instead of selecting a code adapted
to the channel estimate, we select a code adapted to a smaller
channel realization. This reduces the transmission rate but also
reduces the likelihood of a channel outage resulting on overall
larger throughput. Ideally, power allocation and rate backoff
should be jointly optimized but this results in a nonconvex opti-
mization problem. Since we need to determine power allocation
and backoff for each fading state and fading takes on a con-
tinuum of values it further follows that the problem is infinite
dimensional. Infinite dimensionality compounded with lack of
convexity results in computational intractability.
Computational intractability notwithstanding, the problem

can be simplified through the imposition of additional re-
strictions to yield more tractable formulations that lead to the
successful development of transmission strategies for various
types of wireless channels. Most relevant to the work presented
here are works on point-to-point channels, e.g., [8]–[10],
broadcast channels [11]–[16] and random access channels [7],
[17], [18]. E.g., when power is fixed and only rate adaptation
is considered the problem is reduced to the determination of
the optimal backoff function; e.g., [11]. A second possibility is
to fix a target outage probability and separate the optimization
problem into the determination of a backoff function for target
outage, followed by optimal power allocation over estimated
channels [12]. A third possible restriction is to assume that the
backoff function takes a certain parametric form and proceed
to optimize the corresponding parameters, e.g., [7]. These dif-
ferent reformulations yield tractable problems but the resulting
throughputs are not optimal for the original problem.
Rather than reformulating the original problem into a subop-

timal tractable alternative, the contribution of this paper is to
develop algorithms that jointly find optimal power allocations
and channel backoff functions. Key in achieving this goal is
the recognition that the structure of the resulting optimization
problem makes it part of a class of problems that despite their
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lack of convexity have null Lagrangian duality gap [19]. The
Lagrangian dual problem of the joint power and backoff func-
tion optimization is convex, because dual problems are convex
regardless of the convexity of the primal problem, and their di-
mensionality is given by the number of power constraints which
is typically equal to the number of terminals. The combination
of convexity and small finite dimensionality results in compu-
tational tractability that has to be contrasted with the computa-
tional intractability that follows from the infinite dimensionality
and lack of convexity of the primal problem. Let us empha-
size that lack of duality gap makes primal and dual problems
equivalent.
We begin by studying optimal transmission over a single

user point-to-point channel with imperfect CSI to illustrate the
methodology we will later generalize to multiuser OFDM and
RA channels (Section II). In the case of point-to-point channels
there is only one constraint and consequently the dual problem
is one-dimensional. Lack of convexity is leveraged to show that
the optimal power allocation and channel backoff functions
are uniquely determined by the optimal dual variable. With the
optimal multiplier available, determination of optimal power
allocation and channel backoff decomposes into two-dimen-
sional per-fading state optimization subproblems (Section II.B).
We further develop a stochastic subgradient descent algorithm
in the dual domain that converges to the optimal Lagrange
multiplier and yields the optimal power allocation and channel
backoff function as a byproduct (Section II.C). This algorithm
operates based on instantaneous channel estimates and does not
require access to the channel’s probability distribution function
(pdf).
We then consider optimal transmission over a downlink mul-

tiuser OFDM channel with imperfect CSI (Section III). The
objective is to maximize a convex utility of the ergodic rates
of all users subject to an average sum power budget. In addi-
tion to power allocations and channel backoffs, the algorithm
for OFDM needs to determine subcarrier assignments for each
channel realization. Similar to the case of single-user channels,
jointly optimal backoff and frequency and power allocations are
uniquely determined by a finite number of Lagrange multipliers
equal to the number of users served plus one. With the optimal
multiplier available, the problem of determining optimal oper-
ating points decomposes into two-dimensional per-frequency,
per-terminal, and per-fading state subproblems (Section III.A).
Stochastic subgradient descent algorithms to find optimal oper-
ating points are developed as well (Section III.B).
We finally investigate uplink multiuser RA channels whereby

users contend for communication with a common receiver
(Section IV). In this case, terminals do not coordinate their
transmission attempts and make transmission decisions based
on estimates of their own channels only. If they decide to
transmit, they choose a power and a rate for their communi-
cation attempt. The objective is to maximize proportional fair
utility of ergodic rates subject to individual power constraints
at each terminal. Decompositions and stochastic subgradient
descent algorithms analogous to those derived for single user
and OFDM channels are derived (Sections IV.A and IV.B).
Numerical results are presented in Section V and concluding

remarks in Section VI.

II. POINT-TO-POINT CHANNELS

Consider a wireless channel with time slots indexed by . The
channel at time is denoted as . The channel is assumed to
be block fading—for this to be true the length of a time slot has
to be comparable to the coherence time of the channel. As a re-
sult, remains constant within a time slot and changes ran-
domly in subsequent time slots. Corresponding channel gains
are defined as and are independent realizations
of a random variable that we denote as . The pdfs of
the fading coefficient and of its gain are unknown. We
assume channels have continuous pdf. This assumption holds
true for models used in practice, e.g., Rayleigh, Rician and Nak-
agami ([10], Ch. 3). In each time slot the transmitter computes
an estimate of the current gain to adapt transmitted
power and code selection to the channel state. The accuracy of
estimates is characterized through the conditional proba-
bility distribution that determines the probability of
the actual channel being when the estimate is . The proba-
bility distribution depends on the channel estimation
method and is assumed known, although we make no assump-
tions on its specific form—see Remark 1 below.
Based on the value of the channel estimate , the transmitter

decides on a power allocation ,
where is the maximum instantaneous power the trans-
mitter can use. The communication rate through the channel is a
function of the transmitted power and the actual channel
gain that we generically denote as . The function

depends on how signals are coded and modulated
at the physical layer. E.g., if capacity-achieving codes are used,

(1)

where is the noise power at the receiver. If adaptive mod-
ulation and coding (AMC) with transmission modes is con-
sidered, communication rate is supported when the received
signal to noise ratio (SNR) is between and .
The channel capacity function is therefore

(2)

where stands for the indicator func-
tion of the event . We do not restrict

to a specific form and allow for nonconvex and dis-
continuous rate functions. We only assume that is a
nonnegative nondecreasing function of the product that
takes finite values for finite arguments.
To achieve rate the transmitter has to select an

appropriate code adapted to the received SNR , e.g.,
the appropriate modulation and coding mode if AMC is used as
in (2). This is not possible however, because the code selection
depends on the unknown channel gain . A feasible alternative
is to adapt the code to the estimated received SNR
and attempt transmission at a rate . Observe that the
transmitted rate does not coincide with the channel throughput
due to the possibility of lost packets. Indeed, a channel outage
is assumed to occur when the transmitted rate ex-
ceeds the maximum rate the channel can afford, i.e.,
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when or simply when . The
instantaneous rate achieved in the channel is therefore given by

(3)

which corrects for lost packets through the indicator .
Selecting a code to attempt transmission at rate

would likely result in a substantial number of dropped packets.
For the sake of argument suppose that the conditional distri-
bution is symmetric around . In such case about
half of the packets are lost as the outage probability would
be . To alleviate the negative effect of out-
ages, a channel backoff function
is used to determine a backed-off channel gain . The
code is then adapted to the received SNR —as
opposed to - and communication proceeds at a rate

. With codes adapted to , an
outage occurs if . Thus, the instantaneous transmis-
sion rate can be written as

(4)

The idea is that making reduces the chance of an
outage thereby increasing the effective rate even if the
attempted transmission is more conservative [cf. (3) and (4)].
However, as we shall show later, making is optimal
in some cases.

A. Ergodic Rate Optimization

Our goal is to find the optimal power allocation function
and channel backoff function such that the expected transmis-
sion rate is maximized subject to an average power constraint

(5)

Solving (5) is challenging because: (I1) The objective includes
an expectation over the random channel gain , whose realiza-
tions are not available at the transmitter and whose pdf is un-
known. (I2) Variables in this optimization problem are functions
and defined on , implying the dimensionality of the

problem is infinite. (I3) The objective and the constraint involve
expectations over channel estimates , whose realizations are
observed in each time slot but whose pdf is unknown. (I4) The
channel capacity function may be nonconvex
or even discontinuous as in the case of AMC [cf. (2)].
To overcome issue (I1), we rewrite the expectation in the ob-

jective of (5) as a conditional expectation over with given,
followed by an expectation over , i.e.,

(6)

Note that the inner expectation in (6) is just the probability
of the backed off channel being smaller than

the actual channel for a given estimate . This probability can
be written in terms of the complementary cumulative distribu-
tion function (ccdf) of given as

(7)

Since is known—see Remark 1—the ccdf
is available. This allows us to simplify (6) to

(8)

Using (8) the objective in (5) can be written as a single expec-
tation over yielding the equivalent formulation

(9)

Problems (5) and (9) are equivalent. Our goal is to find the op-
timal power allocation with values and backoff func-
tion with values that jointly solve problem (9). Since
actual channel gains are not present in (9), issue (I1) has been
resolved. Issues (I2)-(I4), however, still hold for problem (9).
Sections II.B and II.C discuss a method to solve (9) that over-
comes these issues. We pursue this after the following remark.
Remark 1: The probability distribution depends

on the channel estimation method. A typical way of estimating
the channel is to send a training signal that is known to both the
transmitter and the receiver and get feedback from the receiver
on the measured channel gain. Due to estimation error and/or
feedback delays, estimated channels are different from actual
channels and are modeled as

(10)

where is a complex Gaussian random noise . For the
model in (10) it holds that the pdf of given is a noncentral
chi-square given by [21]

(11)

where is the zeroth order modified
Bessel function of the first kind. This particular form for the con-
ditional pdf is used to provide numerical results in
Section V. The rest of the development in the paper holds inde-
pendently of the particular form of this pdf. Note that we assume
the conditional pdf does not change over time.
Remark 2: The instantaneous rate (3) implicitly assumes that

implies . This is not always
true if the capacity function is not a strictly increasing function
of channel condition, e.g., AMC (2). However, if takes
value such that , then the first in-
equality constraint must be satisfied with equality. This is be-
cause if one can always reduce the power

to a value such that to achieve the same
capacity. As a result, indeed implies

, even when the capacity function is not a strictly
increasing function of the channel condition.

B. Optimal Power Allocation and Channel Backoff Functions

The optimization problem in (9) has only one constraint, im-
plying that while the primal problem is infinite dimensional, the
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dual problem is one-dimensional. More importantly, it has been
shown that problems like (9), where the non-convex functions
appear inside expectations, have null duality gap as long as the
pdf of the random variable with respect to which we take the
expected value has no points of strictly positive probability (see
Appendix A). As a result, working in the dual domain is equiv-
alent. To introduce the dual function associate Lagrange multi-
plier with the power constraint and define the Lagrangian as

(12)

where we rearranged terms to write the second equality. The
dual function is then defined as the maximum of the Lagrangian
over the sets of feasible functions and , i.e.,

(13)

We now can write the dual problem as the minimum of
over nonnegative , i.e.,

(14)

Since the problem (9) and its dual (14) have been shown to have
null gap we have that . This property can be exploited to
characterize the optimal power allocation and channel backoff
functions as is done in the following theorem.
Theorem 1: The optimal power allocation function with

values and optimal backoff function with values
that solve problem (9) are determined by the optimal

dual variable of the dual problem (14). In particular,

(15)

Proof: According to the definition of the dual function [cf.
(13)], is the maximum of the Lagrangian
across all functions and . Since optimal functions and
are possible arguments of the Lagrangian in this maximiza-

tion it follows that must be bounded above by
, i.e.,

(16)

As per its definition in (12) the Lagrangian can
be written as

Since and are feasible for the primal problem, the av-
erage power constraint must be satisfied, i.e.,
. Since we also know that we conclude that

and as a result

(17)

Substituting (17) into (16) gives us

(18)

Since the duality gap is null, i.e., , the inequalities in
(18) must be satisfied with equalities, i.e.,

(19)

The equality in (19) implies that
and are maximizers of the Lagrangian

(20)

Note that in (20) we used set inclusion instead of equality be-
cause the maximizer may not be unique. Using the definition of
the Lagrangian [cf. (12)], we can rewrite (20) as

(21)

where we ignored the term since it does not depend on
or . Due to the linearity of the expectation operator,

the maximization in (21) can be carried out inside the expecta-
tion. This yields separate maximizations for each channel state
estimate as indicated in (15).
Provided that is available, Theorem 1 states that

and can be obtained by solving the maximization in (15).
Although the problem in (15) might be nonconvex, solving it is
by no means a difficult task as it only involves two variables.
This provides a great advantage because the problem dimen-
sionality is reduced from infinity to 1. Also, we remark that The-
orem 1 is true no matter what the capacity function is and how
the underlying channel is distributed. Next, we shall develop on-
line algorithms that find the optimal solutions for problem (9)
using only instantaneous imperfect CSI.

C. Online Learning Algorithms

Unlike the nonconvex primal problem, the dual problem in
(14) is always convex. This suggests that gradient descent al-
gorithms in the dual domain are guaranteed to converge to the
optimal multiplier . In particular, we use stochastic subgra-
dient descent algorithms that iteratively compute primal and
dual variables. Given dual variable , the algorithm proceeds
to a primal iteration in which it computes power allocation
and backoff function as

(22)

Multipliers are then updated based on and as

(23)

where denotes projection on the nonnegative
reals and is a possibly time dependent step size. The
difference in (23) is a stochastic subgradient of the dual
function as it can be shown that the expected value of
is a (deterministic) subgradient of the dual function [22], [23].
This property implies that points to on an average
sense and can be exploited to prove convergence in the dual
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domain. The computations in (22) and (23) are summarized in
Algorithm 1.
Particular convergence properties depend on whether con-

stant or time varying step sizes are used. We first consider di-
minishing step sizes. If is nonsummable but square sum-
mable, i.e., and , then using
standard stochastic approximation techniques it can be shown
that converges to almost surely [24]. As a consequence
of Theorem 1, this indicates that the primal variables almost
surely converge to the optimal values as time grows, i.e.,

and almost surely as goes to in-
finity.
In addition to diminishing step size, constant step size can

be used for the algorithm. However, with a constant step size
the dual iterates no longer converge to the optimal value
almost surely. Instead, they stay within a small distance of
with probability close to 1 as goes to infinity and convergence
can be established in a time average sense only [22]. Specifying
Theorem 1 of [22] to the stochastic subgradient descent algo-
rithm in (22)–(23) yields the following property.
Property 1: If constant step sizes for all

are used in Algorithm 1, the average power constraint is almost
surely satisfied

(24)

and the ergodic limit of almost
surely converges to a value within of optimal,

(25)

where is a constant bounding the
second moment of the stochastic subgra-
dient .
Since can only take values in , the constant

in (25) is upper bounded by . It fol-
lows that the time average of can
be made arbitrarily close to optimal by reducing the step size
. Notice however that the rate is
an average across possible channel realizations for given
estimate , which is in general different from the instanta-
neous transmission rate achieved
by the algorithm. Despite this disparity in instantaneous values,
their ergodic limits are almost surely equal. To see this just note
that according to its definition in (7) it holds

. With estimates given for all
times , the stochastic process is ergodic. It then follows
that we must have

(26)

because with given the term is just
a constant. Substituting the equality

into (26) and the resulting expression
into (25) gives

(27)

Equation (27) shows that although the algorithm with constant
step sizes does not find and it generates se-
quences and whose time averages are almost surely
near optimal. The near optimality gap can be made arbitrarily
small by reducing the step size as we have already noted. The
advantage of using a constant step size is that if the channel dis-
tributions change slowly the algorithm can adapt to that change.

III. ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

Consider now an OFDM channel where a common access
point (AP) spends an average power budget to communi-
cate with terminals using a set of orthogonal fre-
quencies . As in the point-to-point channel case of Section II,
time is slotted and indexed by . The time-varying channel gain
between the AP and terminal for all frequencies is
modeled as block fading and denoted by . In each time
slot the AP observes channel gain estimates for all terminals
and frequencies which we denote as a vector

. Based on , the AP decides on frequency
allocation and power allocation

. If , it transmits
to using frequency . Since a given frequency cannot be
used by more than one terminal in the same time slot, we re-
quire for all . Define the vector

grouping the schedules of all
terminals for given frequency and channel realization. We can
then express the frequency exclusion constraint as

(28)

which simply states that at most one component of can
be 1.
If frequency is scheduled for communication to the AP

determines power allocations for the communication
to terminal in frequency for joint channel estimates as
well as a channel backoff value that we also let be a
function of all channel estimates . The intent of the backoff
function is to reduce the likelihood of channel outages
as in the point-to-point channel case discussed in Section II.
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Therefore, channel coding is selected according to the value of
the product and communication is attempted
at a rate . The instantaneous throughput
for the link to terminal has to discount for channel outages
and to account for all frequencies scheduled for this
transmission yielding the instantaneous rate

(29)

The term in (29) is a binary indicator of wether is
scheduled in frequency for channel realization , the factor

is the attempted transmission rate in
such case, and the indicator accounts for
dropped packets.
Since we are interested in ergodic rates, we define the average

rate . Upon defining as the
ccdf of given , we can express the ergodic rate from the
AP to as [cf. (8)]

(30)

where in the second equality we defined

as the expected throughput of terminal on frequency . The
expected throughput is the rate at which the AP expects to
convey information to terminal on frequency when the
channel estimate is . By expected throughput here we refer to
the conditional expectation with respect to given .
To evaluate the performance of the system, introduce utility

functions to measure the value of ergodic rate for
terminal . The AP’s goal is to find optimal subcarrier assign-
ment, power allocation and channel backoff functions such that
the sum utility is maximized. Recalling the ex-
pression for in (30) and introducing an average sum power
constraint, the optimal operating point is obtained as the solu-
tion of the optimization problem

(31)

where is a given upper bound on the rates of each user.
The relaxation of the rate equality constraint in (30) to the cor-
responding inequality constraint in (31) is without loss of op-
timality. The average sum power constraint is enforced by the
inequality in (31). The
factor is the power used for communication to
on frequency for channel estimate . This term is not null
only if which means that terminal is scheduled
on frequency . Individual power consumptions
are summed for all terminals and all frequen-
cies to determine the total power consumption for gain
estimate . These sums of instantaneous power consumptions
are averaged over the distribution of to determine the average
power expenditure that cannot exceed the budget .
Solving problem (31) bears the same challenges as solving

(9). The problem is infinite dimensional due to the optimization
variables being functions of the channel estimates and the
expectations are with respect to the random variable whose
pdf is unknown. The problem is also not convex because the
function is not concave on the variables

and . In this case we also have the requirement of
variables being binary as represented by the nonconvex
set constraint . As we show in the next section,
and as in the case of point-to-point channels, these issues are
resolved by working on the dual domain.

A. Optimal Solution

The optimization problem in (31) also has the structure of the
problems shown to have null duality gap in [19], [25]. There-
fore, we can work on its dual problem which is finite dimen-
sional and convexwithout loss of optimality. To do so, introduce
multipliers associated with the ergodic rate constraint of user
and associated with the average power constraint [cf. (31)].

Further define the vector grouping all
dual variables and vectors

and respec-
tively grouping resource allocation and ergodic rates. Further let
stand for the resource allocation function with values .

The Lagrangian of the optimization problem in (31) can then be
written as

(32)

The dual function and the dual problem are then given by

(33)

Note that the Lagrangian in (32) exhibits a separable structure
because all summands involve a single primal variable. To ex-
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plain this observation consider all summands of (32) that in-
volve transmission rate associated with terminal and define
the Lagrangian component associated with as

(34)

Define also the per channel Lagrangian components
grouping all summands of (32) that in-

volve resource allocation and a given channel estimate
, i.e.,

(35)

It is easy to see by reordering summands in (32) that we
can rewrite the Lagrangian as a sum of the component

and an expectation of the per channel components

(36)

By leveraging the null duality gap, i.e., the equivalence
, and the Lagrangian separability in (36) we can characterize

the optimal solution of the primal problem using the optimal
solution of the dual problem, as shown in the following theorem.
Theorem 2: The optimal subcarrier assignment function

with values , channel backoff function with values
and power allocation function with values

for solving problem (31) are determined by the optimal vari-
ables and of the dual problem (33). In particular, for a
given frequency and channel estimate values
and of the optimal power and backoff functions are
given by

(37)

To determine optimal frequency allocation values com-
pute discriminants for
all and . Determine the index of the terminal with maximum
discriminant,

(38)

and set for all . For set
if .

Proof: As we have shown in the proof of Theorem 1, the
fact that implies that optimal functions and vari-
ables are maximizers of the Lagrangian , i.e.,

(39)

Since and appear in different summands in [cf.
(34)–(36)], we can separate the maximizations for and
and write as

(40)

Due to the linearity of expectation, the maximization in (40)
can be carried out inside the expectation. Using the definition
of we have the following relationship

(41)

Since for a fixed at most one can be 1 [cf.
(28)], the computation of , and as per
(41) can be further separated into the computations in (37)
and (38). Indeed, if the best possible values for

and are the ones that maximize the factor
. If any

value of and is optimal, in particular the one
that maximizes this factor. Therefore

(42)

Upon the change of variables and (37)
follows.
To decide on indicator variables substitute the optimal

power and backoff values in (42) into the sum maximization in
(41) to obtain

(43)

If all discriminants are
negative, the maximum in (43) is attained bymaking
for all implying that frequency is not used by any terminal
during the time slot. Otherwise, the largest objective in (43) is
obtained by making for the terminal with the largest
discriminant. These computations coincides with (38).
With optimal multipliers given, optimal power allocation and

channel backoff can be computed using (37). Optimal frequency
allocations are determined by comparing the discriminants in
(38) and assigning frequency to the terminal with the largest
discriminant if this discriminant is positive. Notice that the max-
imization required in (37) is of a nonconvex objective, but this
involves just two variables and is analogous to the maximand
in (22) for the case of point-to-point channels. We can interpret
(22) as establishing a decomposition on per terminal, per fre-
quency and per fading state subproblems. Further observe that
Theorem 2 indicates that the optimal solution is opportunistic.
Frequency is used only when at least one terminal observes a
good channel on this frequency so as to have a positive discrim-
inant [cf. (38)].

B. Online Learning Algorithms

Similar to the case of point-to-point channels we can solve
the optimization problem in (31) using stochastic subgradient
descent in the dual domain. To determine stochastic subgra-
dients of the dual function start with given dual variable
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and channel realization and proceed to determine the
Lagrangian maximizers

(44)

(45)

Notice that in (45) we determine a power allocation that
corresponds to the current channel estimate . Using
the definition of the Lagrangian components

[cf. (34) and (35)] and attempted transmis-
sion rate , the primal iterates in (44) and
(45) can be computed as

(46)

(47)

Following the logic used for deriving (37)–(38) the maximiza-
tion in (47) can be further simplified to the computation of
power allocation and backoff function

(48)

followed by the determination of terminal indices

(49)

We then set for all and for
if .

A subgradient of the dual function can be obtained by
evaluating the instantaneous constraint slacks associated with
the Lagrangian maximizers. Denoting as the subgradient
components along the direction and the component
along the direction we have

(50)

The algorithm is completed with an update of the dual variables
along the stochastic subgradient direction moderated by a pos-
sibly time varying step size

(51)

(52)

As in the case of point-to-point channels, particular convergence
properties depend onwhether constant or time varying step sizes
are used. With diminishing step size, and converge
to optimal dual variables and almost surely. With con-
stant step size convergence is established in an ergodic sense by
applying Theorem 1 of [22] to the optimization problem in (31)
and the stochastic dual descent algorithm in (46) and (48)–(52).
The resulting property is specified in the following.
Property 2: If constant step sizes for all

are used in Algorithm 2, rate and power constraints are almost
surely satisfied on average

(53)

(54)

The sum utility of the ergodic limit of almost surely con-
verges to a value within of optimal,

(55)

where is a constant bounding
the second moment of the norm of the stochastic subgradient
with components given as in (50).
Property 2 establishes optimality of the sequences of

primal variables generated by (46) and (48)–(52). In partic-
ular, ergodic limits of these sequences almost surely satisfy
problem constraints and are within a small factor of op-
timal. As in the case of point to point channels the rate

in the ergodic
limit in (53) is different from the instantaneous transmission
rate achieved by the
algorithm. However, their ergodic limits are equivalent since
the stochastic process is ergodic given estimates ,
i.e.,

(56)

Substituting (56) into (53) and the resulting expression into (55)
we have

(57)
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The inequality in (57) establishes that the utility of the ergodic
limits of the transmission rates achieved by the algorithm is
within of the optimal value . Since is a constant, the
optimality gap can be made arbitrarily small by reducing the
step size .
The procedure is summarized in Algorithm 2. Multipliers

and are initialized at time slot 0. Primal and dual
variables are computed iteratively in subsequent time slots. In
particular, for each time slot the algorithm first computes vari-
able for all users as per (46) which decides the number of
packets to be accepted into ’s queue awaiting for transmis-
sion (line 3). The algorithm then iterates over frequencies and
calculates power allocation , channel backoff for all
by solving the two-variable maximization as per (48) (line 7).

The subcarrier assignments are then determined by set-
ting for such that the
largest positive discriminant among all as per (49) while set-
ting for all the rest users (line 11). Note that for a
given frequency there is at most one . If , the
AP transmit to over frequency using power and rate

. The algorithm then proceeds to update multi-
pliers for the next time slot based on multipliers and primal vari-
ables of the current time slot according to (51) and (52) (lines
15–16).

IV. RANDOM ACCESS

Consider now a multiple access channel in which ter-
minals contend for communication to a common AP using
random access. The channel between terminals and the AP

is modeled as block fading and denoted as . Assume
each terminal only observes an imperfect version of its local
channel . Based on its local channel, terminals decide
channel access , power alloca-
tions and channel backoffs

. We remark that and are
functions of local channels only as opposed to functions of
all channel realizations as in the case of OFDM considered
in Section III. Since terminals contend for channel access, a
transmission from terminal in time slot is successful if
and only if and for all . If the
transmission of is successful, its transmission rate is deter-
mined by . As a consequence, the instantaneous
transmission rate for in time slot is

(58)

The ergodic rate is given by a time average of the instantaneous
rates in (58) which due to ergodicity can be equivalently written
as

(59)

where in the second equality we defined the average attempted
transmission rate for terminal as

. An important ob-
servation here is that since terminals are required to make
channel access and power control decisions independently
of each other, are independent of

for all . This allows us to
rewrite as

(60)

The objective is to maximize the proportional fair utility of the
ergodic rates , i.e.,

(61)

where . In a networkwhere channel
pdfs vary among users, maximizing sum log utility yields
solutions that are fair since it prevents users from having very
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low transmission rates. The optimal random access with imper-
fect CSI is formulated as the following optimization problem

(62)

where the second inequality indicates each terminal has an av-
erage power budget of . Since we require and
to be functions of local channel estimates only, we need a dis-
tributed solution for problem (62). However, its formulation is
not amenable for distributed implementations because the rate
constraint involves actions of all terminals. Thus, we need to
separate problem (62) into per terminal subproblems. To do
so, we substitute into and express the logarithm of a
product as a sum of logarithms so as to write

(63)

(64)

where in (64) we grouped terms related to . To
maximize for the whole system it suffices to
separately maximize corresponding summand for
each terminal . Upon introducing auxiliary vari-
ables and

, it follows that (62) is equivalent to the
following per terminal subproblems

(65)

In particular, we have . Therefore, to solve
problem (62) we only need to solve problem (65) for all ter-
minals in a distributed manner.

A. Optimal Solution

Similar to the case of point-to-point channel, problem (65)
has null duality gap which allows us to work on its dual domain
without loss of optimality. To define the problem’s Lagrangian,
associate multipliers with the constraint involving in

(65), with the constraint involving , and with the
average power constraint. Further define

grouping all multipliers, resource allocation variables and
auxiliary variables, respectively. The Lagrangian is then given
by

(66)

The dual problem can then be written as

(67)

Observe that primal variables and appear in different
summands in (66). This allows us to regroup terms involving

and and decompose the Lagrangian. To do so, define
as the per terminal local Lagrangian component

involving auxiliary variable

(68)

and as the per terminal per fading state
Lagrangian component involving resource allocation variable

(69)

As a result, the Lagrangian in (66) can be rewritten as

(70)

By leveraging the property of null duality gap, i.e., ,
we can characterize the optimal solution of the primal problem
using the optimal solution of the dual problem, as shown in the
following theorem.
Theorem 3: The optimal subcarrier assignment function

with values , channel backoff function with values
and power allocation function with values

for solving problem (65) are uniquely determined by the optimal
variables and of the dual problem (67). In particular,
for given terminal we have

(71)

(72)
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Proof: As we did in the proof of Theorem 1, by exploiting
the null duality gap we can show that the optimal func-
tions and variables are maximizers of the Lagrangian

, i.e.,

(73)

Note that since and appear in different summands in
[cf. (68)–(70)], we can write as the maxi-

mizer of the corresponding summand, i.e.,

(74)

Due to the linearity of expectation, the maximization in (74) can
be carried out inside the expectation. We therefore have

(75)

where we have used the definition of the aggregate variable
.

Since the variable in (75) can only take values in , the
objective in (74) can only be 0 or .
Thus, to solve (75) we just need to find the optimal

when and set if the
resulting objective is strictly positive. This procedure is what
(71) and (72) state.
Given the optimal dual variable , optimal functions

for power allocation , channel backoff , and
channel access can be determined in a distributed
manner through (71) and (72) using local information only.
This satisfies the design requirement that terminals have to
operate independently of each other. It is also worth remarking
that the resulting transmission policy is opportunistic with
respect to channel estimates because terminal transmits
only when .
For this inequality to be true we need to have a sufficiently
large rate , which in turn requires
large channel estimates . In fact it is not difficult to see that
(72) implies a threshold policy in which terminals transmit
if and only if the channel exceeds a threshold that can be
computed in terms of the optimal multiplier values. This is
consistent with similar observations in the case of perfect CSI
[23], [26].
The computation of the optimal power allocation and optimal

channel backoff in random access [cf. (71)] is similar to that of
OFDM [cf. (37)] in the sense that they both solve a two-vari-
able nonconvex optimization problem. However, determination
of their corresponding optimal subcarrier assignments is dif-
ferent. For a given frequency, the optimal subcarrier assignment

in OFDM is determined jointly for all and at most one
can be 1. The optimal in the case of random

access is computed locally and there might be more than one
set to 1 in for different . This is because in the case

of random access all terminals act independently of each other
and there is no coordination among them while in the case of
OFDM the AP plays the role of a central decision maker.

B. Online Learning Algorithms

To solve problem (65) without knowledge of the channel pdf
we implement the stochastic subgradient descent algorithm in
the dual domain as we did in the case of point-to-point and
OFDM channels. To find stochastic subgradients we compute
maximizers of the local Lagrangian components
and for given channel estimate and La-
grangian multiplier , i.e.,

(76)

(77)

Recall that and appear in different summands in
[cf. (68)]. As a result, we can separate the

maximizations for and , i.e.,

(78)

(79)

Furthermore, using the definition of and
, the resource allocation compu-

tation in (77) can be rewritten as

(80)

Optimizations for and are relatively easy because
their objectives are both convex functions with a single variable
[cf. (78) and (79)]. Determination of and as
per (80) is more complicated but it can be simplified since
can only take values in . Using this fact as we did in the
proof of Theorem 3 we conclude that (80) is equivalent to

(81)

(82)

The stochastic subgradients of the dual function are obtained by
evaluating the instantaneous constraint violations using
and . The dual variables are then updated using the sto-
chastic subgradient as

(83)

(84)

(85)

As in algorithms 1 and 2 use of diminishing step sizes results
in almost sure convergence whereas use of constant step sizes
results in an ergodic mode of convergence that we summarize
in the following property.
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Property 3: If constant step size is used in Algo-
rithm 3, it follows from ([23], Theorem 1) that primal variables
generated by the algorithm are almost surely feasible and almost
surely near optimal in an ergodic sense for problem (65). In par-
ticular, the average power constraint in (65) is almost surely sat-
isfied, i.e.,

(86)

and the utility of the ergodic limit of the transmission rates al-
most surely converges to a value within of optimal,

(87)

where is a constant upper bounding the second moment of the
norm of the stochastic subgradient.
Note that the term

in (87) is dif-
ferent from the instantaneous transmission rate in (58)
achieved by the policy. To establish optimality results for
the ergodic limits of the instantaneous transmission rate, we
write the following relationship by using the definition of

and the ergodicity property of
given

(88)

Substituting (88) into (87) we can show the sum logarithm of
the ergodic limits of the instantaneous transmission rate
is within of the optimal value , i.e.,

(89)

The procedure is summarized in Algorithm 3. The algorithm
initializes multipliers and at time 0. In
each time slot , it iteratively computes primal variables

by (78)–(82) (lines 4–7). If
is greater

than 0, is set to 1 and terminal transmits on frequency
using power and rate . Dual variables

are then computed according to (83)–(85)
(lines 12–14). Note that while the algorithm for OFDM (see

Algorithm 2) is applied to the system with users the pre-
sented algorithm for RA is for each individual terminal. In
RA channels, each terminal distributedly operates based on
Algorithm 3. Since each terminal makes channel access deci-
sions based only on its local imperfect CSI and channels for
different terminals are assumed to be independent, terminals’
actions are independent of each other.

V. NUMERICAL RESULTS

The performance of the proposed algorithms is further
evaluated through numerical tests. We consider point-to-point
channels in Section V.A, OFDM channels in Section V.B, and
random access channels in Section V.C.

A. Point-to-Point Channel

We assume the real channel coefficient follows a complex
Gaussian distribution and the channel estimation error
is modeled by (10). The average power budget is and
the channel capacity function takes the form of (1). Without loss
of generality, we assume is normalized to 1.
In the first set of tests, two channel estimation error variances

and , corresponding to small and large
channel errors, are simulated. We apply diminishing step size

to obtain the optimal dual variable for both
cases and then find the optimal power allocation function
and the optimal channel backoff function according to
Theorem 1, as shown in Fig. 1. For comparison purposes,
and for are also depicted. For both small and
large channel errors, the optimal power allocation functions are
given by water-filling as in the case of perfect CSI. However,
as the error in channel estimates increases, power is allocated
more conservatively when channel gain estimates are small. The
difference between the channel backoff functions for small and
large channel errors are more significant. When , the
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Fig. 1. Optimal power allocation function (top) and channel backoff
function (bottom) for single user point-to-point channel. Curves shown
for channel state information (CSI) variance , and ,
corresponding to perfect CSI. As CSI variance increases power allocation is
more conservative for small channel values. When the CSI variance is large,
the backoff function selects codes of a higher rate than what is dictated by the
channel estimate. Channel coefficient follows a complex Gaussian distribution

, average power budget , and channel conditional pdf
as in (11).

channel backoff is almost linear and for all , i.e.,
making smaller is always beneficial. When the
channel backoff function is farther away from linear. It is in-
teresting to note that for small channel estimates

. In that sense the use of the term backoff is
a misnomer as it is actually beneficial to select a transmission
mode more aggressive than what the channel estimate indicates.
The intuition here is that when is comparable to , it is likely
that is greater than because we must have . Therefore,
making a little bigger than is not likely to result in an
outage.
In our next simulation, we test the algorithm with con-

stant step size and assuming channel error
. Other parameters remain the same as be-

fore. We define the average transmission rate

Fig. 2. Convergence of average transmission rate (top) and average power con-
sumption (bottom) for Algorithm 1. Average transmission rate as a function of
time is shown for Algorithm 1 and cases in which only the backoff function is
optimized—meaning —or only the power allocation function is op-
timized—implying . Joint optimization yields substantial increase
of average communication rate. Average power budget , constant step
size , and channel estimation error .

and average
power consumption . We compare
average rates achieved by: 1) with both power allocation and
channel backoff; 2) with channel backoff only (i.e., );
3) with power allocation only (i.e., ). Fig. 2(top)
shows average rates achieved by these algorithms. There is a
considerable improvement in average transmission rate when
power allocation and channel backoff are jointly optimized.
Furthermore, Fig. 2(bottom) shows that the average power
constraint is always satisfied, coinciding with the almost sure
feasibility result in (24).

B. Downlink OFDM Channel

To test Algorithm 2 for downlink OFDM channels, we
assume that the number of users is and that there are

frequency tones available. As in the case of single
user point-to-point channel, we model the complex channel
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Fig. 3. Rate (top) and power (bottom) convergence of Algorithm 2. Sum of av-
erage transmission rates is shown for Algorithm 2 and two suboptimal solutions.
One case uses a backoff function with fixed outage probability 0.01—meaning

—and the other case optimizes power allo-

cation only—implying . Joint optimization yields substantial
increase of average communication rate. Average power budget , con-
stant step size , and channel estimation error .

coefficients as random variables with complex Gaussian dis-
tributions and the channel estimation error as having
a complex Gaussian distribution with
modeled by (10). The total average power budget is and
the channel capacity function takes the form of (1). Without loss
of generality, we assume noise power is normalized to .
Sum utility is used. We define the average utility
as the sum of average transmission rates

and the average total power consumption as
the sum of average power allocated to each terminal

. Average sum utility
is shown in Fig. 3(top) and average power is shown

in Fig. 3(bottom).
In addition to Algorithm 2, two alternative solutions are also

implemented. For the first method, the value of the channel

backoff function is chosen such that a fixed outage proba-
bility 0.01 is achieved [12], i.e., is calculated such that

for each observed
, and power is then allocated such that the average total

power constraint is satisfied. For the second one, we do not
perform any channel backoff, i.e., . We remark
that both are suboptimal solutions since power allocation and
channel backoff functions are not jointly optimized.
We run Algorithm 2 and these two suboptimal alternatives

with constant step size and compare their perfor-
mance in terms of average utility . Fig. 3(top) shows that
the average utilities over 3000 time slots achieved by the pro-
posed algorithm, the algorithmwith fixed outage probability and
the algorithm without channel backoff are 6.6, 5.5 and 2.8, re-
spectively. By introducing channel backoff functions, there is a
significant increase in average utility (6.6 vs. 2.8). This implies
that channel backoff is indeed very important when dealing with
imperfect CSI. Moreover, jointly optimizing power allocation
and channel backoff results in 20% performance improvement
(6.6 vs. 5.5). Fig. 3(bottom) shows the total average power used
by the proposed Algorithm 2. We see that the average power
budget is satisfied.

C. Uplink RA Channel

We run a set of simulations to test algorithms for the random
access channel with imperfect CSI. Assume similar parameters
as in the case of OFDM: , channel coefficient
and channel estimation error modeled by complex Gaussian dis-
tributions and , respectively. The power
constraint for each terminal is set to .
The proposed Algorithm 3 is implemented in which

channel access, power allocation and channel backoff
functions are jointly optimized. Two other suboptimal so-
lutions are also simulated: an algorithm without power
control— is always constant—and an algo-
rithm without channel backoff— always equal
to the real estimated channel gain. To compare their per-
formance, define the average proportional fair utility as the
sum of the logarithms of the average transmission rates, i.e.,

.
Further define the average power consumption of each ter-
minal as . Fig. 4(top) compares the
average proportional fair utility achieved by the three
algorithms. The utility over 3000 time slots achieved by the
proposed algorithm, the algorithm with fixed outage probability
and the algorithm without channel backoff are
and , respectively. Again, we observe that by jointly
optimizing the channel access, power allocation and channel
backoff the proposed algorithm achieves the highest utility.
Moreover, Fig. 4(bottom) shows that the average power budget
for terminal 1 is satisfied. Note that the convergence rate of the
algorithm for random access [cf. Fig. 4(top)] is slower than the
rate of OFDM [cf. Fig. 3(top)]. This is because it takes longer
to average out randomness in the case of RA since in OFDM
the central decision maker has access to the channel of all users
whereas in the case of RA each terminal only knows its own
channel.
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Fig. 4. Rate (top) and power (bottom) convergence of Algorithm 3. Propor-
tional fair utility of average transmission rates is shown for Algorithm 3 and two
suboptimal solutions in which only the backoff function—meaning

—or only the power allocation function—implying —are
optimized. Joint optimization yields substantial increase of average commu-
nication rate. Average power budget (bottom), constant step size

, and channel estimation error .

VI. CONCLUSION

We considered optimal transmission over single user
point-to-point channels, downlink OFDM channels and uplink
RA channels with imperfect CSI in order to maximize expected
transmission rates subject to average power constraints. For
all cases we showed that the optimal solutions are determined
by parameters in the form of the optimal multipliers of the
Lagrange dual problem. We further developed stochastic sub-
gradient descent algorithms on the dual domain that operate
without knowledge of the channels’ probability distributions.
For vanishing step sizes these dual stochastic descent algo-
rithms converge to the optimal multipliers. With constant
step sizes optimal multipliers are not found but a policy that

is optimal in an ergodic sense is determined. Numerical re-
sults showed significant performance gains of the proposed
algorithms.

APPENDIX A
PROOF OF NULL DUALITY GAP OF PROBLEM (9)

To prove problem (9) has null duality gap, we introduce vari-
able and rewrite problem
(9) as

(90)

where we relaxed the first equality to in-
equality without loss of optimality. Further
define

and
and write (90) as

(91)

Note that problem (91) and (9) are equivalent. To establish zero
duality gap, consider a perturbed version of (91)

(92)

where we allow the constraint to be violated by . To prove that
the duality gap for problem (91) is zero, it suffices to show that

is a concave function of ; see, e.g., ([27], Sec. 6.2). Let
and be a pair of perturbations, and be optimal
solutions corresponding to the perturbations. Define

where . We are interested in showing

(93)

To establish concativity of the perturbation function, we study
properties of the expectation . Define as a set
that contains all possible values that can take,
i.e., . If channel
pdf has no points of positive probability, then is convex ([25],
Theorem 3). Therefore, there must exist such that

(94)

Since and are feasible to problem (92), it follows
that

(95)

(96)

Substituting (95) and (96) into (94) yields

(97)
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Define , then we have
implying that and are feasible for problem

(92) with perturbation . In addition, since is a linear
function of we have

(98)

Since is optimal for perturbation , we have
, and likewise, . Further note that the op-

timal solution for perturbation must exceeds ,
we conclude that

(99)

Equation (99) coincides with (93). This completes the proof
since (99) holds for any and , and all .
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