
Background Approach Results

GenSynth: Synthesizing Datalog Programs without Language Bias

Jonathan Mendelson*, Aaditya Naik*, Mukund Raghothaman, Mayur Naik

Why is this challenging?

Relational Input-Output Data

Given input-output data (above), can we synthesize a

Datalog program (below)?

1 2

2 3

3 1

Edge

...

1 3

3 1

2 3

SCC

...

● Invented predicates, recursion

● Previous approaches rely on syntactic bias / program grammar

○ Transforms the challenging problem of program

synthesis to the challenging problem of defining an

appropriate search space

● GenSynth does both at once using a genetic algorithm

Take-aways

● New template-free Datalog synthesis approach

● High quality programs thanks to reduction phase

● Automatic predicate invention: schema determined

dynamically

● Ability to handle noise

University of Pennsylvania & University of Southern California Contact: {jonom, asnaik, mhnaik}@seas.upenn.edu; raghotha@usc.edu

● 42 benchmark programs from knowledge discovery,

program analysis, SQL query families

GenSynth is faster than ProSynth

GenSynth produces better programs

G
e
n

S
y
n

t
h

ProSynth

Program Size

Synthesis Time

G
e
n

S
y
n

t
h

ProSynth

● GenSynth is faster than

ProSynth on all 42

benchmarks

● GenSynth never times

out, while ProSynth

times out on 11/42

benchmarks

● GenSynth produces smaller

programs than ProSynth on

all 42 benchmarks

● GenSynth produces

programs with <10 literals

on all benchmarks

Gen. 1

Gen. 2

Gen. 1

Gen. 2

Gen. 3

Gen. 4

A
c
c
r
e
t
i
o

n

p

h
a
s
e

R
e
d

u
c
t
i
o

n

p

h
a
s
e

● Improve fitness

● Side effect: increase

program size

● Retain or improve

fitness

● Decrease program

size

Stop when

desired

fitness

reached

Mutations

Search space

guided

semantically,

not

syntactically

r1: path(x, y) :- edge(x, y).

r2: path(x, y) :- edge(x, z), path(z, y).

r3: scc(x, y) :- path(x, y), path(y, x).

A Datalog program for the SCC task above:

Collection

of rules

applied

until

fixpoint

Represents nodes in

the same strongly

connected

component

Minimum-size valid programs

Fitness

determined

by

● Slight modifications to existing programs

● For example, the Swap mutation exchanges the position of

two arguments:

Original: SCC(x0, x1) :- Edge(x2, x0), Edge(x1, x3).
Mutated: SCC(x0, x1) :- Edge(x1, x0), Edge(x2, x3).

