

Do Machine Learning Models Learn Statistical Rules Inferred from Data?

Aaditya Naik, Yinjun Wu, Mayur Naik, Eric Wong asnaik@seas.upenn.edu

Try out our code!

Motivation

Models make mistakes!

Finland.


Sentiment Analysis

Image Classification

Sea

Slug

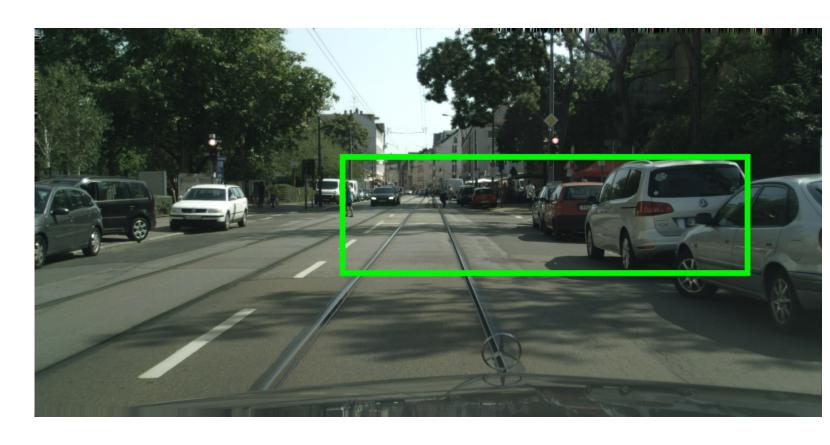
Object Detection

Observation:

Fundamental errors defy rules based on human intuition

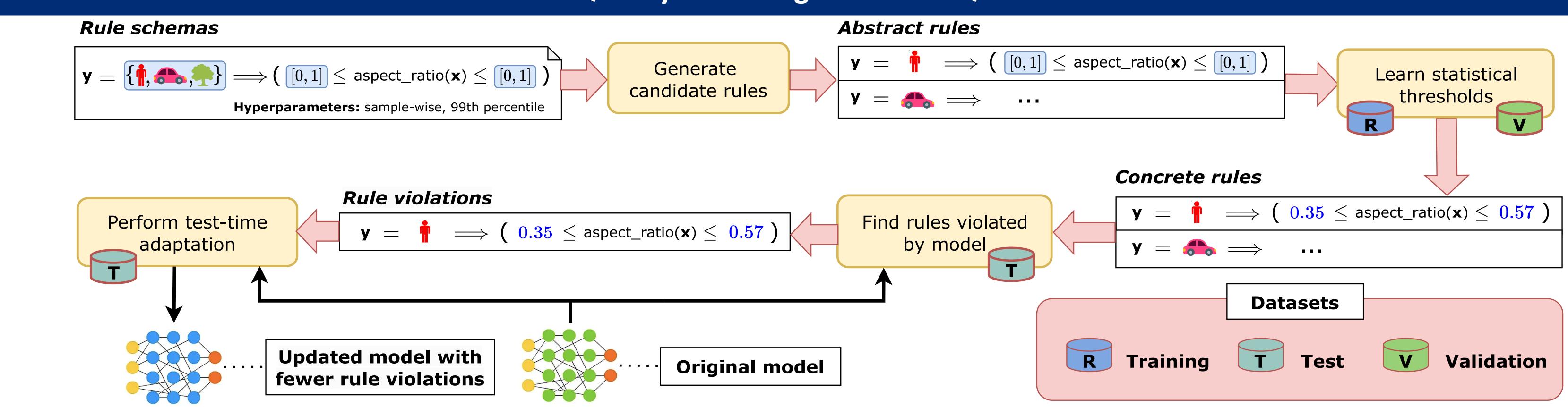
Challenges:

- Characterizing such rules
- Generating rules at scale
- Using the generated rules


Statistical Quantile Rules (SQRs)

Rules for estimating errors must be

- Valid and hold over a large portion of the data,
- > Expressive to capture complex and interesting patterns,
- > Scalable to generate several rules without supervision.


The answer is Statistical Quantile Rules:

$$\mathbb{P}(a \le \phi(x) \le b) = 1 - \delta$$

An example of a violation of the rule $0.07 \le \operatorname{aspect_ratio}(car) \le 2.77.$ 98% of all the ground-truth cars satisfy this rule, making it valid, expressive and scalable.

SQRL: Synthesizing Statistical Quantile

The workflow of SQRL. SQRs are generated from the training and validation data and used to evaluate and improve models.

Examples of Rule Violations

Object Detection	Sentiment Analysis	
Rule	Rule	
$\operatorname{car}(x)\Rightarrow 20.22\leq \operatorname{width}(x)<1655.17$ $\wedge \operatorname{aspect_ratio}(x)<0.81\vee\ldots$ If an object is a car , then its aspect ratio and width must lie in one of the bounds defined by the rules above.	$ ext{neutral}(x) \Leftarrow 0.02 \leq ext{fitness}(x) \leq 0.02$ $ ext{\wedge } 0.04 \leq ext{news}(x) \leq 0.14$ If the probability that the sentence is about fitness and news is within the above bounds then the sentiment of this sentence is neutral.	
Original Prediction	Original Prediction	
	Anttila's online department store - NetAnttila - has an established position as the best-known, most visited, and most shopped online store in Finland. fitness_and_health: 0.0210 news_and_social_concern: 0.077 predicted label: positive (wrong)	
Prediction after Test Time Adaptation	Prediction after Test Time Adaptation	
	Anttila's online department store - NetAnttila - has an established position as the best-known, most visited, and most shopped online store in Finland.	

fitness_and_health: 0.0210

news_and_social_concern: 0.077

predicted label: neutral (correct)

Using SQRs

		# Rules		
Task	Total	Selected	Violations per sample	Before TTA After TTA
Tabular Classification	292,129	400	389.29	Formula -68.7%
Image Classification	73,032	340	42.62	₩ 10 ¹
Object Detection	252	252	16.21	A verage 10° - 15.7%
Time-Series Imputation	35	35	197.46	Tabular Image Object Time-series Sentiment
Sentiment Analysis	158	158	0.59	classification classification detection imputation analysis
Number of	SQRs ge	enerated I	by SQRL.	Results of Rule-based Test-Time Adaptation

Conclusions

Formalized SQRs to characterize and identify basic errors at scale and proposed the SQRL framework.

SQRL can find up to 300K rules and up to 158K violations.

We find that models do not always learn statistical rules but can be adapted to correct up to 68.7% rule violations.