COURSES TAUGHT DURING 20112012:
MEAM 570.
Transport Processes I. Co/Prerequisite(s): ENM 510 or equivalent, ENM 511 (recommended) or equivalent.
Transport coefficients, Molecular Interpretation of Transport coefficients, Detailed derivations of Conservation Equations for mass, species, momentum and energy, Conduction and Diffusion problems; Finite Fourier Transform Method, Laplace Transforms, Green's function technique; Unidirectional
and nearly unidirectional flow and transport; Creeping flow and transport; Laminar flow at High Reynolds number and Transport: Confined flows, unconfined flows; Buoyancydriven flow: RayleighBenard problem, vertical flat plate problem; Introduction to turbulent flow and transfer.
ENM 251. Analytical Methods for Engineering. Prerequisite(s): MATH 240 or equivalent along with sophomore standing in SEAS, or permission of instructor(s).
This course introduces students to physical models and mathematical methods that are widely encountered in various branches of engineering. Illustrative examples are used to motivate mathematical topics including ordinary and partial differential equations, Fourier analysis, eigenvalue problems, and stability analysis. Analytical techniques that yield exact solutions to problems are developed when possible, but in many cases, numerical calculations are employed using programs such as Matlab and Maple. Students will learn the importance of mathematics in engineering.
ENM 511. Engineering Mathematics II. (B) Prerequisite(s): ENM 510 or equivalent.
Vector Analysis: space curves, Frenet – Serret formulae, vector theorems, reciprocal systems, co and contra variant components, orthogonal curvilinear systems. Matrix theory: GaussJordan elimination, eigen values and eigen vectors, quadratic and canonical forms, vector spaces, linear independence, Triangle and Schwarz inequalities, ntuple space.Variational calculus: EulerLagrange equation, Finite elements, Weak formulation , Galerkin technique, FEMLAB. Tensors: Einstein summation, tensors of arbitrary order, dyads and polyads, outer and inner products, quotient law, metric tensor, Euclidean and Riemannian spaces, physical components, covariant differentiation, detailed evaluation of Christoffel symbols, Ricci’s theorem, intrinsic differentiation, generalized acceleration, Geodesics.

SOME SELECTED PUBLICATIONS:
BOOKS: (See full CV for detailed listing)
"Transport Phenomena with Drops and Bubbles" (with S.S. Sadhal and J.N. Chung), SpringerVerlag, Inc., NY (1997).
"Introduction to Biofluid Mechanics," Chapter 17 in Fluid Mechanics, P.K. Kundu and I.M. Cohen, Academic Press, MA, (2007).
PAPERS: (See full CV for detailed listing)
“Motion of a nanospheroid in a cylindrical vessel flow: Brownian and hydrodynamic interactions” (with N. Ramakrishnan, Y. Wang, D.M. Eckmann and R. Radhakrishnan), J. Fluid Mech., In Press, (2017).
“Computational models for nanoscale fluid dynamics and transport inspired by nonequilibrium thermodynamics” (with R. Radhakrishnan, H.Y.Yu, and D.M. Eckmann), Vol. 139, 033001 033009, ASME J. Heat Transfer, (2017).
“Effect of wallmediated hydrodynamic fluctuations on the kinetics of a Brownian nano particle, ” (with H.Y. Yu, D.M. Eckmann, and R. Radhakrishnan), Proc.Roy.Soc. A, 472: 20160397 (2016), (supp info: https://dxdoi.org/10.6084/m9.figshare.c.3590399)
“Nanoparticle stochastic motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall” (with H. Vitoshkin, H.Y. Yu, D.M. Eckmann, and R. Radhakrishnan), Physical Review Fluids, 1, 054104112, (2016).
“Hydrodynamic interactions of deformable nanocarriers and effect of cross linking” (with A. Sarkar, D.M. Eckmann, and R. Radhakrishnan), Soft Matter, 11, 595569, (2015).
“Composite Generalized Langevin Equation for Brownian Motion in Different Hydrodynamic and Adhesion Regimes” (with H.Yu, D.M.Eckmann, and R. Radhakrishnan), Physical Review E, 91:0523031 – 05230311 (2015).
“Review of Evaluation Methodologies for Satellite Exterior Materials in Low Earth Orbit (LEO)”(with D. Angirasa) , Journal of Spacecraft and Rockets, 51 (3), 750761 (2014).
“Temporal Multiscale Approach for Nanocarrier Motion with Simultaneous Adhesion and Hydrodynamic Interactions in Targeted Drug Delivery” (with R.Radhakrishnan, B.Uma, J.Liu, and D.M.Eckmann) , Journal of Computational Physics, 244, 252263, (2013).
“A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium” (with B.Uma, D.M.Eckmann, and R.Radhakrishnan), Molecular Physics, 110 : 10571067 (2012).
“Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields” (with U. Balakrishnan, R. Radhakrishnan, T. Swaminathan and D.M. Eckmann), Phys. Fluids, 23, 073602115 (2011).
“Multivalent binding of nanocarrier to endothelial cells under shear flow” (with J. Liu, N. Agrawal, A.J. Calderon, D.M. Eckmann and R. Radhakrishnan), Biophys. J., 101, 319326 (2011).
“Computational model for nanocarrier binding to endothelium validated using in vivo, in vitro, and atomic force microscopy experiments” (with J. Liu, G.E.R. Weller, B.Zern, D.M. Eckmann, V.R. Muzykanotv and R. Radhakrishnan), Proc. Natl. Acad. Sci. USA,107(38), 1653016535 (2010).
"Imaging Macromolecular Interactions at an Interface” (with J. Lampe, L. Zhengzheng, I. Dmochowski and D.M. Eckmann), Langmuir, 26 (4), 24522459 (2010).
"Effect of a soluble surfactant on a finitesized bubble motion in a blood vessel” (with T.N. Swaminathan, K. Mukundakrishnan and D.M. Eckmann), Journal of Fluid Mechanics, 642, 509539 (2010).
"Finitesized gas bubble motion in a blood vessel: nonNewtonian effects" (with K. Mukundakrishnan and D.M. Eckmann), Physical Review E, 78:036303 (2008).
"The dynamics of two spherical particles in a confined rotating flow: Pedaling motion" (with K. Mukundakrishnan and H. Hu), Journal of Fluid Mechanics, 599, 169204 (2008).
"Numerical study of wall effects on buoyant gasbubble rise in a liquidfilled finite cylinder" (with K. Mukundakrishnan, S. Quan and D.M. Eckmann), Physical Review E, 76: 036308 (2007).
“A Front Tracking Method for a Deformable Intravascular Bubble in a Tube with Soluble Surfactant” (with J. Zhang and D.M. Eckmann), J. Computational Physics, 214,366396 (2006).
“Ground based Studies with a Loop Heat Pipe (LHP) for Spacecraft Thermal Control: Part II: Experiments under Ambient Conditions” (with M. Parker and B. Drolen), J. Thermophysics and Heat Transfer, 19, 2, 129136 (2005).
“Ground based Studies with a Loop Heat Pipe (LHP) for Spacecraft Thermal Control: Part I: Vacuum Chamber Tests” (with M. Parker and B. Drolen), J. Thermophysics and Heat Transfer, 18, (4), 417429 (2004).
Please direct inquiries to waddingt@seas.upenn.edu
