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M2: Comparison of Flow Measure Techniques during Continuous and Pulsatile Flow

Abstract
Our experimental objectives were to compute the integrated flow rates for square and EKG pulse flow from ΔP traces and also to compare thermodilution, Poiseuille flow, and integrated flow calculations to experimentally measured flow rates.   Thermodilution was performed using the Schwan-Ganz catheter and associated calculations.  Poiseuille flow was found from pressure traces taken across a pressure drop.  Determining the integrated flow rates involved an integrated form of the 1-D Navier-Stokes equation, following some simplifying assumptions.  


When examining the accuracy of the experiment from linear regression and dimensionless analysis, the thermodilution calculation was most accurate over the whole fluid flow range, with the Poiseuille calculation differing only significantly at higher flow rates due to flows above the turbulence threshold (large Reynolds’ Numbers).  Thus, near idealized linear inviscid flow occurred at the lower speeds, as the flow rate calculations do not differ significantly.  For the pulsatile flow calculations, the integration method resulted in more accurate flow rates than the Poiseuille calculations.  While it was determined that the thermodilution method was the most accurate (losing only a small amount of accuracy at higher flows), it was shown that it was not significantly different from the integrated flow calculations.  This indicates that both integrated flow and thermodilution flow calculations are accurate predictors of flow over a wide range of fluid velocities.

Background

Various systems can be modeled as a flowing scheme.  For example, techniques for determining the fluid profile across different points in a system such as the cardiac system can be very useful in determining the optimal means of medical treatment, patient conditions or can be used in further advancement of other research and technology.  Methods of primary importance include determining the flow rate of a fluid from a measured pressure emitted by the fluid and other parameters.

Cardiac output can be determined through many techniques, such as the Fick Method, dye dilution, and thermodilution.  The Fick Method uses oxygen consumption to find cardiac output, a quantity that is difficult to measure, though provides accurate output calculations.  Using dye as an indicator in the human system is also highly accurate while hard to perform.  The third method, thermodilution, utilizes a Swan-Ganz catheter with a cold solution.
 In an experimental setting such as ours, The Fick Method and the dye dilution method would be impractical as they are costly and time consuming to perform accurately and precisely.  With thermodilution as the most efficient method available to the experimenters as well as the method most easily translated between the experimental settings to the human system, it would be the most optimal method to use in measuring cardiac output. 

In this project, the experimenters have designed a rigid tube system with pulsatile flow for the purpose of validating the 1-D flow theory.  Past experiments with this apparatus have encountered many difficulties in achieving desirable results.  Taking into account past shortcomings, novel techniques are utilized to measure flow rate of a fluid through tubes.  After designating an ideal experimental pump system experimenters can calculate flow rates from pressure drops and compare calculated flow rates to measured flow rates for validity purposes. 

A number of different methods were determined to calculate the fluid flow rates.  These include the pressure-flow calculation of Poiseuille’s Law, thermodilution, volumetric flow, and a numerical integration method using the Navier-Stokes Equation.

Pressure-Flow (Poiseuille’s Law)

Straight tube flow is a basic fluid mechanics concept.  Within biological systems, flow in the blood stream most closely approximates this.  The basic equation governing fluid flow is Poiseuille’s Law, which states that there is a pressure drop, ∆P, in a steadily flowing fluid along the length of a horizontal, cylindrical tube.
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(1)

In equation 1, Q is the laminar flow rate of a Newtonian fluid, L is the length of the tube, and ‘a’ is the radius of the pipe.  This equation can be rearranged to calculate Q knowing the pressure drop as measured through two pressure transducers.

Thermodilution Method 


The technique of thermodilution has been derived from the principles of the conservation of heat to calculate the simulated cardiac output from the heart.  Thermodilution entails injecting a known amount of a cold liquid into a warm system, and then measuring the rate of temperature decrease as the mixture of cold liquid and blood flows by.  Using conservation of energy or heat, which is summarized from Ganz
 the experimenters will be able to calculate the simulated cardiac output by the thermodilution flow equation:
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(2)
where Q is the cardiac output (mL/min), VI is the volume of injectate (mL), TB is the blood temperature (oC), SI is the specific gravity of injectate, CI is the specific heat of injectate, 60 is a constant for number of seconds per minute, CT is the correction factor, SB is the specific gravity of blood, CB is the specific heat of blood, TI is the temperature of injectate, and 
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 is the integral of blood temperature change (oC/sec).  The correction factor CT is approximated by the equation 
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 where TID is the mean temperature (oC) of injectate delivered; TB and TI are defined previously.

Numerical Integration Method

For calculating instantaneous flow rates primarily in the square and EKG pulses, it is necessary to use an integration method.  Instantaneous flow rates are determined over one period and summed to achieve a flow rate comparable to the other methods used.  This integration method employs the following expressions to calculate the desired flow rates: 
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       (3)
Where Q is flow, A is area, ( is fluid density, L is tube length, A is tube cross-sectional area, T is one period, and P is change in pressure across the system.

Equation 3 was derived from the Navier-Stokes Equation in one dimension.  The general Navier-Stokes Expression is as follows:
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where ( is fluid density, g is the gravitational constant, ( fluid viscosity,  v is the velocity of the fluid, P is again the change in pressure across the system, and DV/Dt is the substantial derivative of velocity with respect to time.
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However, for the experimental situations only one dimension was considered.  Furthermore, in simplifying the above expressions other assumptions made included assuming an inviscid flow (neglect viscosity), neglecting gravitational effects, then after rearranging the above expression, the Navier-Stokes equation is reduced to: 

Where velocity of the fluid is a function of time and pressure is a function of time and position in the x-direction.

[image: image15.wmf]v

P

g

Dt

DV

2

Ñ

+

Ñ

-

=

m

r

r

Further rearrangement of the expression and integrating over the length of the tube L with respect to x provides us with:
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which simplifies to:
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or:

Once again, both sides are integrated, but with respect to t
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After integrating and taking into account that v = 0 when t = 0 then:
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A final integration over one period, T, will result in Equation 3 above, an expression representing pulsatile flow as a function of t.  Table A-1 gives an example of this method.

Volumetric Flow Method

 The final and most trusted method that can be utilized to calculate flow rates is the volumetric flow method.  This method utilizes a volumetric cylinder and stopwatch.  Measuring the volume of output over a period of time, the flow rate of the system can be determined using the expression:
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Where Q is volumetric flow rate.

Materials

Thermometer

Crates

22L Transparent Cubic Water Tank

Haake Water Heater

Flow Cutoff Valve

Tygon Tubing (ID: 6mm, 8mm)

Pipette Tip

Rotary Pump

Pump Power Supply

2 Pressure Transducers

Schwan-Ganz Catheter

Y-Shaped Tubing Connector (Thermodilution Injection Chamber)

Syringe

Beaker with Ice

Pipette Boxes

Graduated Cylinder and Timer

Rubber Stopper

LabView 5.1, (Function Generator, thermodilution.vi, gauge2001.vi)
DataLogger Software

Methods

To achieve the practical purposes within the time provided, the following assumptions were made in the model of the system.  The Tygon tubing used was rigid to maintain a uniform boundary throughout the flow of the experiment.  Water was used as the experimental fluid, and assumed to have inviscid flow.  Flow was measured as if the fluid was moving along one plane only (the “z” direction of a cylindrical coordinate system).  


The initial pumping mechanism was connected up to Labview and Virtual Bench.  Three different signals were run through the pump and evaluated independently.  These input signals from Virtual Bench included a continuous signal as a baseline from which to test the design, a square pulsatile signal with a 1 Hz cycle, duty ratio of 50% and variable amplitude of .5-5V, and a simulated EKG pulse with a 1 Hz cycle, and variable amplitude.   

The pump design involved the motorized pump, propelling water through rigid tubing and across two pressure transducers.  Tube length between the transducers was kept constant at 152.4 cm.  The pressure transducers were calibrated by recording the voltage at a pressure caused using pressure heads of different heights, located after the tube circuit.  For each trial, Labview reported a voltage drop across the transducer as a function of time, which was used to determine the pressure drop across that particular flow point using the conservation of energy.  Using these pressure drops, the flow rate as a function of time Q(t) was then be determined.


A temperature probe/catheter (the Swan-Ganz catheter) was placed in the tube circuit downstream from the cold-water injecting chamber, which was downstream from the first pressure transducer.  This ensured that thorough mixing occurred before the cold-water injection reaches the temperature probe.  Once the apparatus was ready, a 4-point calibration of the temperature probe was performed by removing the probe from the tubing and immersing it in fluids of various temperatures.  The curve was constructed so that temperatures experimentally observed from the thermometer corresponded to a voltage produced by the probe.  Upon calibration, the program thermodilution.vi was loaded into LabView and the probe reinserted into the tube.  For the thermodilution injection, 3 cm3 of ice-chilled water was injected within 1 second into the hub using a syringe.  Temperature changes were be collected by LabView and analyzed to determine the flow rate Q(t).


The temperature correction factor CT was determined by placing the probe inside the 3 cm3 syringe containing cold water and recording the temperature increase after 5 seconds.  This is to account for the time in which it takes to fill the syringe with the cold water, place the syringe in the flow apparatus and complete the injection.  This temperature difference was then be added to each of the recorded injectate temperatures and recorded as the mean temperature of injectate delivered (TID).  The correction factor was then be calculated as summarized by Ganz, et al.1  


One downside to the thermodilution method is that it requires a change in temperature of the fluid.  To maintain this temperature after the thermodilution is performed, a large reservoir was placed at the end of the tube circuit with a water heater, after the second transducer.  This allowed for a controlled temperature and further isolated the second transducer from any suction effects that the pump might cause.  However by opening the system to atmospheric pressure at the outflow, the second pressure transducer no longer will measure the drop in pressure of the system, but rather the initial pressure relative to atmospheric (since the second transducer will read 0 psig).  Therefore, a restrictor was placed on the tubing after the second transducer in order to maintain the pressure (hence, there was a “back pressure” that forced the system above atmospheric).  To ensure that the pressure is not abnormally high, the system was run without the tank to determine the restrictor size to result in a reasonable P2.


All parts of the apparatus used in the project can correlate to physiological counterparts in the human body.  The device was constructed with a temperature-controlled reservoir to simulate the near constant temperature of the total blood supply in the body (approx 5L); the pump simulates the pulsatile blood supply from the heart; the tube circuit simulates the body’s blood vessel network.

To clarify the experimental design and the reasons for it, please refer to Figure 1, a diagram of the apparatus:
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Figure 1:  Experiment Apparatus Layout
Results

To apply various methods of flow calculation to the experimental setup, certain assumptions were made.  These included assuming rigid tubing, inviscid flow, and the presence of a constant temperature in the system over each trial except during the injection of cold fluid for the thermodilution technique.  After these assumptions were made, flow rates were calculated for each of three trials for 6 speeds of continuous, square pulsatile, and EKG pulse fluid flow.  These calculations used Equations 1-4.  Additionally, Reynolds’ and Strouhal Numbers were calculated to determine turbulence and analyze sensitivity, respectively.  These dimensionless parameters were computed by using the following equations:
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where D=tube diameter, v=fluid velocity and =fluid kinematic viscosity.
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(6)
where =pulse frequency, r=tube radius, v=fluid velocity.

The Womersly number was also calculated, though only one value was produced as the requisite parameters were not altered during the experiment.  The value was 10.03 as calculated by: 
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where r=tube radius, f=frequency, n=order of harmonics (1), =fluid density, =viscosity index.

The flow rates calculated by the 3 experimental methods (thermodilution, Poiseuille’s law and numerical integration) were compared to the flow rates found through measuring volumetric flow.  Table A-2 shows average data across all trials for all flow calculations.
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Figure 2: Average Continuous Flows
Figure 2 demonstrates for continuous flow that near idealized linear inviscid flow occurred at low speeds, as the flow rate calculation methods do not differ significantly.  At higher speeds, however, the flow rates calculated by Poiseuille’s Law do deviate very significantly from those found through volumetric flow measurements.  Thermodilution is shown here to be nearly as accurate as the measured flow.
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Figure 3: Average Square Pulse Flows
Figure 3 corroborates the findings in Figure 2 for square pulsatile flow.  Here it is even more evident that the method of flow rate calculation is insignificant at lower pump speeds.  Again, the higher flow rates calculated by Poiseuille’s Law diverge from the measured flows, or those calculated by thermodilution.  The flow rates found through numerical integration stayed within the range of the measured flow rate until the highest speed of speed 5.
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Figure 4: Average EKG Pulse Flows
Figure 4 shows that, for the EKG pulse flow, the thermodilution method is again more accurate than Poiseuille’s Law, as compared to the measured volumetric flow.

As discussed in the Background and Calculations section, the pressure data collected was used to obtain the numerically integrated flow rates.  The change in pressures between the transducers and the flow rates found through integration are displayed in Figures 5-7.
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Figure 5: Continuous Flow P vs. Time
Since there was no specific period over which to integrate the change in pressure to determine flow rate, Figure 5 shows the pressure change over time for a continuous flow (speed 4) and the flow rate found by integration over that time.
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Figure 6: Square Pulsatile Flow Output and P vs. Time

Figure 6 depicts the change in pressure versus time, along with the instantaneous fluid output of the system over that time.  While the pump was set to 1 cycle per second, one can see that the period is approx. 3 seconds.
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Figure 7: EKG Pulse Flow Output and P vs. Time
Figure 7 shows the same parameters as Figure 5, though for an EKG pulsatile flow.  Here the period did remain at the preset value of 1 second.  This figure also shows fairly strong correlation between the flow rate and change in pressure, as they vary smoothly in the same time windows.

Data Analysis

The objective of the experiment was to first compute the integrated flow rates for square pulse and EKG pulse flow from P traces, as seen in the results.  However, the second objective was to analyze the methods of calculating continuous, pulsatile, and EKG flow to investigate the accuracy of the calculations. To accomplish this, the calculated flows were compared to the measured volumetric flow rate, which was assumed to be correct.  The calculated flow rates described earlier (Poiseuille flow, Thermodilution, and Integrated Flow) were compared using linear regressions, t-tests, and dimensionless analysis (sensitivity, Womersley, Strouhal, and Reynolds number).
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Initially, the three flow scenarios were evaluated through simple regressions of calculated vs. measured flow and compared to the ideal situation (where the calculated flow was an accurate prediction of measured flow) through t-tests and the data’s confidence limits in StatView v4.57 (Abacus Concepts; Berkeley, CA).  Figures 8-10 show the results of this comparison.  Of note is the fact that the continuous flow does not display an integrated flow calculation, since this measurement can only be made over a period.

Figure 8: Calculated vs. measured continuous flow for thermodilutions and Poiseuille flow.
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Figure 10: Calculated vs. measured EKG pulse flow for thermodilutions, Poiseuille, and integrated flow.

Analysis of these graphs indicates that Poiseuille flow was valid at low flow rates where measured and calculated flow is not statistically different (p>0.11) over all three flow patterns.  However, the confidence testing at higher values, often above the turbulence threshold (at high Reynolds’ numbers), did prove the data statistically different (p<0.02) over the three flow conditions.  When integrated flow rates could be determined (i.e.- during pulsatile conditions where there was a period), the square and EKG pulse calculations were closer to ideal than Poiseuille flow calculations were, since the data is similar to measured flow rates (p>0.24).  Yet the closest fit of the data to measured rates came from thermodilution method.  The continuous flow scenario showed a linear regression that was statistically similar to ideal conditions; y = 0.9244x + 6.7202, R2 = 0.8508.  A confidence test of the line also showed that it was not significantly different (p>0.33).  Similar results were found with square pulse (y = 1.1088x + 0.7965; R2 = 0.9457, p>0.36) and EKG pulse (y = 1.2965x - 1.2214; R2 = 0.9712, p>0.39).  While it is interesting to note that overall the thermodilution method was the most accurate, tests for significance showed that it was not significantly different from the integrated flow measurements (p>0.48).  This indicates that both integrated flow and thermodilution flow calculations are accurate predictors of flow over a wide range of fluid velocities.
Dimensionless analysis was also performed on the data, which further illustrated the close relationship of thermodilution and Integrated flow to the measured flow rates.  Four dimensionless parameters were used: the Reynolds’ number (Equation 5), the Strouhal number (Equation 6), sensitivity, and the Womersley number (Equation 7). The Reynolds’ number, Re, was previously used to illustrate where calculations for Poiseuille flow were accurate (i.e. - at low flow, low Reynolds’ number situations).  This number, which is a balance of inertial and viscous forces, at large values indicates that the viscous forces no longer can maintain Laminar flow, causing inaccurate flow traces from Poiseuille’s Law.
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The Strouhal number, Sr, is often used in pulsatile flow scenarios, since it is dependent on the frequency, velocity, and characteristic length of the flow.  The collected data had a wide range of speed, making it possible to obtain a range of Strouhal numbers and compare them to the sensitivity, S, of the experiment as another means of testing its accuracy.  Figures 11 – 13 show the results of a comparison of S versus Sr. Once again, the continuous flow does not display an integrated flow calculation, since this measurement can only be made over a period.

Figure 11: Sensitivity vs. Strouhal number for thermodilutions and Poiseuille flow for continuous flow.

Figure 12: Sensitivity vs. Strouhal number for thermodilutions, Poiseuille flow, integrated flow for a square pulse.
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Figure 13: Sensitivity vs. Strouhal number for thermodilutions, Poiseuille flow, integrated flow for an EKG pulse.
When analyzing these graphs, it is important to note that the larger the Strouhal number is, the slower the flow rate is.  The relationships shown above fit the normal power curves that are commonly used to analyze pulsatile flow.  As in the linear regression, the data indicates that Poiseuille flow was valid at low flow rates (p>0.24) over all three flow patterns.  Yet again, confidence testing at higher values did prove the higher data points to be statistically different (p<0.007) over the three flow conditions, showing that the sensitivity becomes very large at very low Strouhal numbers.  Integrated flow for the square and EKG pulse calculations were again closer to ideal than Poiseuille flow calculations were, as the data is statistically similar to ideal sensitivity (i.e.- no sensitivity change with Strouhal number change) over the entire data range (p=0.31 and p>0.33 respectively).  For the square pulse condition, confidence testing again showed that the thermodilution model was most accurate (y=0.8587x0.1178, R=0.8277; p>0.39).  While it qualitatively appears that the integrated flow was more accurate, the relative spread of the data for integrated flow (R2=0.5507) decreased the data confidence.  However, the EKG pulse data clearly showed that the thermodilution (y=0.4994x0.2179, R2=0.6087) was a little closer to ideal sensitivity (p=0.41) versus calculated integrated flow (p=0.39).

The final dimensionless number, the Womersley number, , was constant over all trials.  The number, the balance of frequency and viscous forces, remained at 10.03 since the duty cycle and frequency for square pulses was not changed, as well as in the EKG pulse scenario where frequency was not varied.  The practical application of the Womersley number is to determine if the viscosity of the fluid impedes the pressure wave.  Normal systems have Womersley numbers ranging between 3 and 20 in cases where the pressure wave is not influenced by viscous forces.  Future experimentation with various fluids and frequency ranges will be able to produce a wide range of Womersley numbers to investigate the sensitivity of the system to the viscous and frequency dependence.  
Conclusions


The first objective of the experiment was to compute the integrated flow rates for square and EKG pulse flow from ΔP traces.  It was concluded that a suitable method for determining the integrated flow rates involves an integrated form of the Navier-Stokes equation, following some simplifying assumptions.  The integrated flow rate profiles for the square and pulsatile flows can be seen in the results.


The second objective of the experiment was to analyze the methods of calculating continuous, pulsatile and EKG flow to investigate the accuracy of the calculations.  For continuous flow, the thermodilution calculation was most accurate over the whole fluid flow range, with the Poiseuille calculation differing only significantly at higher flow rates due to flows above the turbulence threshold (large Reynolds’ Numbers).  Thus, near idealized linear inviscid flow occurred at the lower speeds, as the flow rate calculations do not differ significantly.  

For the pulsatile flow calculations, the integration method resulted in more accurate flow rates than the Poiseuille calculations.  While it was determined that the thermodilution method was the most accurate (losing only a small amount of accuracy at higher flows), it was shown that it was not significantly different from the integrated flow calculations.  This indicates that both integrated flow and thermodilution flow calculations are accurate predictors of flow over a wide range of fluid velocities.  It was determined that the Poiseuille Flow calculation was also an accurate predictor of flow, however, only at low (non-turbulent) flow rates.

Based on the dimensionless parameters analysis, particularily the Sensitivity – Strouhal regressions, it was determined that the validity of the flow calculations held over all pulse shapes, for all flow rates.  
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Table A-1: Sample integration method, EKG trial
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Table A-2: Average Flow Data
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0                         0





Figure 9: Calculated vs. measured square pulse flow for thermodilutions, Poiseuille, and instantaneous flow.








� � HYPERLINK "http://www.lidco.com/pages/cardiac_output.html" ��http://www.lidco.com/pages/cardiac_output.html�


� Castellan, G.  Physical Chemistry, 3rd Ed., 1983.


� Ganz W, Donoso R, Marcus H, Forrester JS, Swan HJC: A new technique for measurement of cardiac output by thermodilution in man.  Am J Cardiol 27: 392, 1971.


� http://www.sbg.ac.at/ipk/avstudio/pierofun/glossary/biofysik.pdf
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