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Summary

The purpose of this experiment was to confirm the relationship between the fundamental mode frequency of a vibrating bar, and the actual mass attached to its end, in a horizontal cantilever beam set up.  
At the zero mass added state, the measured values of the “c” coefficient factor of the mbar term for bars 1, 2, and 3, were 0.335 + 0.032 (95 %), 0.298 + 0.037 (95 %) and 0.413 + 0.139 (95 %) respectively.  These all overlapped one another within 95%, but were all slightly, and significantly, higher than the predicted value of 0.25.  Still, this proved that, within 95%, there was a single “c” value which was reasonably close to 0.25, confirming a beam theory type relationship at the zero mass state.  


It was not possible to add a mass to the bar which was overwhelmingly higher than the mass of the bar itself, so a relationship could not be confirmed at this state, though it was suspected that it would follow a spring theory relationship.  

The “c” values were used to construct theoretical plots using a formula which combined the mass of the bar and the mass added.  T-tests proved that these plots matched the experimental plots of fundamental mode vs. 1/sqrt(massbar + c*massadded).  This confirmed the combined formula for a cantilever beam with a mass added of: 
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Background

Vibration analysis is significant in biomedical analysis because of the influence of vibrations on the human body.  Particularly significant is environment design, such as rollercoaster and car seats and the effects of vibrations in the inner ear.

The significance of this experiment is its application of piezoelectric sensors.  Miniature cantilevers are used for a whole host of detection devices, the cantilever interacts with chemicals magnetic fields, thermal energy and photons causing it to bend, which is a measure of the energy used in the interaction.  The devices are used for a whole range of application from the identification of DNA sequences to material analysis and mass measurements.

In this experiment we are focusing on measuring the mass at the tip of the cantilever.  Beam theory considers only the mass of the bar and frequency is calculated as shown below

ω=√k/mbar

Where “k” for a horizontal vibrating bar is

k = 3EI/L3
Spring theory considers only the mass added at the end of the bar and frequency is calculated as shown below

ω=√k/madded

Using a combination of both spring theory and beam theory a new formula was developed to calculate the frequency taking into account both the mass of the bar and the mass added1.

ω=√k/(madded + c*mbar)    ( c = 0.23
However, since a beam theory formula2 which was proven to hold true is shown as





ω = √12EI/L3mbar





OR





ω = √3EI/L3(0.25)mbar
We would expect the “c” constant to be closer to 0.25.  This experiment is about developing and proving these mathematical relationships between the mass added and mass bar with the frequency of the vibrating cantilever. 
Materials
· Accelerometer (with piezoelectric sensor) and power supplies

· Labview software and equipment

· Table clamp system

· Lab weights 10g-1000g

· Test bars:
	Bar
	Material
	Length (m)
	Width (m)
	Thickness (m)
	Total Mass (kg)

	1
	Aluminum
	0.915
	0.038
	0.003
	0.295

	2
	Stainless Steel
	0.915
	0.038
	0.003
	0.88

	3
	Aluminum
	0.915
	0.051
	0.003
	0.62


Methods

1) Bars were clamped horizontally to the tabletop using the table clamp system.

2) Vibration data was collected using Labview software and hardware (10s trials).

3) Masses ranging from 0g - 1000g were attached to the end of the bar, and data collected.

4) All masses were tested at four lengths: 71cm, 64cm, 55cm, 43cm.

5) A Labview FFT algorithm was used to determine the fundamental vibrational mode.

6) Experimental data was compared to theoretical values using the equation:
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Results
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                      Figure 1: Frequency versus Mass Added

Masses ranging from 0g to 1000g were placed on the ends of each of three bars.  The bar was vibrated and the resonant frequency was obtained from the Fast Fourier Transform of the collected acceleration data.  Figure 1 above shows the dependency of the resonant frequency on the mass added at the end of the bar for Bar 1.  The general trend shows that frequency is inversely related to the square root of the added mass.  

                    Figure 2: Frequency versus 1/sqrt(madded + c*mbar)
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The more general form of the equation given in the methods: 
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                                (Formula 1)
was used to model the experimental data.  When zero mass is added at the end of the bar, the data is expected to follow beam theory, which is described by the equation:
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(Formula 2)
This zero mass condition was used to solve for the constant, c, preceding mbar, for each bar at each length.  This constant is then used in the equation relating frequency to both the added mass and the mass of the bar to calculate the theoretical frequency of the bar for each added mass.  These calculated theoretical frequencies based on a calculated constant, c, are graphed above in Figure 2 along with the experimental frequencies.  The overlapping curves show that the equation used to model the data is quite accurate as is the method of calculating the constant, c.  The equation models our data well for added masses ranging from 0g to 1000g.  

               Table 1: Approaching Beam Theory
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Table 1 above shows how well the experimental frequencies approach beam theory frequency values for each bar at each length.  The comparison is made for experimental frequencies corresponding to conditions of zero added mass.  The experimental frequencies range from 5%-27% deviation from beam theory values, showing that the experimental data approaches beam theory very well where only the mass of the beam is considered.  Due to the physical limitations of the system, masses larger than 1000g could not be added to the beam, so it can only be predicted that experimental data would hold true as well for masses much larger than the mass of the bar and in that case would approach spring theory.
 Table 2: Calculated constant, c, versus the theoretical constant
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Table 2 compares the constant, c, calculated based on the zero mass condition to the theoretical constant, .25, preceding the term mbar in the equation used above.  Although the frequencies calculated based on the calculated constant for each bar overlapped our experimental frequency data very well, the calculated constants deviate from 20% to 65% from the theoretical value of .25.  For each bar, the constant, c, is consistent within 33% of the average value as indicated by the small 95% confidence intervals.




Table 3: T-test between theoretical and 




Experimental plot for bar 1 at length 72 cm.  
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Table 3 is a t-test is between the theoretical plot of frequencies generated by Formula 1, vs. the actual measure frequencies.  This is for the case where various masses are added, but non are overwhelmingly larger than the mass of the bar itself.  The very small t-stat value in relation to the t-critical values shows that the theory conforms to the actual data very well.  
Discussion


The cantilever experiment should have conformed to beam theory when there was no mass added at the end of the bar.  Table 1 in the results shows that the experimental frequencies of the bar, with no mass added, only differ by about 10-25% from the theoretical beam theory frequencies.  Furthermore, the experimental coefficients of the Mbar terms, with no mass added, were 0.335 + 0.032 (95 %), 0.298 + 0.037 (95 %) and 0.413 + 0.139 (95 %) for bars 1, 2, and 3 respectively.  Although the predicted value of 0.25 does not fall within any of these values, the percent different between 0.25 and the experimental constants for bars 1 and 2 were relatively small.  Furthermore, each of the experimentally calculated constants do overlap each other, indicating that within 95%, the is a single constant coefficient for the Mbar term, even if it cannot be conclusively shown that it is 0.25.  The data satisfactorily confirms beam theory (Formula 2 in Results) at the zero mass added state.  

It was not possible to confirm if the cantilever in this experiment conformed to spring theory for a large added mass state.  Mathematically speaking, the mass added term in the formula would have to be overwhelmingly larger (Madded >> Mbar) for this to be experimentally confirmed.  However, it was found that any given cantilever would completely bend over if even two to three times its own weight were attached to its end.  Since it would probably be necessary to reach a state in which the Mbar were only, say, 5% of the Madded, spring theory could not be confirmed.       

The state in where the added mass is not vastly greater than the bar, should theoretically be the state between beam theory and spring theory.  This should be characterized by the combined formula with the term “madded + c*mbar”, where “c” is the calculated coefficients in Table 2.  The plots created with this theoretical formula and the experimental data, seen in Figure 2 and the figures in the appendix, conform with one another very well by visual inspection.  The t-tests between the theoretical plots and the data, seen in Table 3 and the appendix, clearly show that correlating is very significant.  It can therefore be concluded that the theoretical formula, seen in the background and as Formula 1 in the Results, is correct for a vibrating cantilever with added masses on its end.  

The only unexpected result was that the calculated “c” values were significantly higher, although still roughly close, to 0.25.  There should not have been large sources of error in this experiment, but it is possible that the cantilever beam was damped by both the clamp and the table, which may have resulted in larger “c” values being measured to compensate for this.  Also, the accelerometer attached to the bar had mass, which we did not take into account.  This added mass would have made the measured frequencies lower than expected… which would result in a larger denominator being needed in the formula, and hence a larger “c” value.  
Sources Cited
1Milivoje Kostic, Introduction to Oscilloscope and Vibration Measurement of a Cantilever Beam, Northern Illinois University, http://www.kostic.niu.edu/ScopeDemo.html, 2001.  

2Marks’ Standard Handbook for Mechanical Engineers, 10th Ed., Table 3.4.6, McGraw Hill, 1996.  

Appendix

Figures:
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T-tests:
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