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Problem Formulation
Data Generation Model:

PW,Zn,Z = PW ⊗
n∏
i=1

PZi|W ⊗ PZ|W

∀ i ∈ [n], PZi|W = PZ|W

Bayes Risk of predicting Y given U :

R`(Y |U) = inf
ψ:U→Y

E[`(Y, ψ(U))] ψ∗Y |U (u)

Minimum Excess Risk (MER):

MERn
` = R`(Y |Zn, X)−R`(Y |W,X)

Related Literature
Theorem (Xu & Raginsky 2020). Consider an ar-
bitrary non-negative bounded function ` : Y × Y →
[0, b]. We have

MERn
` ≤

√
b2

2
I(Y ;W |Zn, X) ≤

√
b2

2n
I(W ;Zn).

Remark 1: Under mild conditions, I(Y ;W |Zn) =
O(1/n) as n→∞ giving MERn

` = O(
√

1/n).

Remark 2: The lower bound was left as an open
problem in [Xu & Raginsky 2020]

Remark 3: We showed that no lower bound of the
form α

√
I(Y ;W |Zn, X) exists.

Droping the Square Root
For bounded random variables, the upper bound
can be improved to O(1/n) if the loss is quadratic
or the problem is realizable.

Lemma. Consider random variables Y, U , and V
forming Markov chain Y − U − V and an arbitrary
bounded function ` : Y × Y → [0, b]. We have

R`(Y |V ) ≤ 2R`(Y |U) + 3bI(Y ;U |V ).

Rate-Distortion View
The Markov chain W → Zn → ĥ(·) holds.
Goal: Observe Zn and find ĥ(.) which performs
well compared to the case where W is known.

Not a standard rate-distortion problem!

Lower Bound:
If asked to use R = I(W ;Zn) nats to represent
W by a variable Ξ in a way that it is possible to
recover a good ĥ, is it a good idea to set Ξ = Zn?

Upper Bound:
Is it possible to have I(Zn; ĥ) = I(W ;Zn) and still
achieve the optimal ĥ(.).

R/D Optimization
Define the distortion function as h∗w(x), i.e.

d(w, ĥ) = EwXY [`(Y, ĥ(X))− `(Y, h∗w(X))].

We have EWZn [d(W,ψ∗Y |ZnX(Zn, · ))] = MERn` .

The (Constrained) Rate-Distortion Function:

Dn(R) = inf
PZn

ĥ

E
[
d(W, ĥ)

]
s.t. I(W ; ĥ) ≤ R.

Theorem. For a given training set size n, for all rates
R ≥ I(W ;Zn), we have Dn(R) = MERn

` .

Upper Bound
Add the constraint that I(Zn; ĥ) ≤ R:

DU
n (R) = inf

PZn

ĥ

E[d(W, ĥ)] s.t. I(Zn; ĥ) ≤ R.

We have ∀R, ∀n;Dn(R) ≤ DU
n (R).

Theorem. For any bounded loss function ` : Y×Y →
[0, b], and for all n ≥ 1, we have

DU
n (I(W ;Zn)) ≤

√
b2

2
I(W ;Y |Zn, X).

Lower Bound
Remove the constraint that ĥ is generated only us-
ing the samples Zn:

DL(R) = inf
PW

ĥ

E[d(W, ĥ)], s.t. I(W ; ĥ) ≤ R.

The feasible set is enlarged; hence

∀R, ∀n; DL(R) ≤ Dn(R).

Comparing Bounds
Theorem. For any bounded loss ` : Y × Y → [0, b],
we have

DU
n (R)−DL(R) ≤

√
b2

2
I(W ; ĥR|Zn),

where PW,ĥRZn = PW ⊗ P ∗WĥR
⊗ PWZn and P ∗W

ĥR
is a

solution for DL(R).

As n → ∞, if the posterior is concentrated to
the true realization, it is reasonable to expect that
I(W ; ĥR|Zn) → 0 and all of the rate-distortion
functions converge.

Theorem. Suppose the distortion d(W, ĥ) can be rep-
resented as a distance d′(h∗W , ĥ). Let W and W ′ be
two samples independently generated from PZ

n

W . If we
have limn→∞ E[d′(h∗W , h

∗
W ′)] = 0, then

∀R ≥ 0; DL(R) = lim
n→∞

Dn(R) = lim
n→∞

DU
n (R).

Lower Bound on MER
For quadratic loss we have

d(w, ĥ) = ||ψY |W,X(w, ·)− ĥ(·)||L2(PX).

Theorem. Let W be a p-dimensional compact and
convex subspace of Rp. Under some mild conditions
(see Section 6 of the paper), as n→∞ we have

MERn
` ≥

pπ

n
(
Vp Γ(1 + p

2 )
) 2

p

exp
(−E log |JWZ (W )|

p

)
.

The bounds are tight for the cases where the up-
per rate of O(1/n) holds.

Application in Linear Models

Under the conditions that:

• PW is supported on a compact & convex subset
of Rp.

• Y = W>X + σν, where W ∼ PW , X ∼
N (0,ΣX), and ν ∼ N (0, 1).

• Variables W,X , and ν are independent.

• The matrix ΣX is full-rank.

We have MERn
` = Ω

(
p/n

)
.

Similar results can be derived for Neural Tangent
Kernels f(·, w) = f(·, w0) + Φ>w0

(·)(w − w0).

Future Work
One of the limitations of the current work, is that
our result requires some technical conditions for
the Ω(p/n) to be guaranteed. Analyzing lower
rates under more general conditions, for example
non-parametric problems, is an interesting direc-
tion for future studies.
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