

Behrad Moniri² Shohreh Kasaei¹ Hassan Hafez-Kolahi¹ Mahdieh Soleymani Baghshah¹

Problem Formulation

Data Generation Model:

 $P_{W,Z^n,Z} = P_W \otimes \prod_{i=1}^{N} P_{Z_i|W} \otimes P_{Z|W}$ $\forall i \in [n], \ P_{Z_i|W} = P_{Z|W}$

Bayes Risk of predicting *Y* given *U*:

 $R_{\ell}(Y|U) = \inf_{\psi:\mathcal{U}\to\mathcal{V}} \mathbb{E}[\ell(Y,\psi(U))] \rightsquigarrow \psi_{Y|U}^{*}(u)$

Minimum Excess Risk (MER):

 $MER_{\ell}^{n} = R_{\ell}(Y|Z^{n}, X) - R_{\ell}(Y|W, X)$

Related Literature

Theorem (Xu & Raginsky 2020). Consider an arbitrary non-negative bounded function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow$ [0,b]. We have

 $\operatorname{MER}_{\ell}^{n} \leq \sqrt{\frac{b^{2}}{2}}I(Y;W|Z^{n},X) \leq \sqrt{\frac{b^{2}}{2n}}I(W;Z^{n}).$

Remark 1: Under mild conditions, $I(Y; W|Z^n) =$ O(1/n) as $n \to \infty$ giving $MER_{\ell}^n = O(\sqrt{1/n})$.

Remark 2: The lower bound was left as an open problem in [Xu & Raginsky 2020]

Remark 3: We showed that no lower bound of the form $\alpha \sqrt{I(Y; W|Z^n, X)}$ exists.

Droping the Square Root

For bounded random variables, the upper bound can be improved to O(1/n) if the loss is quadratic or the problem is realizable.

Lemma. Consider random variables Y, U, and V forming Markov chain Y - U - V and an arbitrary bounded function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow [0, b]$. We have

 $R_{\ell}(Y|V) \le 2R_{\ell}(Y|U) + 3bI(Y;U|V).$

RATE-DISTORTION ANALYSIS OF MINIMUM EXCESS RISK IN BAYESIAN LEARNING

¹ Department of Computer Engineering, Sharif University of Technology² Department of Electrical Engineering, Sharif University of Technology

Rate-Distortion View

The Markov chain $W \to Z^n \to \hat{h}(\cdot)$ holds. **Goal:** Observe Z^n and find $\hat{h}(.)$ which performs well compared to the case where W is known.

Not a standard rate-distortion problem!

Lower Bound:

If asked to use $R = I(W; Z^n)$ nats to represent W by a variable Ξ in a way that it is possible to recover a good \hat{h} , is it a good idea to set $\Xi = Z^n$?

Upper Bound:

Is it possible to have $I(Z^n; \hat{h}) = I(W; Z^n)$ and still achieve the optimal $\hat{h}(.)$.

R/D Optimization

Define the distortion function as $h_{w}^{*}(x)$, i.e.

 $d(w, \hat{h}) = \mathbb{E}_{XY}^{w}[\ell(Y, \hat{h}(X)) - \ell(Y, h_{w}^{*}(X))].$

We have $\mathbb{E}_{WZ^n}[d(W, \psi^*_{Y|Z^nX}(Z^n, \cdot))] = \mathrm{MER}^n_{\ell}.$

The (Constrained) Rate-Distortion Function:

 $D_n(R) = \inf_{\mathbb{Z}^n} \mathbb{E}[d(W, \hat{h})] \quad \text{s.t.} \quad I(W; \hat{h}) \le R.$

Theorem. For a given training set size n, for all rates $R \geq I(W; Z^n)$, we have $D_n(R) = MER_{\ell}^n$.

Upper Bound

Add the constraint that $I(Z^n; \hat{h}) \leq R$:

$$D_n^U(R) = \inf_{\substack{P_{\hat{h}}^{Z^n}}} \mathbb{E}[d(W, \hat{h})] \text{ s.t. } I(Z^n; \hat{h}) \le R.$$

We have $\forall R, \ \forall n; D_n(R) \leq D_n^U(R)$.

Theorem. For any bounded loss function $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow$ [0, b], and for all $n \ge 1$, we have

 $D_n^U(I(W;Z^n)) \le \sqrt{\frac{b^2}{2}}I(W;Y|Z^n,X).$

Lower Bound

Remove the constraint that \hat{h} is generated only using the samples Z^n :

$$D^{L}(R) = \inf_{\substack{P_{\hat{h}}^{W}}} \mathbb{E}[d(W, \hat{h})], \text{ s.t. } I(W; \hat{h}) \le R.$$

The feasible set is enlarged; hence

$$\forall R, \forall n; D^L(R) \leq D_n(R).$$

Comparing Bounds

Theorem. For any bounded loss $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow [0, b]$, we have

$$D_n^U(R) - D^L(R) \le \sqrt{\frac{b^2}{2}}I(W; \hat{h}_R | Z^n),$$

where $P_{W,\hat{h}_R Z^n} = P_W \otimes P_{\hat{h}_R}^{*W} \otimes P_{Z^n}^W$ and $P_{\hat{h}_R}^{*W}$ is a solution for $D^L(R)$.

As $n \to \infty$, if the posterior is concentrated to the true realization, it is reasonable to expect that $I(W;h_R|Z^n) \rightarrow 0$ and all of the rate-distortion functions converge.

Theorem. Suppose the distortion $d(W, \hat{h})$ can be represented as a distance $d'(h_W^*, \hat{h})$. Let W and W' be two samples independently generated from $P_W^{Z^n}$. If we have $\lim_{n\to\infty} \mathbb{E}[d'(h_W^*, h_{W'}^*)] = 0$, then

 $\forall R \ge 0; \ D^L(R) = \lim_{n \to \infty} D_n(R) = \lim_{n \to \infty} D_n^U(R).$

On Machine Learning

Lower Bound on MER

For quadratic loss we have

 $d(w, \hat{h}) = ||\psi_{Y|W,X}(w, \cdot) - \hat{h}(\cdot)||_{L^2(P_X)}.$

Theorem. Let \mathcal{W} be a p-dimensional compact and convex subspace of \mathbb{R}^p . Under some mild conditions (see Section 6 of the paper), as $n \to \infty$ we have

$$\operatorname{MER}_{\ell}^{n} \geq \frac{p\pi}{n\left(V_{p} \Gamma(1+\frac{p}{2})\right)^{\frac{2}{p}}} \exp\left(\frac{-\mathbb{E}\log|J_{Z}^{W}(W)|}{p}\right).$$

The bounds are tight for the cases where the upper rate of O(1/n) holds.

Application in Linear Models

Under the conditions that:

- P_W is supported on a compact & convex subset of \mathbb{R}^p .
- $Y = W^{\top}X + \sigma\nu$, where $W \sim P_W$, $X \sim$ $\mathcal{N}(0, \Sigma_X)$, and $\nu \sim \mathcal{N}(0, 1)$.
- Variables W, X, and ν are independent.
- The matrix Σ_X is full-rank.

We have $MER_{\ell}^n = \Omega(p/n)$.

Similar results can be derived for Neural Tangent Kernels $f(\cdot, w) = f(\cdot, w_0) + \Phi_{w_0}^{\top}(\cdot)(w - w_0).$

Future Work

One of the limitations of the current work, is that our result requires some technical conditions for the $\Omega(p/n)$ to be guaranteed. Analyzing lower rates under more general conditions, for example non-parametric problems, is an interesting direction for future studies.

References

[Xu & Raginsky 2020] Aolin Xu and Maxim Raginsky. Minimum Excess Risk in Bayesian Learning, ArXiv, 2020.