Problem Formulation
Data Generation Model:

Pw.zn z = Py & HPZ”W X PZ|W
i=1

Vi€ n|, Pzyw = Pziw
Bayes Risk of predicting Y given U:
S, p(U))] ~ by p(u)

Ry(Y|U) = inf
(PR E=RY

Minimum Excess Risk (MER):

MER” = R,(Y|Z", X) — Ry(Y|W, X)

Related Literature

Theorem (Xu & Raginsky 2020). Consider an ar-
bitrary non-negative bounded function ¢ : ) x Y —
0, b]. We have

MER} < \/EI(Y; W|Zn, X) < \/—I(W; zn).
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Remark 1: Under mild conditions, I(Y; W|Z") =
O(1/n)asn — oo giving MER), = O(y/1/n).

Remark 2: The lower bound was left as an open
problem in [Xu & Raginsky 2020]

Remark 3: We showed that no lower bound of the
form a/I(Y; W|Z", X) exists.

Droping the Square Root

For bounded random variables, the upper bound
can be improved to O(1/n) if the loss is quadratic
or the problem is realizable.

Lemma. Consider random wvariables Y,U, and V
forming Markov chain Y — U — V and an arbitrary
bounded function £ : Y x Y — |0, b]. We have

Ro(Y|V) < 2R,(Y|U) + 3bI(Y;U|V).
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Lower Bound

Rate-Distortion View

The Markov chain W — Z™ — h(-) holds.

Goal: Observe Z" and find h(.) which performs
well compared to the case where W is known.

Remove the constraint that % is generated only us-
ing the samples Z":

A e\

2[d(W, B)], s.t. I(W;h) < R.

Not a standard rate-distortion problem!

Lower Bound:
[f asked to use R = I(W;Z"™) nats to represent
W by a variable = in a way that it is possible to

recover a good £, is it a good idea to set Z = Z"?

The feasible set is enlarged; hence

VR, Vn; D"(R) < D,(R).

Upper Bound: A Ml Comparing Bounds
[s it possible to have I(Z";h) = I(W; Z") and still

achieve the optimal 7(.). Theorem. For any bounded loss ¢ : Y x Y — |0, b],

we have

b2

R/D Optimization Dg(R) _ DL(R) < \/?I(W; iLR|Z”),

Define the distortion function as A} (x), i.e.
where Py, ; . = Py ® PZZ/ @ P, and P isa

solution for D" (R).

d(w, h) = EXy [((Y, h(X)) = £(Y, hiy (X)),

We have Eyy z» |d(WV, ¢§-| on X(Zna )] = MER;. As n — oo, if the posterior is concentrated to

the true realization, it is reasonable to expect that

I(W;hg|Z™) — 0 and all of the rate-distortion
functions converge.

The (Constrained) Rate-Distortion Function:

I(W:h) <R.

S[d(W,h)]  s.t.

Theorem. Suppose the distortion d(W, h) can be rep-

resented as a distance d'(h%,,h). Let W and W' be
two samples independently generated from PZ,". If we

have lim,, . E[d'(hj;,, hiy )] = 0, then

Theorem. For a given training set size n, for all rates
R > I(W;Z"), we have D, (R) = MER,.

. VR > 0; D“(R) = lim D,(R) = lim D/ (R).

Add the constraint that I(Z";h) < R: n—00 n—00
S[d(W, h)] s.t. I(Z™;h) < R. DA
We have VR, Vn; D, (R) < D”(R). ]
Dy, (R)
Theorem. For any bounded loss function £ : Y x) — MER™ [ NN  Du(®) -
0, b], and for all n > 1, we have n
Dy, (R) Dy, (R)
- D"(R) _
D (I(W;Z2")) < 5 MER™ |+ vvveeeeeee e S _
. ; .
IW;2™  I(W;Z™) R
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Lower Bound on MER

For quadratic loss we have

d(wa iL) — |‘¢Y|W,X(wa ) o }AL(°)HL2(PX)'

Theorem. Let W be a p-dimensional compact and
convex subspace of RP. Under some mild conditions
(see Section 6 of the paper), as n — oo we have

— K 1%
MER?” > LI exp( log |z (W”).
p

- n(V, T(1+2))?

The bounds are tight for the cases where the up-
per rate of O(1/n) holds.

Application in Linear Models
Under the conditions that:

* Py is supported on a compact & convex subset
of RP.

e Y = W'X + ov, where W ~ Py, X ~
N(0,Xx),and v ~ N(0,1).

* Variables W, X, and v are independent.

e The matrix Xy is full-rank.

We have MER} = Q(p/n).

Similar results can be derived for Neural Tangent
Kernels (-, w) = f(-,wg) + @, (-)(w — wo).

Future Work

One of the limitations of the current work, is that
our result requires some technical conditions for
the Q(p/n) to be guaranteed. Analyzing lower
rates under more general conditions, for example
non-parametric problems, is an interesting direc-
tion for future studies.
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