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Accuracy of ML models can degrade under distribution shifts.
[Koh et al., 2021]
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Can we estimate OOD performance?

Estimate OOD Performance
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Often, we don’t have access to labeled data from target.

• It is expensive to label new data.

Why unlabeled data?
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Challenge:

Estimate out-of-distribution performance
of a model only with unlabeled data.

Challenge
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• A linear trend between OOD and ID test error has been
observed recently.

[Recht et al., 2019, Hendrycks et al., 2021, Koh et al., 2021, Taori et al., 2020,

Miller et al., 2021]

Accuracy-on-the-line
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• Disagreement = E[1{f1(x) ̸= f2(x)}]

• Test disagreement ≈ test error

[Hacohen et al., 2020, Chen et al., 2021, Jiang et al., 2021, Nakkiran and Bansal, 2020,

Baek et al., 2022, Atanov et al., 2022, Pliushch et al., 2022]

Disagreement
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• In particular, [Baek et al., 2022] found that OOD vs. ID
agreement forms a line, and it closely matches that of the
accuracy.

Disagreement-on-the-line
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We ask the following questions:

• Is disagreement-on-the-line a universal phenomenon?

• Under what conditions is it guaranteed to happen?

• What happens if those conditions fail?

Introduction
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Theoretical Model



fNN(x) = a⊤σ (Wx)

• Input data: x ∈ Rd.

• Trainable parameters:
W ∈ RN×d, a ∈ RN.

• Nonlinearity: σ : R → R.

Two-Layer Neural Network
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• Data generation:

xi
i.i.d.∼ N(0,Σs), yi = f ⋆(xi) + εi, εi

i.i.d.∼ N(0, σ2
ε).

The input distribution shifts to x ∼ N(0,Σt) at test time.

• Ridge regression:

min
W, a

[
1
n

n∑
i=1

(
yi − a⊤σ (Wxi)

)2
+ γ∥a∥2

2

]

• Optimization:

• Optimizing a under fixed W is convex.
• Optimizing W under fixed a is non-convex.

Problem Setting
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Random Features Model: We assume that the weight matrix W
is randomly chosen and is not trained.

• If n, d,N → ∞ with d/n → ϕ and d/N → ψ (proportional
regime), the risk will converge to a deterministic function
of ϕ and ψ which can be computed.

Random Features Model
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It is able to capture various properties of neural networks:

• Double Descent. [Belkin et al., 2019, Mei and Montanari, 2022]

Why random features model?
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It is able to capture various properties of neural networks:

• Effect of overparameterization in adversarial training.
[Hassani and Javanmard, 2022]

Why random features model?
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It is able to capture various properties of neural networks:

• Feature Learning. [Ba et al., 2022]

Why random features model?
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It is able to capture various properties of neural networks:

• Feature Learning. [Ba et al., 2022]
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Analysis of Disagreement



• We train two models with different “randomness" and
then see how much they disagree on new data points.

• Where does the randomness in training come from?

• Training set can be different.
• Weight initialization can be different.
• Order of mini-batches in training can be different.

• What do these translate to in random features models?

What is disagreement?
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• Independent (i = I): (X1,Y1) ⊥⊥ (X2,Y2) and W1 ⊥⊥ W2.
• Shared-Sample (i = SS): (X1,Y1) = (X2,Y2) and W1 ⊥⊥ W2.
• Shared-Weight (i = SW): (X1,Y1) ⊥⊥ (X2,Y2) and W1 = W2.

Types of Disagreement
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Theorem

In the proportional regime (n, d,N → ∞ with d/n → ϕ and
d/N → ψ), we derive exact asymptotic formulae for disgreements.
For j ∈ {s, t}, we derive

Disj
I(n, d,N, γ) → δ

j
I(ϕ, ψ, γ)

Disj
SS(n, d,N, γ) → δ

j
SS(ϕ, ψ, γ)

Disj
SW(n, d,N, γ) → δ

j
SW(ϕ, ψ, γ)

The functions simplify a lot when we also take γ → 0 (ridgeless).

[Please refer to Theorem 3.1 and Corollary 3.2 of the paper for the actual expressions.]

Proof technique: justify that the activation function can be linearized (Gaussian

equivalence), then write disagreement as the expected trace of product of multiple

random matrices and use tools from random matrix theory to analyze its limit.

Main Result
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Figure: Asymptotics vs. simulations. We set γ = 0.01, σ2
ϵ = 0.25,

ϕ = 0.5, d = 512, n = 1024, and specific Σs and Σt.

Main Result
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Theorem (Exact linear relation)

In the overparameterized regime ϕ > ψ and for i ∈ {I, SS},

lim
γ→0

δt
i (ϕ, ψ, γ) = a lim

γ→0
δs

i (ϕ, ψ, γ) + bi,

where the slopes and the intercepts are independent of ψ.

The slopes and intercept depend on a specific measure of alignment
between the source and target distribution.

[Please refer to Theorem 4.1 of the paper for details.]

The slope a is same as the slope for OOD vs. ID risk derived in
[Tripuraneni et al., 2021] for the risk.

Linear Relation
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Figure: I and SS disagreement in the overparameterized and ridgeless
setting have a linear relationship.
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Figure: SW disagreement deviates from a line, even in the
overparameterized and ridgeless setting.
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Figure: Disagreement-on-the-line does not hold in the
underparametrized regime.
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Theorem (Approximate linear relation)

When γ ̸= 0, in the overparameterized regime, deviation from the
line, for I and SS disagreement, is bounded by

|δt
I(ϕ, ψ, γ)− aδs

I (ϕ, ψ, γ)− bI| ≤
C(γ +

√
ψγ + ψγ + γ

√
ψγ)

(1 − ψ/ϕ+
√
ψγ)2 ,

|δt
SS(ϕ, ψ, γ)− aδs

SS(ϕ, ψ, γ)− bSS| ≤
C(

√
ψγ + ψγ + γ

√
ψγ)

(1 − ψ/ϕ+
√
ψγ)2 ,

where C > 0 depends on ϕ, µ, σ2
ε , and σ.

Approximate Linear Relation
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Figure: Deviation from the line, Dist
SS(ϕ, ψ, γ)− aDiss

SS(ϕ, ψ, γ), as a
function of ψ for non-zero γ.

Approximate Linear Relation
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Table: Existence of disagreement-on-the-line in the
overparameterized regime for different regularization and types of
disagreement.

DisI and DisSS DisSW

γ → 0 ✓ (Theorem 4.1)
✗ (Section 4.2)

γ > 0 ▲ (Theorem 4.3)

Summary
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Experimental Results



• We proved everything for Gaussian input but read data is
never Gaussian. Do our results still hold in more general
settings?

Universality
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Figure: (a) CIFAR-10-C-Snow (severity 3) (b) Tiny ImageNet-C-Fog
(severity 3) (c) Camelyon17; For more results, see Section D.3.

• Disagreement-on-the-line generalizes to non-Gaussian
data (universality).

• Disagreement-on-the-line holds regardless of concept drift,
i.e., the change in P(y|x).

Experiments
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Conclusion



• Disagreement-on-the-line is a nuanced phenomenon that
can depend on the type of randomness shared, regularization,
and the level of overparametrization.

• Contrary to the prior observation, the line for
disagreement and the line for risk can differ in their
intercepts.

• Experiments on several real-world datasets show that our
theory is relevant beyond our theoretical setting.

Conclusion
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• We showed that the intercepts for disagreement and risk
can be different and characterized the difference. For
practical use, can this difference in intercept be corrected?

• Extension to classification – challenges: no closed-form
expression for â, 0-1 risk cannot be expressed as a trace

• Training the weight matrix W – [Ba et al., 2022]

• Formal justification of universality – [Montanari and Saeed, 2022,

Goldt et al., 2022, Loureiro et al., 2021, Pesce et al., 2023]

Open Questions
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