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Introduction

Deep Learning is very successful.
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® Itis a huge engineering success.
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Introduction

® Itis a huge engineering success.
® Why is it very successful?

® The problem is notoriously hard.
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@ Solvable Models

® Is there a rich enough, solvable model?
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@ Solvable Models

® Is there a rich enough, solvable model?

¢ There are too many moving parts: architecture,
optimization, data, etc.
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@ Architecture

We consider the simplest possible architecture.
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@ Architecture

We consider the simplest possible architecture.

A two-layer fully connected neural network.
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Two-Layer Neural Networks

Input
x € R?
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Two-Layer Neural Networks

Hidden Layer

W e RV
f=0(Wx)
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Two-Layer Neural Networks

Hidden Layer

W e RVxd

Input F=o(Wx)

~ 4/24
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Two-Layer Neural Networks

Hidden Layer

W e RNxd
f=0(Wx)

Asymptotic Regime: 11,d, N — oo withd/n — ¢ and d/N — .

4/24 Behrad Moniri Non-Linear Feature Learning



Training and Optimization

Hidden Layer
W e RV
= o(Wx)

® Simplest Model:

Random Features Model.
(Rahimi and Recht, 2007)
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@ Random Features Models

¢ Random features model is very popular:
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@ Random Features Models

¢ Random features model is very popular:

® Used to study various aspects of deep learning such as
double descent, robustness to adversarial attacks, privacy,
fairness, OOD performance, calibration, etc.
See e.g., Mei and Montanari (2022); Lin and Dobriban (2021); Lee et al. (2023); Hassani and Javanmard

(2022); Bombari and Mondelli (2023); Bombari et al. (2023); Clarté et al. (2023), etc.
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@ Random Features Models

¢ Random features model is very popular:

® Used to study various aspects of deep learning such as
double descent, robustness to adversarial attacks, privacy,
fairness, OOD performance, calibration, etc.

See e.g., Mei and Montanari (2022); Lin and Dobriban (2021); Lee et al. (2023); Hassani and Javanmard

(2022); Bombari and Mondelli (2023); Bombari et al. (2023); Clarté et al. (2023), etc.
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Double descent in random feature models (Mei and Montanari, 2022).
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@ Random Features Models

® Random features models can only learn linear functions.

Mei and Montanari (2022); Hu and Lu (2023)
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@ Random Features Models

® Random features models can only learn linear functions.

Mei and Montanari (2022); Hu and Lu (2023)
® Gaussian Equivalence:

o(Wx) = citWx + coHpy (Wx) + - - -

~ C1WX+ z
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@ Random Features Models

® Random features models can only learn linear functions.

Mei and Montanari (2022); Hu and Lu (2023)

® Gaussian Equivalence:
0(Wx) = ciWx + coHp(Wx) + - -

~ C1WX+ z

¢ This makes analysis easy but the model very limited.
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@ Random Features Models

Random features models can only learn linear functions.

Mei and Montanari (2022); Hu and Lu (2023)
® Gaussian Equivalence:

o(Wx) = citWx + coHpy (Wx) + - - -

~ C1WX+ z

This makes analysis easy but the model very limited.

What is missing?
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Patterns of Loc
Contrast

Output Layer

Hidden Layer 2

Hidden Layer 1
Input Layer
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@ Random Features Models

® Feature learning is absent in random feature models.

9/24 Behrad Moniri Non-Linear Feature Learning



@ Random Features Models

® Feature learning is absent in random feature models.

® How to go beyond random feature models?
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@ Random Features Models

® Feature learning is absent in random feature models.
® How to go beyond random feature models?

® Let’s do one step of gradient descent on first layer weights.
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One Gradient Step



One Gradient Step Update

Hidden Layer
W e RN
Input f=o(Wx)
xeR?

Output
acRY
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One Gradient Step Update

We train the network as follows: P
Input §=0(Wx)
xeR?

Output
acRY
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One Gradient Step Update

Hidden Layer
W e RN xd
= o(Wx)

We train the network as follows:

Input

xcR? Output
1. We first initialize acRY
y=a'f

a ~ N ON lIN and [WO]i‘ ~ N 0 1

) N ’ lj ) d
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One Gradient Step Update

Hidden Layer
W e ]RN xd
= o(Wx)

We train the network as follows:

. TR T Output
1. We first initialize acRY

a ~ N (01\], %IN) s and [WO]ij ~ N (0, %)

2. We take one gradient step on the empirical MSE loss

0
Wi =Wo— 55 (Ily — oW al3)

0,4
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One Gradient Step Update

Hidden Layer
W e ]RN xd
f=0(Wx)

We train the network as follows:

Input
xeR?

Output
acRY
y=a'f

1. We first initialize
a ~ N ON lIN and [Wo] ~ N 0 1
9 N ’ 1] ) d

2. We take one gradient step on the empirical MSE loss

0
Wi =Wo— 55 (Ily — oW al3)

0,4

3. Fit a via ridge regression:

. 1 n
a = argmin |y - Fa|3 + Ma|3, F=o(XW;)eR™N,

acRN
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@ Data Generation

¢ Data generation:

-
xRN L),y = fulx) +e
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@ Data Generation

¢ Data generation:

id.
Xi l,l\/ N(O, Id), ]/z' :f*(xi) + Ej.

® With one-step, only a single-index approximation can be
learned. Thus, we let

folxi) = ou(B) x)

(see e.g., Dandi et al. (2023), etc.)

11 /24 Behrad Moniri Non-Linear Feature Learning



Partial answers in the prior work:
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@ Prior Work

Partial answers in the prior work:

® Ba et al. (2022) show that if » = O(1), still no nonlinear
component of the teacher function can be learned.
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@ Prior Work

Partial answers in the prior work:

® Ba et al. (2022) show that if » = O(1), still no nonlinear
component of the teacher function can be learned.

® Performance is still worse than linear regression.
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@ Prior Work

e However, with n = O(y/n) nonlinear functions can be
learned.
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@ Prior Work

e However, with n = O(y/n) nonlinear functions can be
learned.

® How is this possible? What happens?
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Spectral Analysis



Spectrum of the Weights

o After the update, the weights are

0
Wi = Wo —n5 (Ily = o(XWT)al3)

— W + Z [(ayT —aa"o(WoX)) o a'(woxT)] X,

0,4
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Spectrum of the Weights

o After the update, the weights are

0
Wi = Wo —n5 (Ily = o(XWT)al3)

— W + Z [(ayT —aa"o(WoX)) o a'(woxT)] X,

0,4

¢ Orthogonal decomposition:

o' (WoX") =1 + 0/, (WoX"), with Eo| (WoX")=0
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Spectrum of the Weights

o After the update, the weights are

0
Wi = Wo —n5 (Ily = o(XWT)al3)

=Wp + Z [(ayT —aa'c(WoX)) o a'(WOXT)] X,

0,4

¢ Orthogonal decomposition:

o' (WoX") =1 + 0/, (WoX"), with Eo| (WoX")=0

® Rank-1 Approximation:

XTy\ "
Wi =Wy +ncia (ny> + small.
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Spectrum of the Weights

T T
X y) + small.

W, =Wy +77C1u<

C1naﬁT

Wy T

Density

Singular Values

Xy
The vector B := == is aligned to 3.

Non-Linear Feature Learning
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Spectrum of the Feature Matrix

Updated Weight Matrix: W = W + ¢y aB’

Feature Matrix: F = ¢(XW') = oc(XW| + c1nXBa’) € RN

Untrained Features

Singular Values
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Spectrum of the Feature Matrix

Updated Weight Matrix: W = W + ¢y aB’

Feature Matrix: F = ¢(XW') = oc(XW| + c1nXBa’) € RN

n=0 n=n% 0<a< 1
Linear
Untrained Features Untrained Features T
Singular Values Singular Values
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Spectrum of the Feature Matrix

Updated Weight Matrix: W = W + ¢y aB’

Feature Matrix: F = ¢(XW') = oc(XW| + c1nXBa’) € RN

n=0 nx=n?, 0<a<%

—pa, L 1
n=n% g<a<g
Untrained Features Untrained Features “’{’" nteained Featuns) Quadratic LiTnea:
Singular Values Singular Values Singular Values
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Spectrum of Updated Feature Matrix

Theorem

Let = n® with 5} < a < M‘ﬁforsomeﬂ € N. We have

Y4
F=F;+A, withFo:=Fo+ Y _ cieen (X8)™(a™) T,
k=1

where || A|op = o(v/1) with probability 1 — o(1).
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Spectrum of Updated Feature Matrix

Theorem
Let = n® with 5} < a < ﬁfor some ¢ € N. We have

14

F=F;+A, withFo:=Fo+ Y _ cieen (X8)™(a™) T,
k=1

where || A|op = o(v/1) with probability 1 — o(1).

1

-1
— (o3 :
n=n wlth—zl <a<—2l+2 3
£ degree 27 degree 1% degree

Untrained Feature
o R

Density

Singular Value

Non-Linear Feature Learning
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Analysis of the Training/Test Error



e What error does the trained neural network achieve?
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e What error does the trained neural network achieve?

¢ To do this, we show that the limiting behavior of test/train
error is unchanged if
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e What error does the trained neural network achieve?

¢ To do this, we show that the limiting behavior of test/train
error is unchanged if

1 wereplace F = o(XW] ) with

L

F=Fo+ ) danf(X8)*@™)".
k=1
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e What error does the trained neural network achieve?

¢ To do this, we show that the limiting behavior of test/train
error is unchanged if

1 wereplace F = o(XW] ) with

L

F=Fo+ ) danf(X8)*@™)".
k=1

2 we replace Fy with Fg = c;XW, +c>1Z.
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Analysis of the Training/Test Errors

With these universality results, we can analyze the limiting
behaviour of the train/test errors.
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Analysis of the Training/Test Errors

With these universality results, we can analyze the limiting
behaviour of the train/test errors.

Theorem

Let ¢ € N and n < n® with % <a< ﬁ, then for the learned
feature map F and the untrained feature map Fy, we have

ﬁtr(FO) = Etr<F) —p Atr >0

Lie(Fo) — Lte(F) —p Ate >0

The expression for Ay can be found in the paper.
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Analysis of the Training/Test Errors

Ly (F)
A
Ltr(Fl)
Ltr(F2)
[:tr(F3)
log(n)
=1 =2 log(n)
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Simulations



@ Simulation Results

We consider
Setting1:y = H(8]x) +¢, &~ N(0,1),

Setting 2 : y = H{(8/ x) + éHz(,BIx).
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Simulation Results

We consider
Setting1:y = H(8]x) +¢, &~ N(0,1),

Setting 2 : y = H{(8/ x) + éHz(,BIx).
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Conclusion



® One-step gradient descent with step size n < n® can lead to
feature learning.
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® One-step gradient descent with step size n < n® can lead to
feature learning.

® Learned features depend on the range of a.
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® One-step gradient descent with step size n < n® can lead to
feature learning.

® Learned features depend on the range of a.

¢ Unlike random features model, after one gradient update,
the model can learn higher order polynomial components
of the teacher function.
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