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• It is a huge engineering success.

• Why is it very successful?

• The problem is notoriously hard.
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• Is there a rich enough, solvable model?

• There are too many moving parts: architecture,
optimization, data, etc.
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We consider the simplest possible architecture.

A two-layer fully connected neural network.
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Asymptotic Regime: n, d,N → ∞ with d/n → ϕ and d/N → ψ
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• Simplest Model:

Random Features Model.
(Rahimi and Recht, 2007)

Training and Optimization
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• Random features model is very popular:

• Used to study various aspects of deep learning such as
double descent, robustness to adversarial attacks, privacy,
fairness, OOD performance, calibration, etc.

See e.g., Mei and Montanari (2022); Lin and Dobriban (2021); Lee et al. (2023); Hassani and Javanmard

(2022); Bombari and Mondelli (2023); Bombari et al. (2023); Clarté et al. (2023), etc.

Double descent in random feature models (Mei and Montanari, 2022).
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• Random features models can only learn linear functions.
Mei and Montanari (2022); Hu and Lu (2023)

• Gaussian Equivalence:

σ(Wx) = c1Wx + c2H2(Wx) + · · ·

≈ c1Wx + z

• This makes analysis easy but the model very limited.

• What is missing?
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Feature Learning
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• Feature learning is absent in random feature models.

• How to go beyond random feature models?

• Let’s do one step of gradient descent on first layer weights.
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One Gradient Step



We train the network as follows:

1. We first initialize

a ∼ N
(

0N,
1
N

IN

)
, and [W0]ij ∼ N

(
0,

1
d

)
2. We take one gradient step on the empirical MSE loss L:

W1 = W0 − η
∂

∂W

(
∥y − σ(XW⊤)a∥2

2

) ∣∣∣
W0,a

3. Fit a via ridge regression:

â = argmin
a∈RN

1
n
∥y − Fa∥2

2 + λ∥a∥2
2, F = σ(XW⊤

1 ) ∈ Rn×N.

One Gradient Step Update
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• Data generation:

xi
i.i.d.∼ N(0, Id), yi = f⋆(xi) + εi.

• With one-step, only a single-index approximation can be
learned. Thus, we let

f⋆(xi) = σ⋆(β
⊤
⋆ xi)

(see e.g., Dandi et al. (2023), etc.)

Data Generation
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Partial answers in the prior work:

• Ba et al. (2022) show that if η = O(1), still no nonlinear
component of the teacher function can be learned.

• Performance is still worse than linear regression.

Prior Work
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Partial answers in the prior work:

• However, with η = O(
√

n) nonlinear functions can be
learned.

• How is this possible? What happens?

Prior Work
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Spectral Analysis



• After the update, the weights are

W1 = W0 − η
∂

∂W

(
∥y − σ(XW⊤)a∥2

2

) ∣∣∣
W0,a

= W0 +
η

n

[
(ay⊤ − aa⊤σ(W0X⊤)) ◦ σ′(W0X⊤)

]
X,

• Orthogonal decomposition:

σ′(W0X⊤) = c1 + σ′
⊥(W0X⊤), with Eσ′

⊥(W0X⊤) = 0

• Rank-1 Approximation:

W1 = W0 + ηc1a
(

X⊤y
n

)⊤

+ small.

Spectrum of the Weights

14/24 Behrad Moniri Non-Linear Feature Learning



• After the update, the weights are

W1 = W0 − η
∂

∂W

(
∥y − σ(XW⊤)a∥2

2

) ∣∣∣
W0,a

= W0 +
η

n

[
(ay⊤ − aa⊤σ(W0X⊤)) ◦ σ′(W0X⊤)

]
X,

• Orthogonal decomposition:

σ′(W0X⊤) = c1 + σ′
⊥(W0X⊤), with Eσ′

⊥(W0X⊤) = 0

• Rank-1 Approximation:

W1 = W0 + ηc1a
(

X⊤y
n

)⊤

+ small.

Spectrum of the Weights

14/24 Behrad Moniri Non-Linear Feature Learning



• After the update, the weights are

W1 = W0 − η
∂

∂W

(
∥y − σ(XW⊤)a∥2

2

) ∣∣∣
W0,a

= W0 +
η

n

[
(ay⊤ − aa⊤σ(W0X⊤)) ◦ σ′(W0X⊤)

]
X,

• Orthogonal decomposition:

σ′(W0X⊤) = c1 + σ′
⊥(W0X⊤), with Eσ′

⊥(W0X⊤) = 0

• Rank-1 Approximation:

W1 = W0 + ηc1a
(

X⊤y
n

)⊤

+ small.

Spectrum of the Weights

14/24 Behrad Moniri Non-Linear Feature Learning



W1 = W0 + ηc1a
(

X⊤y
n

)⊤

+ small.

The vector β :=
X⊤y

n is aligned to β⋆.

Spectrum of the Weights
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Updated Weight Matrix: W = W0 + ηc1aβ⊤

Feature Matrix: F = σ(XW⊤) = σ(XW⊤
0 + c1ηXβa⊤) ∈ Rn×N

Spectrum of the Feature Matrix
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Theorem
Let η ≍ nα with ℓ−1

2ℓ < α < ℓ
2ℓ+2 for some ℓ ∈ N. We have

F = Fℓ +∆, with Fℓ := F0 +

ℓ∑
k=1

ck
1ckη

k(Xβ)◦k(a◦k)⊤,

where ∥∆∥op = o(
√

n) with probability 1 − o(1).

Spectrum of Updated Feature Matrix
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Analysis of the Training/Test Error



• What error does the trained neural network achieve?

• To do this, we show that the limiting behavior of test/train
error is unchanged if

1 we replace F = σ(XW⊤
1 ) with

F = F0 +
ℓ∑

k=1

ck
1ckη

k(Xβ)◦k(a◦k)⊤.

2 we replace F0 with F0 = c1XW⊤
0 + c>1Z.

Universality
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With these universality results, we can analyze the limiting
behaviour of the train/test errors.

Theorem
Let ℓ ∈ N and η ≍ nα with ℓ−1

2ℓ < α < ℓ
2ℓ+2 , then for the learned

feature map F and the untrained feature map F0, we have

Ltr(F0)− Ltr(F) →P ∆tr > 0

Lte(F0)− Lte(F) →P ∆te > 0

The expression for ∆te/tr can be found in the paper.

Analysis of the Training/Test Errors
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Analysis of the Training/Test Errors
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Simulations



We consider

Setting 1 : y = H1(β
⊤
⋆ x) + ε, ε ∼ N(0, 1),

Setting 2 : y = H1(β
⊤
⋆ x) +

1√
2

H2(β
⊤
⋆ x).

Simulation Results
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Conclusion



• One-step gradient descent with step size η ≍ nα can lead to
feature learning.

• Learned features depend on the range of α.

• Unlike random features model, after one gradient update,
the model can learn higher order polynomial components
of the teacher function.

Conclusion
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