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Model Definition
* Mixing Model:
x(t) = f(s(t))

f is invertible and sufficiently smooth but we do not
constrain it in any particular way.



Definition 1: Uniform Dependence

* A two-dimensional random vector (x,y) is called uniformly
dependent if the cross-derivative of its log-pdf exists, is
continuous, and does not vanish anywhere:

0% log ps (x,y)
Oxdy

It is stronger than dependence:

([;-l;_y(;'l?. lj) L= # 0 f()T' all (.‘l’. lj)

Dependence in general only implies that g is non-zero in
some set of non-zero measure, while we assume here that it
is non-zero everywhere.



Definition 1: Uniform Dependence

A stationary stochastic process s(t) is called (second
order) uniformly dependent if the distribution of
(s(t),s(t — 1)) is uniformly dependent.



Definition 2: Quasi-Newton Random
Variables

* A two-dimensional random vector (x, y) is called
quasi-Gaussian if g, ,, exists, is continuous, and it
can be factorized as:

q:c,y(xay) — C()é($)()é(y)
logp(z,y) = fi(x) + P2(y) + cal(z)a(y)

* A stationary stochastic process s(t) is called
(second-order) quasi-Gaussian if the distribution of

(s(t),s(t — 1)) is quasi-Gaussian.



Lemma 1 If a stochastic process s(t) is quasi-
Gaussian, then its instantaneous nonlinear transfor-
mation 5(t) = g(s(t)) is also quasi-Gaussian for any
invertible bijective mapping g : R — R.

Proof: For (z,y) = (g9(x), g(y)), we have

logp(2,§) = B1(g™" (2))+log [(g7") (@)|+B2(97" (%))
+1log [(g7") ()] + calg™())alg™" () (6)

which is of the same form as Eq. (5), when we regroup
the terms and redefine the nonlinearities.




Marginal of Quasi-Gaussian RVs

* An important point is that such factorizability holds
for distributions of the type

logp(z,y) = p1(x) + B2(y) — pzy

* The dependency structure is similar to the Gaussian
one, but the marginal distributions can be
arbitrarily non-Gaussian.



Separability of Nonlinear Mixtures

* We propose a practical, intuitive learning algorithm
for estimating the nonlinear ICA model based on

logistic regression with suitably defined input data
and labels.

* Although initially only heuristically motivated, we
show that in fact the algorithm separates sources
which are not quasi Gaussian



Learning Algorithm

* Collect data points in two subsequent time points
to construct a sample of a new random vector y:

y(t) = (Xé(f)l))

* For comparison, create a permuted data sample by
randomly permuting (shuffling) the time indices:

v (0= (7))



Learning Algorithm

* We propose to learn to discriminate between the
sample of y(t) and the sample of y*(t). We use
logistic regression with a regression function of the
form:

r(y) = Z B;(hi(y"), hi(y?))

Pr(label =1|Y =)
r(y) = log (Pr(lab =0|Y = y)) = log (Py(y)) — log (Py*(y))

Where y4 and y, denote the first and second halves of the vector y,

ie.y= (¥y1,¥2)



Learning Algorithm

Real data
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Theorem 1 Assume that

1. The sources s;(t),i = 1,...,n are mutually inde-
pendent, stationary ergodic stochastic processes.

2. The sources are unifermly dependent (Def. 1).
3. None of the sources is quasi-Gaussian (Def. 2).

4. We observe a nonlinear mizing x(t) according to
Eq. (2), where the mizing nonlinearity f is bijec-
tive from R™ onto R™, twice differentiable, and its
inverse is twice differentiable (i.e. f is a second-
order diffeomorphism).

5. We learn a logistic regression to discriminate be-
tween y in Eq. (10) and y* in Eq. (11) with the
regression function in Eq. (12), using function ap-
proximators for h; and B; both of which are able
to approximate any nonlinearities (e.g. a neural
network). The functions h; and B; have continu-
ous second derivates.

Then, the hidden representation h;(x(t)) will asymp-
totically (i.e. when the length of the observed stochastic
process goes infinite) give the original sources s;(t), up
to element-wise transformations, and in arbitrary or-
der with respect to i.

Separability
Theorem
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Proof of Theorem 1

* We Denote the (true) inverse function of f which
transforms x into s, by g s(t) = g(x(t))

log p(x(t),x(t—1)) = Zlogpf(gi(X(t)),gi(X(t—l)))
+ log |Jg(x(t))| + log [Jg(x(t — 1))| (22)

where p? is the pdf of (s;(t), s;(t—1)), and Jg denotes
the Jacobian of g;
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On the other hand, according to well-known theory,
when training logistic regression we will asymptoti-
cally have

r(y) = logpy(y) — log py- (y) (23)

This holds in our case in the limit of an infinitely long
stochastic process due to the assumption of a station-
ary ergodic process (Assumption 1).
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log p(x(t),x(t—1)) = Z log p; (9:(x(t)), i (x(t—1)))

+ log [Jg(x(?))| + log [Jg(x(t — 1)) (22)

Now, based on (22), the probability in the real data
class is of the form

logpy(}’) = Z Qz’(gi(yl)a gz'(YQ))

+ log |Jg(y")| + log |Jg(y?)| (24)

Qi(a,b) = logpi(a,b)
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log p(x(t),x(t-1)) = 3 log pf(ga(x(t)), 9 (x(t-1))

+log |Jg(x(t))[ + log [Ig(x(t — 1)) (22)

where we denote Q;(a,b) = logp:(a,b), while in the
permuted (time-shuffled) data class the time points
are i.i.d., which means that the log-pdf is of the form

logpy ZQz gz + Qz(gz( ))

+log|Jg(y")| + log |Jg(y?)| (25)

for some functions Q; which are simply the marginal
log-pdf’s.
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r(y) = log py(y) — log py-(y)

= ZQi(Qz’(yl) gi(y

+log |Jg(y")| + log |Jg(y”

) + Qi(gi(y”

y')| + log [Jg(y?

= Z Qi(gi(y"), 9i(y?

- Qz‘(gz‘(yl
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> Bilhi(y'), hi(y?)) = ZQi(Qi(yl),Qi(YQ))
—Qi(gi(y") — Qi(gi(y*)) (26)

We easily notice that one solution to this is given by
hi(x) = gi(x), Bi(z,y) = Qi(z,y) — Qi(z) — Qi(y). In
fact, due to the assumption of the universal approxi-
mation capability of B and h, such a solution can be
reached by the learning process. Next we prove that
this is the only solution, up to permutation of the Ah;
and element-wise transformations.
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Make the change of variables
z' =g(y'), z° =gy (27)
and denote the compound function
k=hof=hog™! (28)

ZBi(ki(zl)aki(ZQ))
=D Qil=,20) - Qile) - Qu(=) (29)

Take cross-derivatives of both sides of (29) with respect

1 2 . .
to z; and z;. This gives

Z %) Bz(kz(z ),ki(z )) _ Z 9, QZ(Z'L’Z'L) (30)

192 192
(9zj 0z}, 8zj 0z},
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n GQBi(ki(zl)aki(ZQ)) _ aQQ’L( Z5 s z)‘

— 0202} — 020z}, (30)
Denoting cross-derivatives as
828i (a’a b) 82Qi(aa b)
bi ((l, b) " oadb Qi(aa b) T 0adb (31)

this gives further
Ok; Ok;
Zb ) 1) 5 @)

- ZQZ 5’&3\‘5%}{:

which must hold for all 7, k.

Jk(z')" diag;[bi(ki(z"), ki(2"))]Tk(2")

= diag;[q:(2;,27)] (32)
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Jk(z')" diag;[bi(ki(z"), ki(2*))|Tk(z)
= diag;[qi(2;, 2])] (32)

Now, the ¢; are non-zero for all z',z? by assumption
of uniform dependence. Since the RHS of (32) is in-
vertible at any point, also Jk must be invertible at any
point. We can thus obtain

Jk(z") """ diag;[qi (2}, 27)|Tk(z*) "
= diag; [bi(ki(z'), ki(2))] (33)
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Lemma 2 Assume the continuous functions q;(a,b)
are non-zero everywhere, and not factorizable as in
Eq. (4) in the definition of quasi-Gaussianity.” As-
sume M 1S anuy continuous matriz-valued function

R™ — R"*™, such that the matriz M(u) is non-
singular for any u. Assume we have

M(u')" diag;[qi(u;, u;)] M(u*) = D(u',u?) (34)

for any u',u? in R™, and for some unknown matriz-
valued function D which takes only diagonal values.
Then, the function M(u) is such that every row and
column has exactly one non-zero entry, and the loca-
tions and signs of the non-zero entries are the same
for all u.

[(Ik(z") ']  diag;[qi (27, 27)|Ik(2%) ™
= diag;[bi(ki(z'), ki(z*))] (33)
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* Apply the lemma with M(z) = Jk(z)™!

The assumptions of the Lemma are included in the assumptions of the
Theorem and the non-singularity was proven in the previous slide.

Thus the Lemma shows that Jk(z)~" must be a
rescaled permutation matrix for all z, with the same
locations of the non-zero elements; the same applies
to Jk(z)

k=hof=hog'

Thus, g and h must be equal up to a permutation and element-wise
functions.

The fact that the signs of the elements in M stay the same implies
the transformations are strictly monotonic, which proves the Theorem.



Proof of Lemma 2

Lemma 2 Assume the continuous functions q;(a,b)
are non-zero everywhere, and not factorizable as in
Eq. (4) in the definition of quasi-Gaussianity.” As-
sume M is any continuous matriz-valued function

R™ — R"™*"  such that the matrix M(u) is non-
singular for any u. Assume we have

M(u')" diag;[qi(u;, u;)] M(u*) = D(u',u?) (34)

for any u',u? in R™, and for some unknown matriz-
valued function D which takes only diagonal values.
Then, the function M(u) is such that every row and
column has exactly one non-zero entry, and the loca-

tions and signs of the non-zero entries are the same
for all u.
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Proof of Lemma 2

M(u')” diag;[q:(u}, )] M(u®) = D(u',u?) (34)

771

Consider (34) for two different points i and 6% in R™.
Denote for simplicity
M, =M(@”), Dy, =diag;[q:i(a;,u;)]  (35)

7

p,q € {1,2}
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M(u')" diag;[gi(u;.u;)] M(u®) = D(u’,u®) (34)

M?D;sM,; =D (36)
MIDyM; = D’ (37)
Mi{D;;M,; = D" (38)

for some diagonal matrices D, D’, D”.

By the assumption that ¢; is non-zero, D5 is invert-
ible, which also implies D is invertible.

M, =D, M;'D

and plugging this into the second equation (37) we
have

M;'Dy,DM; " =D 'D'D! (40)
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M; ' [D;;D;; D2 ]M; = D"

* The rest of the proof of this lemma is based on the
unigueness of the eigenvalue decomposition which
requires that the eigenvalues are distinct.

So, next we show that the assump-
tion of non-factorizability of ¢; implies that for any
given i we can find a @? such that the diagonal en-
tries in DD 75 Dys are distinct. The diagonal entries
are given by the function 7 defined as

(@}, u;)q; (a3, u?)
gf (ug,u7)

Claim: This function is not constant with respect to any of
its arguments

(42)

(i, T;) =
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Thus, it is possible to choose @i

(corresponding to n choices of b for given n values of
a) so that the diagonal entries in D11D1—22D22 are all

distinct, for any given u'.

M, = M(u”) M; ![D1; D/ Dy]M; = D"

The eigenvectors on both sides
must be equal, and thus, M(@!) must be equal to a
permutation matrix, up to multiplication of each row

by a scalar which depends on @'.
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Since ' could be freely chosen, M(u) is equal to such
a rescaled permutation matrix everywhere. By conti-
nuity the non-zero entries in M(u) must be in the same
locations everywhere; if they switched locations, M(u)
would have to be singular at one point at least, which
is excluded by assumption. With the same logic, we
see the signs of the entries cannot change. Thus the
Lemma is proven. m
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» AR Model with Laplacian innovations, n = 2

log p(s(t)[s(t — 1)) = —|s(t) — ps(t —1)|
» Nonlinearity is MLP. Mixing: leaky ReLU’s; Demixing: maxout

Sources (f)_ Estimates by kTDSEP (Harmeling et al 2003)
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AR Model with Laplacian innovations, n = 20

Mean correlation
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