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Model Definition

• Mixing Model:

𝒙 𝑡 = 𝒇(𝒔 𝑡 )

𝑓 is invertible and sufficiently smooth but we do not 
constrain it in any particular way.
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Definition 1: Uniform Dependence

• A two-dimensional random vector (𝑥, 𝑦) is called uniformly
dependent if the cross-derivative of its log-pdf exists, is
continuous, and does not vanish anywhere:

It is stronger than dependence:

Dependence in general only implies that 𝑞 is non-zero in 
some set of non-zero measure, while we assume here that it 
is non-zero everywhere. 
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Definition 1: Uniform Dependence

A stationary stochastic process 𝑠(𝑡) is called (second 
order) uniformly dependent if the distribution of 
(𝑠(𝑡), 𝑠(𝑡 − 1)) is uniformly dependent.
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Definition 2: Quasi-Newton Random 
Variables

• A two-dimensional random vector (𝑥, 𝑦) is called 
quasi-Gaussian if 𝑞𝑥,𝑦 exists, is continuous, and it 
can be factorized as:

• A stationary stochastic process 𝑠(𝑡) is called 
(second-order) quasi-Gaussian if the distribution of

(𝑠(𝑡), 𝑠(𝑡 − 1)) is quasi-Gaussian.
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Marginal of Quasi-Gaussian RVs

• An important point is that such factorizability holds 
for distributions of  the type 

• The dependency structure is similar to the Gaussian 
one, but the marginal distributions can be 
arbitrarily non-Gaussian.
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Separability of Nonlinear Mixtures

• We propose a practical, intuitive learning algorithm
for estimating the nonlinear ICA model based on
logistic regression with suitably defined input data
and labels.

• Although initially only heuristically motivated, we
show that in fact the algorithm separates sources
which are not quasi Gaussian
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Learning Algorithm

• Collect data points in two subsequent time points 
to construct a sample of a new random vector y:

• For comparison, create a permuted data sample by 
randomly permuting (shuffling) the time indices: 
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Learning Algorithm

• We propose to learn to discriminate between the 
sample of 𝒚(𝑡) and the sample of  𝐲∗(𝑡). We use 
logistic regression with a regression function of the 
form:

𝑟 𝒚 = log
Pr label = 1 𝒀 = 𝒚)

Pr label = 0 𝒀 = 𝒚)
= log 𝑃𝑦 𝒚 − log 𝑃𝑦∗ 𝒚

Where 𝒚𝟏 and 𝒚𝟐 denote the first and second halves of the vector 𝒚,

i.e. 𝒚 = (𝒚𝟏 , 𝒚𝟐 )
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Learning Algorithm

• Here, the ℎ𝑖 are scalar-valued
functions giving a
representation of the data,
possibly as hidden units in a
neural network.

• 𝐵𝑖 ∶ ℝ
2 → ℝ are additional

nonlinear functions to be
learned.
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Separability
Theorem
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Proof of Theorem 1

• We Denote the (true) inverse function of f which 
transforms x into s, by g 𝒔(𝑡) = 𝒈(𝒙(𝑡))
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• Apply the lemma with 
The assumptions of the Lemma are included in the assumptions of the 
Theorem and the non-singularity was proven in the previous slide.

Thus the Lemma shows that must be a 
rescaled permutation matrix for all z, with the same 
locations of the non-zero elements; the same applies 
to 

Thus, g and h must be equal up to a permutation and element-wise
functions.

The fact that the signs of the elements in M stay the same implies
the transformations are strictly monotonic, which proves the Theorem.
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Proof of Lemma 2
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Proof of Lemma 2
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• The rest of the proof of this lemma is based on the 
uniqueness of the eigenvalue decomposition which 
requires that the eigenvalues are distinct.
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Claim: This function is not constant with respect to any of 
its arguments
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