EE Department, Sharif University of Technology

Blind Separation of Nonlinear Mixtures of Stochastic Processes

Behrad Moniri

bemoniri@ee.sharif.edu

Advisor:
Prof. Massoud Babaie-Zadeh

Outline

(1) Introduction to Blind Source Separation
(2) Review of the Previous Talk
(3) Nonlinear BSS of Gaussian Processes
3.1 Theory
3.2 Algorithm
4. Simulations
(5) Future Works
(6) Bibliography

Blind Source Separation (BSS) Introduction

Unknown

Linear and Non-Linear BSS

Darmois-Skitovic Theorem [Darmois-Skitovich 1950]

In the linear setting, the model is identifiable if the sources are non-Gaussian random variables.

Linear and Non-Linear BSS

Darmois-Skitovic Theorem [Darmois-Skitovich 1950]

In the linear setting, the model is identifiable if the sources are non-Gaussian random variables.

Non-Linear Mixtures

Non-linear mixtures are harder!

$$
\left\{\begin{array}{l}
S_{1}=\operatorname{Rayleigh}(\sigma) \\
S_{2}=\operatorname{Uniform}[0,2 \pi]
\end{array} \quad \Longrightarrow X_{1}=S_{1} \cos \left(S_{2}\right) \Perp X_{2}=S_{1} \sin \left(S_{2}\right)\right.
$$

New Separability Results

Permutation Contrastive Separation [Hyvarinen et al., 2017]

The mixture $\mathbf{x}(t)=\mathbf{f}(\mathbf{s}(t))$ is separable if:

- \mathbf{f} is invertible and smooth!
- $s_{i}(t)$: stationary, ergodic and uniformly dependent.
- $s_{i}(t)$ are not quasi-Gaussian.

Time Contrastive Learning [Hyvarinen et al., 2016]

The mixture $\mathbf{x}(t)=\mathbf{f}(\mathbf{s}(t))$ is separable if:

- $\log p_{\tau}\left(s_{i}\right)=\lambda_{i}(\tau) q\left(s_{i}\right)-\log Z\left(\lambda_{i}(\tau)\right)$
- $[\mathbf{L}]_{\tau, i}=\lambda_{i, 1}(\tau)-\lambda_{i, 1}(1)$ has full column rank.

Gaussianity Preserving Functions

A fundamental question:

How can we separate Gaussian sources?

Gaussianity Preserving Functions

A fundamental question:

How can we separate Gaussian sources?

- Can nonlinear functions preserve Normality of random variables?

Gaussianity Preserving Functions

A fundamental question:

How can we separate Gaussian sources?

- Can nonlinear functions preserve Normality of random variables? YES!

Example

Define the function h as follows

$$
h(x)= \begin{cases}-x & a \leq|x|<b \\ x & \text { otherwise }\end{cases}
$$

If X is a Normal Random variable, then $h(X)$ is also a Normal random variable.

There are also many other examples!

Gaussianity Preserving Functions

A fundamental question:

How can we separate Gaussian sources?

- Can nonlinear functions preserve Normality of random variables? YES!

Example

Define the function h as follows

$$
h(x)= \begin{cases}-x & a \leq|x|<b \\ x & \text { otherwise }\end{cases}
$$

If X is a Normal Random variable, then $h(X)$ is also a Normal random variable.

There are also many other examples!

- How about specific classes of functions?

High Dimensional Polynomial Mappings

- We have proved that a high dimensional polynomial function preserves normality, if and only if it is linear.

Polynomial Mixing Theorem

Let $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)^{\top} \sim \mathcal{N}\left(\mu, \Sigma_{s}\right)$ be a vector of jointly normal random variables and $\mathbf{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an invertible polynomial mapping.

$$
\begin{equation*}
\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{\top} \triangleq \mathbf{p}(\mathbf{s}) \tag{1}
\end{equation*}
$$

The random variables y_{1}, \ldots, y_{n} are jointly normally distributed if and only if the polynomial \mathbf{p} satisfies

$$
\begin{equation*}
\mathbf{y}=\mathbf{p}(\mathbf{s})=\mathbf{A} \mathbf{s}+\mathbf{b} \tag{2}
\end{equation*}
$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$.

Applications in Blind Source Separation

Based on the previous theorem, we can prove the following corollary:

Corollary

Let $\mathbf{x}(t)=\mathbf{f}(\mathbf{s}(t))$, where

- $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an unknown invertible polynomial.
- For all $i \in[n], s_{i}(t)$ are mean zero Gaussian processes.

If there exists polynomial $\mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\mathbf{y}(t)=\mathbf{g}(\mathbf{x}(t))$ are Gaussian Processes, then $\mathbf{h}=\mathbf{g} \circ \mathbf{f}$ is linear.

Separation Algorithm

A parametric model for polynomials:

$$
\mathbf{g}(\mathbf{x})=\left[\begin{array}{c}
g_{1}(\mathbf{x}) \\
g_{2}(\mathbf{x}) \\
\vdots \\
g_{n}(\mathbf{x})
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\theta}_{\mathbf{1}} \top \\
\boldsymbol{\theta}_{\mathbf{2}} \top \\
\vdots \\
\boldsymbol{\theta}_{\boldsymbol{n}} \top
\end{array}\right] \mathbf{k}(\mathbf{x})=\boldsymbol{\Theta} \mathbf{k}(\mathbf{x})
$$

Calculate Neg-Entropy as a measure of Gaussanity:

$$
\mathcal{J}\left(y_{i}\right)=\boldsymbol{H}\left(\tilde{y}_{i}\right)-\boldsymbol{H}\left(y_{i}\right)
$$

Thus the algorithm should solve the following problem:

$$
\min _{\Theta}\|\mathcal{J}(\boldsymbol{\Theta} \mathbf{k}(\mathbf{x}))\|_{2}^{2}
$$

Simulations

Let $s_{1}, s_{2} \sim \mathcal{N}(0,1)$ and $s_{1} \Perp s_{2}$.

$$
\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right] \rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
s_{1}+\left(s_{1}+s_{2}\right)^{3} \\
s_{2}-\left(s_{1}+s_{2}\right)^{3}
\end{array}\right]
$$

This function can be exactly inverted as

$$
\left[\begin{array}{l}
\hat{s}_{1} \\
\hat{s}_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}-\left(x_{1}+x_{2}\right)^{3} \\
x_{2}+\left(x_{1}+x_{2}\right)^{3}
\end{array}\right] \leftarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Algebraic Functions and Rotations

Example

If $\left(X_{1}, X_{2}\right)^{\top} \sim \mathcal{N}\left(\mathbf{0}, \Sigma_{X}\right)$, then $Y_{1}=\frac{X_{1}^{2}-X_{2}^{2}}{\sqrt{X_{1}^{2}+X_{2}^{2}}}$ and $Y_{2}=\frac{2 X_{1} X_{2}}{\sqrt{X_{1}^{2}+X_{2}^{2}}}$ is also a Gaussian random vector.

Algebraic Functions and Rotations

Example
If $\left(X_{1}, X_{2}\right)^{\top} \sim \mathcal{N}\left(\mathbf{0}, \Sigma_{X}\right)$, then $Y_{1}=\frac{X_{1}^{2}-X_{2}^{2}}{\sqrt{X_{1}^{2}+X_{2}^{2}}}$ and $Y_{2}=\frac{2 X_{1} X_{2}}{\sqrt{X_{1}^{2}+X_{2}^{2}}}$ is also a Gaussian random vector.

General Rotation Conjecture [Eidlin, Linnik, Kagan]

Let $\sigma>0$ and Consider a random vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top}$ with every $x_{j} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and an algebraic transformation \mathcal{A}. If $\mathbf{y}=\mathcal{A}(\mathbf{x})$ is normally distributed, then $\|\mathbf{y}\|_{2}=\|\mathbf{x}\|_{2}$.

Ongoing Works

- Gradual non-convexity methods for optimization.

Ongoing Works

- Gradual non-convexity methods for optimization.
- Other measures of non-Gaussanity, e.g. 4th cumulants.

Ongoing Works

- Gradual non-convexity methods for optimization.
- Other measures of non-Gaussanity, e.g. 4th cumulants.
- Can the Theorem 1 be extended to "polynomials" with positive and negative powers?
I believe the answer is positive and I think that the proof is not very difficult. But I am still working on this.

Ongoing Works

- Gradual non-convexity methods for optimization.
- Other measures of non-Gaussanity, e.g. 4th cumulants.
- Can the Theorem 1 be extended to "polynomials" with positive and negative powers?
I believe the answer is positive and I think that the proof is not very difficult. But I am still working on this.
- Finding two "good" sets of functions \mathcal{F} and \mathcal{G} such that $\forall f \in \mathcal{F} \forall g \in \mathcal{G}$, the function $f \circ g$ is a polynomial. This will result in a new corollary and a new separation algorithm.

Selected Papers I

[1] M. Babaie-Zadeh and Ch. Jutten.
A general approach for mutual information minimization and its application to blind source separation.
Signal Processing, 85(5):975-995, 2005.
[2] Bahram Ehsandoust, Massoud Babaie-Zadeh, Bertrand Rivet, and Christian Jutten.
Blind source separation in nonlinear mixtures: separability and a basic algorithm.
IEEE Transactions on Signal Processing, 65(16):4339-4352, 2017.
[3] Shahram Hosseini and Christian Jutten.
On the separability of nonlinear mixtures of temporally correlated sources.
IEEE signal processing letters, 10(2):43-46, 2003.
[4] Aapo Hyvarinen and Hiroshi Morioka.
Unsupervised feature extraction by time-contrastive learning and nonlinear ica.
Advances in Neural Information Processing Systems, pages 3765-3773, 2016.
[5] Aapo Hyvarinen and Hiroshi Morioka. Nonlinear ICA of temporally dependent stationary sources. 20th International Conference on Artificial Intelligence and Statistics (AISTAT), 2017.

Selected Papers II

[6] Aapo Hyvärinen and Erkki Oja.
Independent component analysis: algorithms and applications.
Neural networks, 13(4-5):411-430, 2000.
[7] Aapo Hyvarinen, Hiroaki Sasaki, and Richard E Turner. Nonlinear ica using auxiliary variables and generalized contrastive learning. arXiv preprint arXiv:1805.08651, 2018.
[8] Ch. Jutten, M. Babaie-Zadeh, and J. Karhunen.
Nonlinear Mixtures in Handbook of Blind Source Separation: Independent component analysis and applications.
Academic press, 2010.
[9] Abram M Kagan, Calyampudi Radhakrishna Rao, and Yurij Vladimirovich Linnik.
Characterization problems in mathematical statistics.
1973.
[10] Yu V Linnik and VL Eidlin.
Remark on analytic transformations of normal vectors.
Theory of Probability \& Its Applications, 13(4):707-710, 1968.

Thank You!

