
EE Department, Sharif University of Technology

Blind Separation of Nonlinear
Mixtures of Stochastic Processes

Behrad Moniri
bemoniri@ee.sharif.edu

Advisor:
Prof. Massoud Babaie-Zadeh



1 Introduction to Blind Source Separation

2 Review of the Previous Talk

3 Nonlinear BSS of Gaussian Processes
3.1 Theory
3.2 Algorithm

4 Simulations

5 Future Works

6 Bibliography

Outline

2/15 Behrad Moniri Blind Separation of Nonlinear Mixtures



Mixing...

sn

s2

s1

...

xn

x2

x1

Separation ...

yn = fn(sn)

y2 = f2(s2)

y1 = f1(s1)

Unknown

Blind Source Separation (BSS)
Introduction

3/15 Behrad Moniri Blind Separation of Nonlinear Mixtures



Mixing...

sn

s2

s1

...

xn

x2

x1

Separation ...

yn = fn(sn)

y2 = f2(s2)

y1 = f1(s1)

Unknown

Blind Source Separation (BSS)
Introduction

3/15 Behrad Moniri Blind Separation of Nonlinear Mixtures



Darmois-Skitovic Theorem [Darmois-Skitovich 1950]

In the linear setting, the model is identifiable if the sources are
non-Gaussian random variables.

Non-Linear Mixtures
Non-linear mixtures are harder!{

S1 = Rayleigh(σ)
S2 = Uniform[0, 2π]

=⇒ X1 = S1 cos(S2) ⊥⊥ X2 = S1 sin(S2)

Linear and Non-Linear BSS
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Permutation Contrastive Separation [Hyvarinen et al., 2017]

The mixture x(t) = f
(
s(t)

)
is separable if:

• f is invertible and smooth!
• si(t): stationary, ergodic and uniformly dependent.
• si(t) are not quasi-Gaussian.

Time Contrastive Learning [Hyvarinen et al., 2016]

The mixture x(t) = f
(
s(t)

)
is separable if:

• log pτ (si) = λi(τ)q(si)− log Z(λi(τ))

• [L]τ,i = λi,1(τ)− λi,1(1) has full column rank.

New Separability Results
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A fundamental question:
How can we separate Gaussian sources?

• Can nonlinear functions preserve Normality of random
variables? YES!

Example

Define the function h as follows

h(x) =

{
−x a ≤ |x| < b
x otherwise

If X is a Normal Random variable, then h(X) is also a Normal
random variable.

There are also many other examples!
• How about specific classes of functions?

Gaussianity Preserving Functions
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• We have proved that a high dimensional polynomial
function preserves normality, if and only if it is linear.

Polynomial Mixing Theorem

Let s = (s1, s2, . . . , sn)
⊤ ∼ N (µ,Σs) be a vector of jointly normal

random variables and p : Rn → Rn be an invertible polynomial
mapping.

y = (y1, y2, . . . , yn)
⊤ ≜ p(s) (1)

The random variables y1, . . . , yn are jointly normally
distributed if and only if the polynomial p satisfies

y = p(s) = As + b, (2)

where A ∈ Rn×n and b ∈ Rn.

High Dimensional Polynomial Mappings
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Based on the previous theorem, we can prove the following
corollary:

Corollary

Let x(t) = f(s(t)), where
• f : Rn → Rn is an unknown invertible polynomial.
• For all i ∈ [n], si(t) are mean zero Gaussian processes.

If there exists polynomial g : Rn → Rn such that y(t) = g(x(t)) are
Gaussian Processes, then h = g ◦ f is linear.

Applications in Blind Source Separation
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A parametric model for polynomials:

g(x) =


g1(x)
g2(x)

...
gn(x)

 =


θ1⊤
θ2⊤

...
θn⊤

k(x) = Θk(x)

Calculate Neg-Entropy as a measure of Gaussanity:

J (yi) = H(ỹi)−H(yi)

Thus the algorithm should solve the following problem:

min
Θ
∥J (Θk(x))∥2

2

Separation Algorithm
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Let s1, s2 ∼ N (0, 1) and s1 ⊥⊥ s2.[
s1
s2

]
→

[
x1
x2

]
=

[
s1 + (s1 + s2)

3

s2 − (s1 + s2)
3

]
This function can be exactly inverted as[

ŝ1
ŝ2

]
=

[
x1 − (x1 + x2)

3

x2 + (x1 + x2)
3

]
←

[
x1
x2

]
.

0
1

1

1

2

0

3

0
-1 -1

Simulations

10/15 Behrad Moniri Blind Separation of Nonlinear Mixtures



Example

If (X1,X2)
⊤ ∼ N

(
0,ΣX

)
, then Y1 =

X2
1−X2

2√
X2

1+X2
2

and Y2 = 2X1X2√
X2

1+X2
2

is

also a Gaussian random vector.

General Rotation Conjecture [Eidlin, Linnik, Kagan]

Let σ > 0 and Consider a random vector x = (x1, x2, . . . , xn)
⊤

with every xj ∼ N (0, σ2) and an algebraic transformation A.
If y = A(x) is normally distributed, then ∥y∥2 = ∥x∥2.

Algebraic Functions and Rotations
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• Gradual non-convexity methods for optimization.

• Other measures of non-Gaussanity, e.g. 4th cumulants.
• Can the Theorem 1 be extended to "polynomials" with

positive and negative powers?
I believe the answer is positive and I think that the proof is not
very difficult. But I am still working on this.

• Finding two "good" sets of functions F and G such that
∀f ∈ F ∀g ∈ G, the function f ◦ g is a polynomial. This will
result in a new corollary and a new separation algorithm.

Ongoing Works
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Thank You!
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