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Blind Source Separation (BSS)

Introduction
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Linear and Non-Linear BSS

Darmois-Skitovic Theorem [Darmois-Skitovich 1950]

In the linear setting, the model is identifiable if the sources are
non-Gaussian random variables.

4/15 Behrad Moniri Blind Separation of Nonlinear Mixtures



Linear and Non-Linear BSS

Darmois-Skitovic Theorem [Darmois-Skitovich 1950]

In the linear setting, the model is identifiable if the sources are
non-Gaussian random variables.

Non-Linear Mixtures
Non-linear mixtures are harder!

{Sl = Rayleigh(o)

Sz = Uniform|0, 27| L 1c0s(S2) D 18in(S7)
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New Separability Results

Permutation Contrastive Separation [Hyvarinen et al., 2017]
The mixture x(t) = f(s(t)) is separable if:

» fisinvertible and smooth!

¢ s5(t): stationary, ergodic and uniformly dependent.

o s;(t) are not quasi-Gaussian.

Time Contrastive Learning [Hyvarinen et al., 2016]

The mixture x(t) = f(s(t)) is separable if:

e logp-(si) = Ai(7)q(si) — log Z(Ai(7))
o [L];; = Xi1(7) — Ai1(1) has full column rank.
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Gaussianity Preserving Functions

A fundamental question:
How can we separate Gaussian sources?
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Gaussianity Preserving Functions

A fundamental question:
How can we separate Gaussian sources?

¢ Can nonlinear functions preserve Normality of random
variables?
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Gaussianity Preserving Functions

A fundamental question:
How can we separate Gaussian sources?

¢ Can nonlinear functions preserve Normality of random
variables? YES!

Example
Define the function % as follows

h(x):{—x a<|x|<b

X otherwise

If X is a Normal Random variable, then i(X) is also a Normal
random variable.

There are also many other examples!
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Gaussianity Preserving Functions

A fundamental question:
How can we separate Gaussian sources?

¢ Can nonlinear functions preserve Normality of random
variables? YES!

Example
Define the function % as follows

h(x):{—x a<|x|<b

X otherwise

If X is a Normal Random variable, then i(X) is also a Normal
random variable.

There are also many other examples!

» How about specific classes of functions?
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High Dimensional Polynomial Mappings

» We have proved that a high dimensional polynomial
function preserves normality, if and only if it is linear.

Polynomial Mixing Theorem

Lets = (s1,82,...,81) | ~ N(u,3s) be a vector of jointly normal
random variables and p : R" — R" be an invertible polynomial
mapping.

y=W1y2-.yn)" 2 p(s) 1)

The random variables y1, . . . , ¥, are jointly normally
distributed if and only if the polynomial p satisfies

y =p(s) =As+Db, )

where A € R™" and b € R".
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Applications in Blind Source Separation

Based on the previous theorem, we can prove the following
corollary:

Corollary

Let x(t) = f(s(t)), where

o f:R" — R" is an unknown invertible polynomial.

o Foralli € [n], s;(t) are mean zero Gaussian processes.
If there exists polynomial g : R" — R" such that y(t) = g(x(t)) are
Gaussian Processes, then h = g o f is linear.
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Separation Algorithm

A parametric model for polynomials:

gl(x) 01T
0, T

g0 = [ = |7 ko = ok
n(x) 0, T

Calculate Neg-Entropy as a measure of Gaussanity:
I (vi) = H(yi) — H(y:)
Thus the algorithm should solve the following problem:

min |7 (©k(x))|3
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Simulations

Let 51,82 ~ N(O, 1) and S1 A So.

MRS =y

This function can be exactly inverted as

=[] [

negEntropy
[ N w

=]

0 0
-1
coefficient of fog
coefficient of 3
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Algebraic Functions and Rotations

Example
T _ X% _ _2XXp
If (Xl,Xz) N(07 EX)/ then Yl - \/m and YZ - \/m =

also a Gaussian random vector.
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Algebraic Functions and Rotations

Example

T . _ X=X _ O 2X1Xp
If (X1, X5) N(0,%x), then Yy = W and Y, = TR is
also a Gaussian random vector.
General Rotation Conjecture [Eidlin, Linnik, Kagan]
Let 0 > 0 and Consider a random vector x = (xq, %2, . .. ,xn)T

with every x; ~ NV(0,0?) and an algebraic transformation .A.
If y = A(x) is normally distributed, then ||y|/> = ||x]|2-
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Ongoing Works

¢ Gradual non-convexity methods for optimization.
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¢ Other measures of non-Gaussanity, e.g. 4th cumulants.

12/15 Behrad Moniri Blind Separation of Nonlinear Mixtures



Ongoing Works

¢ Gradual non-convexity methods for optimization.

¢ Other measures of non-Gaussanity, e.g. 4th cumulants.

¢ Can the Theorem 1 be extended to "polynomials" with
positive and negative powers?

I'believe the answer is positive and I think that the proof is not
very difficult. But I am still working on this.
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Ongoing Works

¢ Gradual non-convexity methods for optimization.
¢ Other measures of non-Gaussanity, e.g. 4th cumulants.

¢ Can the Theorem 1 be extended to "polynomials" with
positive and negative powers?
I'believe the answer is positive and I think that the proof is not
very difficult. But I am still working on this.

 Finding two "good" sets of functions F and G such that
Vf € F Vg € G, the function f o g is a polynomial. This will
result in a new corollary and a new separation algorithm.
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Thank You!



	Introduction to Blind Source Separation
	Review of the Previous Talk
	Nonlinear BSS of Gaussian Processes
	Theory
	Algorithm

	Simulations
	Future Works
	Bibliography

