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Linear and Non-Linear BSS

Darmois-Skitovic Theorem [Darmois-Skitovich 1950]

In the linear setting, the model is identifiable if the sources are
non-Gaussian random variables.
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Linear and Non-Linear BSS

Darmois-Skitovic Theorem [Darmois-Skitovich 1950]

In the linear setting, the model is identifiable if the sources are
non-Gaussian random variables.

Non-Linear Mixtures
Non-linear mixtures are harder!

{Sl = Rayleigh(o)

Sz = Uniform|0, 27| L 1c0s(S2) D 18in(S7)
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Separation of Stochastic Processes (SP)

Conjecture

Letf : R" — R" be an invertible smooth mapping and x(t) € R"
be a vector of independent SPs. If y(t) = f(x(t)) is a vector of
independent SPs, then f is Affine.
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Separation of Stochastic Processes (SP)

Conjecture

Letf : R" — R" be an invertible smooth mapping and x(t) € R"
be a vector of independent SPs. If y(t) = f(x(t)) is a vector of
independent SPs, then f is Affine.

Counterexample

o Functions:

S
61517 = gnison)
e Stochastic Processes:
S1[i] = Sl[i - 1] +N(0, 1)
Sz[i] = Sz[i - 1] +N(0, 1)
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Noise-Contrastive Estimation (NCE)



Noise-Contrastive Estimation (NCE)

Let {Pg : 8 € ®} be a parametric family of distributions.

. Class 1 or 0?

o Data: X1, Xz, ..., X, ~ P(,;0%)

o Noise: Y1,Y2,...,Y, ~ P, ... .. o

o g0
. Data: class 1 . Noise: class 0

P(.,0%) P,
{64,0),00,0), -, (0,0, 91, 1), (2, 1), - (v 1) |
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Loss Function:
n

JNCE (g) (ZlogP = 1x;0)+_log P(C = Oly;; 9))
i=1

Learning Algorithm: 6, = argmax JNCE(9)

Consistency [Gutmann & Hyvarinen, JMLR 2010]

Asymptotically as n — oo: G(u, 0 .) 23 Pﬂ(l(llg )
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Loss Function:
n

JNCE (g) (ZlogP = 1x;0)+_log P(C = Oly;; 9))
i=1

Learning Algorithm: 6, = argmax JNCE(9)

Consistency [Gutmann & Hyvarinen, JMLR 2010]

Asymptotically as n — oo: G(u, 0 .) 5 Pﬂ(?lg )

Interesting question

The non-asymptotic behavior of this estimator from a
high-dimensional statistics point of view.
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Time-Contrastive Learning

Two ideas:

Time-Contrastive Learning Permutation-Contrastive Learning

[Hyvarinen et al.,, NIPS 2016] [Hyvarinen et al., AISTAT 2017]
Segments (1...T) S Real data Permuted data
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i P Hma

! L t i l' Il '“v
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v AN T ¥ ¥

Real data y vs. permuted y*
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Time-Contrastive Learning

Time Contrastive Learning [Hyvarinen et al.,, NIPS 2016]

The smooth mixture x(t) = £(s(t)) is separable if
logp-(si) = Ai()q(si) +C

plus some technical conditions on ;.

Generalization

We have generalized the theorem above for

log p- (i Z Aio(7)gi0(5i) + C.
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Permutation Contrastive Learning

Permutation Contrastive Separation [Hyvarinen et al.,, NIPS 2016]
The mixture x(t) = f(s(t)) is separable if:

» fisinvertible and smooth!

o s;(t): stationary, ergodic and uniformly dependent.

¢ s;(t) are not quasi-Gaussian.

Contribution

The proof presented in [Hyvarinen et al., NIPS 2016] is flawed
and assumes that the time shuffled SP is independent in time.
This error can be fixed by a re-sampling trick.
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e Mutual information minimization similar to the method
proposed in [Babaie-Zadeh et al., SP 2005].

SNR of source 2

500 1000 1500 2000 2500 3000 3500
iteration

SNR of source 1

500 1000 1500 2000 2500 3000 3500
iteration
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Gaussanity-based Methods



Gaussianity Preserving Functions

A fundamental question:
How can we separate Gaussian sources?
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Gaussianity Preserving Functions

A fundamental question:
How can we separate Gaussian sources?

¢ Can nonlinear functions preserve Normality of random
variables?
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Gaussianity Preserving Functions

A fundamental question:
How can we separate Gaussian sources?

¢ Can nonlinear functions preserve Normality of random
variables? YES!

Example
Define the function % as follows

h(x):{—x a<|x|<b

X otherwise

If X is a Normal Random variable, then i(X) is also a Normal
random variable.

There are also many other examples!
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Gaussianity Preserving Functions

A fundamental question:
How can we separate Gaussian sources?

¢ Can nonlinear functions preserve Normality of random
variables? YES!

Example
Define the function % as follows

h(x):{—x a<|x|<b

X otherwise

If X is a Normal Random variable, then i(X) is also a Normal
random variable.

There are also many other examples!

» How about specific classes of functions?
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Polynomial Mappings

Polynomial Mixing Theorem

Only linear polynomials can transform a Gaussian vector to a

Gaussian vector.
Unknown
S1 $ 1 Y1
—> - —>
x=1f(s) || |y=gx)
—> - —>
Sn 517 n Yn
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¢ A parametric model for the separating polynomial:

gl (X) 011 012 e 015 XT;Q
gz(x) 921 022 e 015 N
gx=1| . |=1]. . . . 102%3 | — @Kk(x)
eS) B U P N
X

* Measures of non-Gaussanity:
o Negative Entropy:  J1(y;) = H(y;) — H(y;)

» Kolmogrov Distance: J>(x;) = sup, |®(x) — F(x)|
« Kurtosis: Ts(x;) = []E[X“] 73(IAE[X2])2}2

¢ Optimization problem:

min |7 (©k(x)|3
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Simulations

Lets1,8 ~ N (0,1) and s1 L s5.
st _, |M| _ [t (s1+52)°
S» X2 Sy — (51 + 52)3

Negative Entropy Kolmogrov Distance Kurtosis

negEntropy

[ — - T~

P coefficient of coefficient o x2 17T coeffcient of x2

fcient of k2
coefficient of x2x coefficient of x2x,

2,
coeficient of x2x, 2,
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Kolmogrov Distance
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Kurtosis
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Another Idea!



Monotonicity of Mixtures

We have proved the following theorem:

Monotone functions do not preserve Gaussanity!

Let f = (f1,f2,---,fa) | : R" = R" be a continuous and invertible
mixing system and all f;s be monotone functions with respect to
all of their inputs. If f preserves Gaussanity, then f is Affine.
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Monotonicity of Mixtures

We have proved the following theorem:

Monotone functions do not preserve Gaussanity!

Let f = (f1,f2,---,fa) | : R" = R" be a continuous and invertible
mixing system and all f;s be monotone functions with respect to
all of their inputs. If f preserves Gaussanity, then f is Affine.

Connections to BSS:
» Not that obvious. Mixing and Demixing?
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Monotonicity of Mixtures

We have proved the following theorem:

Monotone functions do not preserve Gaussanity!

Let f = (f1,f2,---,fa) | : R" = R" be a continuous and invertible
mixing system and all f;s be monotone functions with respect to
all of their inputs. If f preserves Gaussanity, then f is Affine.

Connections to BSS:
» Not that obvious. Mixing and Demixing?

o How about subsets of monotone functions?
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Thank You!
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