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Darmois-Skitovic Theorem [Darmois-Skitovich 1950]

In the linear setting, the model is identifiable if the sources are
non-Gaussian random variables.

Non-Linear Mixtures
Non-linear mixtures are harder!{

S1 = Rayleigh(σ)
S2 = Uniform[0, 2π]

=⇒ X1 = S1 cos(S2) ⊥⊥ X2 = S1 sin(S2)

Linear and Non-Linear BSS
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Conjecture

Let f : Rn → Rn be an invertible smooth mapping and x(t) ∈ Rn

be a vector of independent SPs. If y(t) = f (x(t)) is a vector of
independent SPs, then f is Affine.

Counterexample

• Functions:

f
(
[s1, s2]

⊤) = [
s1

sign(s1s2)

]
• Stochastic Processes:{

s1[i] = s1[i − 1] +N (0, 1)
s2[i] = s2[i − 1] +N (0, 1)

Separation of Stochastic Processes (SP)
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Noise-Contrastive Estimation (NCE)



Let {Pθ : θ ∈ Θ} be a parametric family of distributions.

• Data: X1,X2, . . . ,Xn ∼ P(, ;θ∗)

• Noise: Y1,Y2, . . . ,Yn ∼ Pn

{ P(.,θ∗)︷ ︸︸ ︷
(x1, 0), (x2, 0), . . . , (xn, 0),

Pn︷ ︸︸ ︷
(y1, 1), (y2, 1), . . . , (yn, 1)

}

Noise-Contrastive Estimation (NCE)
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• Model: P(C = 1|u,θ) = 1
1+G(u,θ) , G(u,θ) ≥ 0

• Loss Function:

JNCE
n (θ) =

1
n

( n∑
i=1

log P(C = 1|xi;θ)+

n∑
i=1

log P(C = 0|yi;θ)
)

• Learning Algorithm: θ̂n = argmax JNCE
n (θ)

Consistency [Gutmann & Hyvarinen, JMLR 2010]

Asymptotically as n → ∞: G(u, θ̂n)
a.s.→ Pn(u,θ∗)

P(u)

Interesting question

The non-asymptotic behavior of this estimator from a
high-dimensional statistics point of view.
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Two ideas:

Time-Contrastive Learning
[Hyvarinen et al., NIPS 2016]

Permutation-Contrastive Learning
[Hyvarinen et al., AISTAT 2017]

Time-Contrastive Learning
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Time Contrastive Learning [Hyvarinen et al., NIPS 2016]

The smooth mixture x(t) = f
(
s(t)

)
is separable if

log pτ (si) = λi(τ)q(si) + C

plus some technical conditions on λi.

Generalization
We have generalized the theorem above for

log pτ (si) =

V∑
v=1

λi,v(τ)qi,v(si) + C.

Time-Contrastive Learning
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Permutation Contrastive Separation [Hyvarinen et al., NIPS 2016]

The mixture x(t) = f
(
s(t)

)
is separable if:

• f is invertible and smooth!
• si(t): stationary, ergodic and uniformly dependent.
• si(t) are not quasi-Gaussian.

Contribution
The proof presented in [Hyvarinen et al., NIPS 2016] is flawed
and assumes that the time shuffled SP is independent in time.
This error can be fixed by a re-sampling trick.

Permutation Contrastive Learning
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• Mutual information minimization similar to the method
proposed in [Babaie-Zadeh et al., SP 2005].

Proposed Algorithm
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Gaussanity-based Methods



A fundamental question:
How can we separate Gaussian sources?

• Can nonlinear functions preserve Normality of random
variables? YES!

Example

Define the function h as follows

h(x) =

{
−x a ≤ |x| < b
x otherwise

If X is a Normal Random variable, then h(X) is also a Normal
random variable.

There are also many other examples!
• How about specific classes of functions?

Gaussianity Preserving Functions
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Polynomial Mixing Theorem

Only linear polynomials can transform a Gaussian vector to a
Gaussian vector.

Polynomial Mappings
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• A parametric model for the separating polynomial:

g(x) =


g1(x)
g2(x)

...
gn(x)

 =


θ11 θ12 . . . θ1s
θ21 θ22 . . . θ1s
...

...
. . .

...
θn1 θn2 . . . θns




x1
x1x2

x1x2x3
...

xp
k

 = Θk(x)

• Measures of non-Gaussanity:
• Negative Entropy: J1(yi) = H(ỹi)− H(yi)

• Kolmogrov Distance: J2(xi) = supx |Φ(x)− F̂(x)|

• Kurtosis: J3(xi) =
[
Ê[X4]− 3(Ê[X2])2

]2

• Optimization problem:

min
Θ

∥J (Θk(x))∥2
2

Separation Algorithm
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Let s1, s2 ∼ N (0, 1) and s1 ⊥⊥ s2.[
s1
s2

]
→

[
x1
x2

]
=

[
s1 + (s1 + s2)

3

s2 − (s1 + s2)
3

]

Negative Entropy Kolmogrov Distance Kurtosis

Simulations
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Negative Entropy
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Kolmogrov Distance
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Kurtosis
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Another Idea!



We have proved the following theorem:

Monotone functions do not preserve Gaussanity!

Let f = (f1, f2, . . . , fn)⊤ : Rn → Rn be a continuous and invertible
mixing system and all fis be monotone functions with respect to
all of their inputs. If f preserves Gaussanity, then f is Affine.

Connections to BSS:
• Not that obvious. Mixing and Demixing?
• How about subsets of monotone functions?

Monotonicity of Mixtures
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Thank You!
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