

Universal Inference

Behrad Moniri

Dept. of Electrical and Systems Engineering University of Pennsylvania bemoniri@seas.upenn.edu

April 12, 2022

æ

Universal Inference

Larry Wasserman Aaditya Ramdas Sivaraman Balakrishnan

Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University, Pittsburgh, PA 15213.

{larry, aramdas, siva}@stat.cmu.edu

June 4, 2020

Published in the Proceedings of the National Academy of Sciences (PNAS).

イロト イボト イヨト イヨト

Pillars of classical statistics: Likelihood ratio test, and confidence intervals obtained from asymptotically pivotal estimators.

Image: A mathematical states and a mathem

글 🖌 🔺 글 🕨

э

- Pillars of classical statistics: Likelihood ratio test, and confidence intervals obtained from asymptotically pivotal estimators.
- These methods rely on large sample asymptotic theory and this often need regularity conditions.

(日)

- Pillars of classical statistics: Likelihood ratio test, and confidence intervals obtained from asymptotically pivotal estimators.
- These methods rely on large sample asymptotic theory and this often need regularity conditions.
- When these conditions do not hold, there is no general method for statistical inference, with provable guarantees and these settings are typically considered in an *ad-hoc* manner.

(日)

They propose a general method for constructing confidence sets and hypothesis tests that have **finite-sample** guarantees **without** regularity conditions.

æ

・ロト ・回 ト ・ ヨト ・ ヨト …

They propose a general method for constructing confidence sets and hypothesis tests that have **finite-sample** guarantees **without** regularity conditions. \rightsquigarrow *Universal* Inference.

э

・ロト ・回 ト ・ ヨト ・ ヨト …

They propose a general method for constructing confidence sets and hypothesis tests that have **finite-sample** guarantees **without** regularity conditions. \rightsquigarrow *Universal* Inference.

Based on a modified version of the usual likelihood ratio statistic, called "the split likelihood ratio statistics".

They propose a general method for constructing confidence sets and hypothesis tests that have **finite-sample** guarantees **without** regularity conditions. \rightsquigarrow *Universal* Inference.

- Based on a modified version of the usual likelihood ratio statistic, called "the split likelihood ratio statistics".
- ▶ They also develop various extensions of this basic methods.

< ロ > < 同 > < 回 > < 回 > < 回 > <

• Consider a parametric family $\{P_{\theta} : \theta \in \Theta\}$, for some set Θ .

æ

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

- Consider a parametric family $\{P_{\theta} : \theta \in \Theta\}$, for some set Θ .
- Assume that each distribution has density with respect to some fixed measure μ. Let the corresponding densities be p_θ.

イロト イヨト イヨト イヨト

- Consider a parametric family $\{P_{\theta} : \theta \in \Theta\}$, for some set Θ .
- Assume that each distribution has density with respect to some fixed measure μ. Let the corresponding densities be p_θ.
- We are given $Y_1, \ldots, Y_{2n} \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.

イロト イヨト イヨト イヨト

- Consider a parametric family $\{P_{\theta} : \theta \in \Theta\}$, for some set Θ .
- Assume that each distribution has density with respect to some fixed measure μ. Let the corresponding densities be p_θ.
- We are given $Y_1, \ldots, Y_{2n} \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.
- We want to construct confidence intervals for θ^* .

イロト イポト イヨト イヨト

Recap: Regular Models

15

< ロ > < 回 > < 回 > < 回 > < 回 >

For regular models, we proceed as follows:

Image: A mathematical states and a mathem

글 🖌 🔺 글 🕨

For regular models, we proceed as follows:

• If
$$\Theta = \mathbb{R}^d$$
, set

$$\mathcal{A}_n = \left\{ heta: 2\log rac{\mathcal{L}(\widehat{ heta})}{\mathcal{L}(heta)} \leq c_{lpha, d}
ight\},$$

- $c_{\alpha,d}$ is the α -quantile of a χ^2_d distribution.
- $\mathcal{L}(\cdot)$ is the likelihood function.
- $\hat{\theta}$ is the MLE.

< □ > < A >

For regular models, we proceed as follows:

• If
$$\Theta = \mathbb{R}^d$$
, set

$$A_n = \left\{ heta : 2 \log rac{\mathcal{L}(\widehat{ heta})}{\mathcal{L}(heta)} \leq c_{lpha, d}
ight\},$$

- $c_{\alpha,d}$ is the α -quantile of a χ^2_d distribution.
- $\mathcal{L}(\cdot)$ is the likelihood function.
- $\hat{\theta}$ is the MLE.

Wilks' Theorem (Wilks, 1938)

For regular models,

$$P_{\theta^*}(\theta^* \in A_n) \to 1 - \alpha.$$

< □ > < A >

Universal Confidence Intervals

19

æ

*ロ * * @ * * 注 * * 注 *

Image: A mathematical states and a mathem

Split data into two sets D_0 , D_1 randomly.

< □ > < A >

→ < ∃→

- Split data into two sets D_0 , D_1 randomly.
- Let $\hat{\theta}_1$ be **any** estimator constructed from D_1 .

- Split data into two sets D_0 , D_1 randomly.
- Let
 \$\heta_1\$ be any estimator constructed from \$D_1\$.
 This can be the MLE, a Bayes estimator that utilizes prior knowledge, a robust estimator, etc.

< □ > < A >

- Split data into two sets D_0 , D_1 randomly.
- Let
 *û*₁ be any estimator constructed from *D*₁.
 This can be the MLE, a Bayes estimator that utilizes prior knowledge, a robust estimator, etc.

▶ The likelihood function based on D_0 is $\mathcal{L}_0(\theta) = \prod_{i \in D_0} p_{\theta}(Y_i)$

Image: A matrix and a matrix

∃ ► < ∃ ►</p>

- Split data into two sets D_0 , D_1 randomly.
- Let θ₁ be any estimator constructed from D₁. This can be the MLE, a Bayes estimator that utilizes prior knowledge, a robust estimator, etc.
- ▶ The likelihood function based on D_0 is $\mathcal{L}_0(\theta) = \prod_{i \in D_0} p_{\theta}(Y_i)$

Define the split likelihood ratio statistic as

$$T_n(\theta) = \frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\theta)}$$

Image: A matrix and a matrix

∃ ► < ∃ ►</p>

- Split data into two sets D_0 , D_1 randomly.
- Let θ̂₁ be any estimator constructed from D₁. This can be the MLE, a Bayes estimator that utilizes prior knowledge, a robust estimator, etc.
- ▶ The likelihood function based on D_0 is $\mathcal{L}_0(\theta) = \prod_{i \in D_0} p_{\theta}(Y_i)$

Define the split likelihood ratio statistic as

$$T_n(\theta) = \frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\theta)}$$

The universal confidence set is

$$\mathcal{C}_n = \left\{ \theta \in \Theta : T_n(\theta) \leq \frac{1}{\alpha} \right\}$$

▶ If we did not split the data and $\hat{\theta}_1$ was the MLE, then $T_n(\theta)$ would have been the usual likelihood ratio statistic.

Image: A mathematical states and a mathem

듣▶ ★ 돋▶ .

æ

- ▶ If we did not split the data and $\hat{\theta}_1$ was the MLE, then $T_n(\theta)$ would have been the usual likelihood ratio statistic.
- Can we prove an analog of Wilks' theorem here?

イロト イヨト イヨト イヨト

- ▶ If we did not split the data and $\hat{\theta}_1$ was the MLE, then $T_n(\theta)$ would have been the usual likelihood ratio statistic.
- Can we prove an analog of Wilks' theorem here? The answer is yes.

(日)

- ▶ If we did not split the data and $\hat{\theta}_1$ was the MLE, then $T_n(\theta)$ would have been the usual likelihood ratio statistic.
- ► Can we prove an analog of Wilks' theorem here? The answer is yes.
- Finding or approximating the distribution of the likelihood ratio statistic is highly nontrivial in irregular models. The split LRS avoids these complications.

(日)

Theorem C_n is a finite-sample valid $1 - \alpha$ confidence set for θ^* , meaning that

$$P_{\theta^*}(\theta^* \in \mathcal{C}_n) \geq 1 - \alpha.$$

The proof is extremely simple.

æ

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Behrad Moniri

Proof.

Ξ.

Consider any fixed $\psi \in \Theta$ and let A denote the support of P_{θ^*} .

æ

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Proof.

Consider any fixed $\psi \in \Theta$ and let A denote the support of P_{θ^*} .

$$\mathbb{E}_{\theta^{*}}\left[\frac{\mathcal{L}_{0}(\psi)}{\mathcal{L}_{0}\left(\theta^{*}\right)}\right] = \mathbb{E}_{\theta^{*}}\left[\frac{\prod_{i \in D_{0}} p_{\psi}\left(Y_{i}\right)}{\prod_{i \in D_{0}} p_{\theta^{*}}\left(Y_{i}\right)}\right]$$

メロト メタト メヨト メヨト 二日

Proof.

Consider any fixed $\psi \in \Theta$ and let A denote the support of P_{θ^*} .

$$\mathbb{E}_{\theta^*} \left[\frac{\mathcal{L}_0(\psi)}{\mathcal{L}_0(\theta^*)} \right] = \mathbb{E}_{\theta^*} \left[\frac{\prod_{i \in D_0} p_{\psi}(Y_i)}{\prod_{i \in D_0} p_{\theta^*}(Y_i)} \right]$$
$$= \int_A \frac{\prod_{i \in D_0} p_{\psi}(y_i)}{\prod_{i \in D_0} p_{\theta^*}(y_i)} \prod_{i \in D_0} p_{\theta^*}(y_i) \, dy_1 \cdots dy_n$$

æ

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Proof.

Consider any fixed $\psi \in \Theta$ and let A denote the support of P_{θ^*} .

$$\mathbb{E}_{\theta^*} \left[\frac{\mathcal{L}_0(\psi)}{\mathcal{L}_0(\theta^*)} \right] = \mathbb{E}_{\theta^*} \left[\frac{\prod_{i \in D_0} p_{\psi}(Y_i)}{\prod_{i \in D_0} p_{\theta^*}(Y_i)} \right]$$
$$= \int_A \frac{\prod_{i \in D_0} p_{\psi}(y_i)}{\prod_{i \in D_0} p_{\theta^*}(y_i)} \prod_{i \in D_0} p_{\theta^*}(y_i) \, dy_1 \cdots dy_n$$
$$= \int_A \prod_{i \in D_0} p_{\psi}(y_i) \, dy_1 \cdots dy_n$$

æ

< ロ > < 部 > < き > < き > <</p>
Proof

Proof.

Consider any fixed $\psi \in \Theta$ and let A denote the support of P_{θ^*} .

$$\begin{split} \mathbb{E}_{\theta^*} \left[\frac{\mathcal{L}_0(\psi)}{\mathcal{L}_0(\theta^*)} \right] &= \mathbb{E}_{\theta^*} \left[\frac{\prod_{i \in D_0} p_{\psi}\left(Y_i\right)}{\prod_{i \in D_0} p_{\theta^*}\left(Y_i\right)} \right] \\ &= \int_A \frac{\prod_{i \in D_0} p_{\psi}\left(y_i\right)}{\prod_{i \in D_0} p_{\theta^*}\left(y_i\right)} \prod_{i \in D_0} p_{\theta^*}\left(y_i\right) dy_1 \cdots dy_n \\ &= \int_A \prod_{i \in D_0} p_{\psi}\left(y_i\right) dy_1 \cdots dy_n \le \prod_{i \in D_0} \left[\int p_{\psi}\left(y_i\right) dy_i \right] \end{split}$$

æ

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Proof

Proof.

Consider any fixed $\psi \in \Theta$ and let A denote the support of P_{θ^*} .

$$\begin{split} \mathbb{E}_{\theta^*} \left[\frac{\mathcal{L}_0(\psi)}{\mathcal{L}_0(\theta^*)} \right] &= \mathbb{E}_{\theta^*} \left[\frac{\prod_{i \in D_0} p_{\psi}\left(Y_i\right)}{\prod_{i \in D_0} p_{\theta^*}\left(Y_i\right)} \right] \\ &= \int_A \frac{\prod_{i \in D_0} p_{\psi}\left(y_i\right)}{\prod_{i \in D_0} p_{\theta^*}\left(y_i\right)} \prod_{i \in D_0} p_{\theta^*}\left(y_i\right) dy_1 \cdots dy_n \\ &= \int_A \prod_{i \in D_0} p_{\psi}\left(y_i\right) dy_1 \cdots dy_n \leq \prod_{i \in D_0} \left[\int p_{\psi}\left(y_i\right) dy_i \right] = 1 \end{split}$$

æ

< ロ > < 部 > < き > < き > <</p>

Proof

Proof.

Consider any fixed $\psi \in \Theta$ and let A denote the support of P_{θ^*} .

$$\begin{split} \mathbb{E}_{\theta^*} \left[\frac{\mathcal{L}_0(\psi)}{\mathcal{L}_0(\theta^*)} \right] &= \mathbb{E}_{\theta^*} \left[\frac{\prod_{i \in D_0} p_{\psi}\left(Y_i\right)}{\prod_{i \in D_0} p_{\theta^*}\left(Y_i\right)} \right] \\ &= \int_{\mathcal{A}} \frac{\prod_{i \in D_0} p_{\psi}\left(y_i\right)}{\prod_{i \in D_0} p_{\theta^*}\left(y_i\right)} \prod_{i \in D_0} p_{\theta^*}\left(y_i\right) dy_1 \cdots dy_n \\ &= \int_{\mathcal{A}} \prod_{i \in D_0} p_{\psi}\left(y_i\right) dy_1 \cdots dy_n \leq \prod_{i \in D_0} \left[\int p_{\psi}\left(y_i\right) dy_i \right] = 1 \end{split}$$

 $\hat{ heta}_1$ is fixed when we condition on $D_1.$ So we have

$$\mathbb{E}_{\theta^*}\left[T_n\left(\theta^*\right) \mid D_1\right] = \mathbb{E}_{\theta^*}\left[\frac{\mathcal{L}_0\left(\widehat{\theta}_1\right)}{\mathcal{L}_0\left(\theta^*\right)}\middle| D_1\right] \leq 1.$$

メロト メロト メヨト メヨト

Now, using Markov's inequality,

$$P_{\theta^*}\left(\theta^* \notin \mathcal{C}_n\right) = P_{\theta^*}\left(T_n\left(\theta^*\right) > \frac{1}{\alpha}\right) \leq \alpha \mathbb{E}_{\theta^*}\left[T_n\left(\theta^*\right)\right]$$

æ

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Now, using Markov's inequality,

$$P_{\theta^*}\left(\theta^* \notin \mathcal{C}_n\right) = P_{\theta^*}\left(T_n\left(\theta^*\right) > \frac{1}{\alpha}\right) \le \alpha \mathbb{E}_{\theta^*}\left[T_n\left(\theta^*\right)\right]$$
$$= \alpha \mathbb{E}_{\theta^*}\left[\frac{\mathcal{L}_0\left(\hat{\theta}_1\right)}{\mathcal{L}_0\left(\theta^*\right)}\right] = \alpha \mathbb{E}_{\theta^*}\left(\mathbb{E}_{\theta^*}\left[\frac{\mathcal{L}_0\left(\hat{\theta}_1\right)}{\mathcal{L}_0\left(\theta^*\right)}\middle| D_1\right]\right) \le \alpha$$

This completes the proof.

æ

*ロ * * @ * * 注 * * 注 *

The parametric setup adopted above generalizes easily to nonparametric settings as long as we can calculate a likelihood.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- The parametric setup adopted above generalizes easily to nonparametric settings as long as we can calculate a likelihood.
- ▶ For a collection of densities \mathcal{P} , and a true density $p^* \in \mathcal{P}$, suppose we use D_1 to identify $\hat{p}_1 \in \mathcal{P}$, and D_0 to calculate

$$T_n(p) = \prod_{i \in D_0} \frac{\widehat{p}_1(Y_i)}{p(Y_i)}.$$

▶ We then define, $C_n = \{p \in \mathcal{P} : T_n(p) \leq \frac{1}{\alpha}\}$, and our previous argument ensures that

$$P_{p^*}(p^* \in \mathcal{C}_n) \geq 1 - \alpha.$$

(日)

44

*ロ * * @ * * 注 * * 注 *

▶ Let $\Theta_0 \subset \Theta$ be a null-set and consider testing

 $H_0: \theta^* \in \Theta_0$ versus $\theta^* \notin \Theta_0$

Using the duality between hypothesis testing and confidence intervals:

We simply reject the null hypothesis if $C_n \cap \Theta_0 = \emptyset$. The type I error of this test is clearly at most α .

イロト イポト イヨト イヨト

▶ Let $\Theta_0 \subset \Theta$ be a null-set and consider testing

 $H_0: \theta^* \in \Theta_0$ versus $\theta^* \notin \Theta_0$

Using the duality between hypothesis testing and confidence intervals:

We simply reject the null hypothesis if $C_n \cap \Theta_0 = \emptyset$. The type I error of this test is clearly at most α .

Can we find a computationally efficient way?

• Let $\hat{\theta}_1$ be any estimator constructed from D_1 .

æ

- Let $\hat{\theta}_1$ be any estimator constructed from D_1 .
- ► Let $\hat{\theta}_0 := \underset{\theta \in \Theta_0}{\operatorname{argmax}} \mathcal{L}_0(\theta)$ be the MLE under null from D_0 .

《口》《聞》《臣》《臣》

- Let $\hat{\theta}_1$ be any estimator constructed from D_1 .
- ▶ Let $\hat{\theta}_0 := \underset{\theta \in \Theta_0}{\operatorname{argmax}} \mathcal{L}_0(\theta)$ be the MLE under null from D_0 .
- ▶ Reject H_0 if

$$\frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)} > \frac{1}{\alpha}.$$

イロト イヨト イヨト イヨト

- Let $\hat{\theta}_1$ be any estimator constructed from D_1 .
- ► Let $\hat{\theta}_0 := \underset{\theta \in \Theta_0}{\operatorname{argmax}} \mathcal{L}_0(\theta)$ be the MLE under null from D_0 .
- ▶ Reject H_0 if

$$\frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)} > \frac{1}{\alpha}.$$

Theorem

This test controls the type I error at level α .

< □ > < A >

글 🖌 🔺 글 🕨

- Let $\hat{\theta}_1$ be any estimator constructed from D_1 .
- ► Let $\hat{\theta}_0 := \underset{\theta \in \Theta_0}{\operatorname{argmax}} \mathcal{L}_0(\theta)$ be the MLE under null from D_0 .
- ▶ Reject H_0 if

$$\frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)} > \frac{1}{\alpha}.$$

Theorem

This test controls the type I error at level α .

Proof.

The proof is one line.

$$P_{\theta^{*}}\left(\mathcal{L}_{0}\left(\widehat{\theta}_{1}\right)/\mathcal{L}_{0}\left(\widehat{\theta}_{0}\right)>1/\alpha\right)\leq\alpha\mathbb{E}_{\theta^{*}}\left[\frac{\mathcal{L}_{0}\left(\widehat{\theta}_{1}\right)}{\mathcal{L}_{0}\left(\widehat{\theta}_{0}\right)}\right]\leq\alpha\mathbb{E}_{\theta^{*}}\left[\frac{\mathcal{L}_{0}\left(\widehat{\theta}_{1}\right)}{\mathcal{L}_{0}\left(\theta^{*}\right)}\right]\leq\alpha$$

(日) (四) (三) (三) (三)

Some Discussions

52

æ

・ロト ・回ト ・ヨト ・ヨト

Regular models:

Compare the log-likelihood ratio to the $(1 - \alpha)$ -quantile of a χ^2 distribution (dof = dimension of null - dimension of alternative)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Regular models:

Compare the log-likelihood ratio to the $(1 - \alpha)$ -quantile of a χ^2 distribution (dof = dimension of null - dimension of alternative)

This paper:

Compare the **split**-log-split-likelihood ratio to $\log(1/\alpha) \rightsquigarrow (1-\alpha)$ -quantile of a χ^2 distribution with **one** degree of freedom.

< ロ > < 同 > < 三 > < 三 > 、

You are only using Markov?! This isn't tight enough!

Image: A mathematical states and a mathem

물에 세명에

You are only using Markov?! This isn't tight enough! Yes and No!

メロト メロト メヨト メヨト

- You are only using Markov?! This isn't tight enough! Yes and No!

- You are only using Markov?! This isn't tight enough! Yes and No!
- We are really using the fact that log ^{L₀(θ̂₁)}/_{L₀(θ̂₀)} has an exponential tail, just as an asymptotic argument would.
- In true Chernoff bounds:

$$\mathbb{E}_{\theta^*}\Big[\exp\big(\mathsf{a}\log\frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)}\big)\Big] \leq \ \mathsf{MGF} \ \mathsf{of} \ \chi^2, \mathcal{N}, \dots$$

One should view this proof as a poor man's Chernoff bound:

$$\mathbb{E}_{ heta^*}\Big[\expig(\lograc{\mathcal{L}_0(\hat{ heta}_1)}{\mathcal{L}_0(\hat{ heta}_0)}ig)\Big]\leq 1$$

Sanity Check: Regular Models

59

*ロ * * @ * * 注 * * 注 *

Suppose that $Y_1, \ldots, Y_n \sim \mathcal{N}_d(\theta, I)$ where $\theta \in \mathbb{R}^d$.

æ

< ロ > < 部 > < き > < き > <</p>

- Suppose that $Y_1, \ldots, Y_n \sim \mathcal{N}_d(\theta, I)$ where $\theta \in \mathbb{R}^d$.
- Let $c_{\alpha,d}$ and z_{α} denote the upper α quantiles of the χ^2_d and standard Gaussian respectively.

.

イロト イポト イヨト イヨト

- Suppose that $Y_1, \ldots, Y_n \sim \mathcal{N}_d(\theta, I)$ where $\theta \in \mathbb{R}^d$.
- Let $c_{\alpha,d}$ and z_{α} denote the upper α quantiles of the χ^2_d and standard Gaussian respectively.
- The usual confidence set for θ based on the LRT can be computed as follows:
 - The likelihood function and MLE:

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(Y_i - \mu)^2}{2}\right), \qquad \hat{\theta}_{MLE} = \bar{Y}$$

$$A_n = \left\{ \theta : \|\theta - \overline{Y}\|^2 \le \frac{c_{\alpha,d}}{n} \right\}$$
$$= \left\{ \theta : \|\theta - \overline{Y}\|^2 \le \frac{d + \sqrt{2d}z_\alpha + o(\sqrt{d})}{n} \right\}$$

$$\log \mathcal{L}_0(\overline{Y}_1) - \log \mathcal{L}_0(\theta) = -\left(\frac{n}{2}\right) \frac{\|\overline{Y}_0 - \overline{Y}_1\|^2}{2} + \left(\frac{n}{2}\right) \frac{\|\theta - \overline{Y}_0\|^2}{2}.$$

문에서 문어 :

Image: A matrix and a matrix

э

$$\log \mathcal{L}_0(\overline{Y}_1) - \log \mathcal{L}_0(\theta) = -\left(\frac{n}{2}\right) \frac{\|\overline{Y}_0 - \overline{Y}_1\|^2}{2} + \left(\frac{n}{2}\right) \frac{\|\theta - \overline{Y}_0\|^2}{2}.$$

► The universal confidence set is

$$C_n = \left\{ \theta : \log \mathcal{L}_0(\overline{Y}_1) - \log \mathcal{L}_0(\theta) \le \log(1/\alpha) \right\}$$
$$= \left\{ \theta : \|\theta - \overline{Y}_0\|^2 \le \frac{4}{n} \log\left(\frac{1}{\alpha}\right) + \|\overline{Y}_0 - \overline{Y}_1\|^2 \right\}.$$

< □ > < A >

ヨト イヨト

$$\log \mathcal{L}_0(\overline{Y}_1) - \log \mathcal{L}_0(\theta) = -\left(\frac{n}{2}\right) \frac{\|\overline{Y}_0 - \overline{Y}_1\|^2}{2} + \left(\frac{n}{2}\right) \frac{\|\theta - \overline{Y}_0\|^2}{2}.$$

The universal confidence set is

$$\begin{split} \mathcal{C}_n &= \left\{ \theta: \ \log \mathcal{L}_0(\overline{Y}_1) - \log \mathcal{L}_0(\theta) \leq \log(1/\alpha) \right\} \\ &= \left\{ \theta: \ \|\theta - \overline{Y}_0\|^2 \leq \frac{4}{n} \log \left(\frac{1}{\alpha}\right) + \|\overline{Y}_0 - \overline{Y}_1\|^2 \right\}. \end{split}$$

▶ Note that $\|\overline{Y}_0 - \overline{Y}_1\|^2 = O_p(d/n)$, so both sets have radii $O_p(d/n)$.

イロト イヨト イヨト

$$\log \mathcal{L}_0(\overline{Y}_1) - \log \mathcal{L}_0(\theta) = -\left(\frac{n}{2}\right) \frac{\|\overline{Y}_0 - \overline{Y}_1\|^2}{2} + \left(\frac{n}{2}\right) \frac{\|\theta - \overline{Y}_0\|^2}{2}.$$

The universal confidence set is

$$\begin{split} \mathcal{C}_n &= \left\{ \theta: \ \log \mathcal{L}_0(\overline{Y}_1) - \log \mathcal{L}_0(\theta) \leq \log(1/\alpha) \right\} \\ &= \left\{ \theta: \ \|\theta - \overline{Y}_0\|^2 \leq \frac{4}{n} \log \left(\frac{1}{\alpha}\right) + \|\overline{Y}_0 - \overline{Y}_1\|^2 \right\}. \end{split}$$

Note that || Y
₀ - Y
₁||² = O_p(d/n), so both sets have radii O_p(d/n).
 For constant α, the radius is four times larger.

- 1. **Identifiable**: any $\theta \neq \theta^*$ it is the case that $P_{\theta} \neq P_{\theta^*}$.
- 2. Differentiable in quadratic mean (DQM) at θ^* : there exists a function s_{θ^*} such that:

$$\int \left[\sqrt{p_ heta} - \sqrt{p_{ heta^*}} - rac{1}{2}(heta - heta^*)^{\mathsf{T}} s_{ heta^*} \sqrt{p_{ heta^*}}
ight]^2 d\mu = -o(\| heta - heta^*\|^2), ext{ as } heta o heta^*,$$

- 3. The parameter space $\Theta \subset \mathbb{R}^d$ is **compact**.
- 4. **Smoothness**: There is a function ℓ with $\sup_{\theta} \mathbb{E}_{x \sim P_{\theta}} \ell^{2}(X) < \infty$ s.t.

$$\forall \theta_1, \theta_2 \in \Theta : |\log p_{\theta_1}(x) - \log p_{\theta_2}(x)| \le \ell(x) \|\theta_1 - \theta_2\|.$$

5. A consequence of the DQM condition is that the Fisher information matrix is well-defined, and we assume it is **non-degenerate**.

イロト イヨト イヨト イヨト

Theorem

Under the regularity conditions in the previous slide, and $||\hat{\theta}_1 - \theta^*|| = O_p(1/\sqrt{n})$, the split LRT has diameter $O_p(\sqrt{\log(1/\delta)/n})$

Theorem

Under the regularity conditions in the previous slide, and $||\hat{\theta}_1 - \theta^*|| = O_p(1/\sqrt{n})$, the split LRT has diameter $O_p(\sqrt{\log(1/\delta)/n})$

Proof.

The high level idea: it suffices to show that for all θ sufficiently far from $\theta^*,$ we have

$$\frac{\mathcal{L}_{0}(\theta)}{\mathcal{L}_{0}(\hat{\theta}_{1})} \leq \alpha.$$

< ロ > < 同 > < 三 > < 三 > 、

Example of an Irregular Model

70

< ロ > < 回 > < 回 > < 回 > < 回 >

- Let $Y_1, \ldots, Y_{2n} \sim P$ where $Y_i \in \mathbb{R}$.
- We want to test

 $H_0: P \in \mathcal{M}_1$ versus $H_1: P \in \mathcal{M}_2$,

where \mathcal{M}_k denotes the set of mixtures of k Gaussians, with an appropriately restricted parameter space Θ .

Image: A mathematical states and a mathem

- Let $Y_1, \ldots, Y_{2n} \sim P$ where $Y_i \in \mathbb{R}$.
- We want to test

 $H_0: P \in \mathcal{M}_1$ versus $H_1: P \in \mathcal{M}_2$,

where \mathcal{M}_k denotes the set of mixtures of k Gaussians, with an appropriately restricted parameter space Θ .

 LRT has an intractable limiting distribution. There is no known confidence set for mixture problems with guaranteed coverage properties.

・ロト ・回ト ・ヨト ・ヨト

- The true model is assumed to be $\frac{1}{2}\phi(y; -\mu, 1) + \frac{1}{2}\phi(y; \mu, 1)$
- The null: $\mu = 0$. We set $\alpha = 0.1$ and n = 200.
- Let $\hat{\theta}_1$ be the MLE under \mathcal{M}_2 .
- This MLE is calculated using the EM algorithm (does it converge? IDK!)

Image: A matrix and a matrix

글 🖌 🔺 글 🕨

Example: Mixture Models

Figure: Black = Universal / Red = Bootstrap

æ

Example: Mixture Models

Figure: Black = Universal / Red = Bootstrap

The bootstrap test does not have any guarantee on the type l error.

Extensions

Behrad Moniri

76

æ

メロト メロト メヨト メヨト

The universal method involves randomly splitting the data and the final inferences will depend on the randomness of the split.

イロト イ団ト イヨト イヨト

- The universal method involves randomly splitting the data and the final inferences will depend on the randomness of the split.
- ► For the test to work, we needed $\mathbb{E}_{\theta^*}[T_n] \leq 1$ where $T_n = \frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)}$.

イロト イポト イヨト イヨト

- The universal method involves randomly splitting the data and the final inferences will depend on the randomness of the split.
- ► For the test to work, we needed $\mathbb{E}_{\theta^*}[T_n] \leq 1$ where $T_n = \frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)}$.
- ▶ Imagine that we obtained *B* such statistics $T_{n,1}..., T_{n,B}$ with the same property. Let

$$\bar{T}_n = B^{-1} \sum_{j=1}^B T_{n,j}.$$

Then we still have that $\mathbb{E}_{\theta^*}[\overline{T}_n]$.

- The universal method involves randomly splitting the data and the final inferences will depend on the randomness of the split.
- ► For the test to work, we needed $\mathbb{E}_{\theta^*}[T_n] \leq 1$ where $T_n = \frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)}$.
- ▶ Imagine that we obtained *B* such statistics $T_{n,1}..., T_{n,B}$ with the same property. Let

$$\bar{T}_n = B^{-1} \sum_{j=1}^B T_{n,j}.$$

Then we still have that $\mathbb{E}_{\theta^*}[\bar{T}_n]$.

K-fold and All split.

< ロ > < 同 > < 三 > < 三 > 、

- The universal method involves randomly splitting the data and the final inferences will depend on the randomness of the split.
- ► For the test to work, we needed $\mathbb{E}_{\theta^*}[T_n] \leq 1$ where $T_n = \frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)}$.
- ▶ Imagine that we obtained *B* such statistics $T_{n,1}..., T_{n,B}$ with the same property. Let

$$\bar{T}_n = B^{-1} \sum_{j=1}^B T_{n,j}.$$

Then we still have that $\mathbb{E}_{\theta^*}[\bar{T}_n]$.

- K-fold and All split.
- Broader Impact:

These methods will potentially lead to cherry-picking :)

イロト イポト イヨト イヨト

 Computing the maximum likelihood (under the null) is sometimes computationally hard.

・ロト ・四ト ・ヨト ・ヨト

- Computing the maximum likelihood (under the null) is sometimes computationally hard.
- Suppose one could come up with a relaxation F₀ of the null likelihood L₀:

 $\max_{\theta} F_0(\theta) \geq \max_{\theta} \mathcal{L}_0(\theta).$

イロト イヨト イヨト イヨト

- Computing the maximum likelihood (under the null) is sometimes computationally hard.
- Suppose one could come up with a relaxation F₀ of the null likelihood L₀:

$$\max_{ heta} F_0(heta) \geq \max_{ heta} \mathcal{L}_0(heta).$$

• Define $\hat{\theta}_0^F := \underset{\theta}{\operatorname{argmax}} F_0(\theta)$, and consider the statistics

$$T_{n}' := \frac{\mathcal{L}_{0}\left(\widehat{\theta}_{1}\right)}{F_{0}\left(\widehat{\theta}_{0}^{F}\right)}$$

イロト イポト イヨト イヨト

- Computing the maximum likelihood (under the null) is sometimes computationally hard.
- Suppose one could come up with a relaxation F₀ of the null likelihood L₀:

$$\max_{\theta} F_0(\theta) \geq \max_{\theta} \mathcal{L}_0(\theta).$$

• Define $\hat{\theta}_0^F := \underset{\theta}{\operatorname{argmax}} F_0(\theta)$, and consider the statistics

$$T'_{n} := \frac{\mathcal{L}_{0}\left(\widehat{\theta}_{1}\right)}{F_{0}\left(\widehat{\theta}_{0}^{F}\right)}$$

► then the split LRT may proceed using T' instead of T. This is because F(\u03c6₀^F) ≥ L(\u03c6₀), and hence T'_n ≤ T_n.

イロン イヨン イヨン -

Sometimes the MLE may not exist since the likelihood function is unbounded. A smoothed likelihood has been proposed as an alternative.

(日)

- Sometimes the MLE may not exist since the likelihood function is unbounded. A smoothed likelihood has been proposed as an alternative.
- Consider a kernel k(x, y) such that $\int k(x, y) dy = 1$ for any x.

$$\widetilde{p}_{ heta}(y) := \int k(x,y)p_{ heta}(x)dx.$$

イロト イヨト イヨト イヨト

- Sometimes the MLE may not exist since the likelihood function is unbounded. A smoothed likelihood has been proposed as an alternative.
- Consider a kernel k(x, y) such that $\int k(x, y) dy = 1$ for any x.

$$\widetilde{p}_{\theta}(y) := \int k(x,y)p_{\theta}(x)dx.$$

• Denote the smoothed empirical density based on D_0 as

$$\widetilde{p}_n := rac{1}{|D_0|} \sum_{i \in D_0} k(X_i, \cdot).$$

イロト イポト イヨト イヨト

- Sometimes the MLE may not exist since the likelihood function is unbounded. A smoothed likelihood has been proposed as an alternative.
- Consider a kernel k(x, y) such that $\int k(x, y) dy = 1$ for any x.

$$\widetilde{p}_{ heta}(y) := \int k(x,y) p_{ heta}(x) dx.$$

• Denote the smoothed empirical density based on D_0 as

$$\widetilde{p}_n := rac{1}{|D_0|} \sum_{i \in D_0} k(X_i, \cdot).$$

Define the smoothed likelihood on D₀ as

$$\widetilde{\mathcal{L}}_0(heta) := \prod_{i \in D_0} \exp \int k(X_i, y) \log \widetilde{p}_{ heta}(y) dy \rightsquigarrow \widetilde{ heta}_0 := \arg \min_{ heta \in \Theta_0} KL(\widetilde{p}_n, \widetilde{p}_{ heta})$$

イロト イポト イヨト イヨト

As before, let θ̂₁ ∈ Θ be any estimator based on D₁. The smoothed split LRT:

reject
$$H_0$$
 if $\widetilde{U}_n > 1/lpha$, where $\widetilde{U}_n = rac{\widetilde{\mathcal{L}}_0(\widehat{ heta}_1)}{\widetilde{\mathcal{L}}_0(\widetilde{ heta}_0)}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

As before, let θ̂₁ ∈ Θ be any estimator based on D₁. The smoothed split LRT:

reject
$$H_0$$
 if $\widetilde{U}_n > 1/lpha$, where $\widetilde{U}_n = rac{\widetilde{\mathcal{L}}_0(\widehat{ heta}_1)}{\widetilde{\mathcal{L}}_0(\widetilde{ heta}_0)}$.

Fix $\psi \in \Theta$, we have

$$\begin{split} \mathbb{E}_{\theta^*} \left[\frac{\widetilde{\mathcal{L}}_0(\psi)}{\widetilde{\mathcal{L}}_0(\widetilde{\theta}_0)} \right]^{(i)} &\leq \mathbb{E}_{\theta^*} \left[\frac{\widetilde{\mathcal{L}}_0(\psi)}{\widetilde{\mathcal{L}}_0(\theta^*)} \right] = \mathbb{E}_{\theta^*} \left[\frac{\prod_{i \in D_0} \exp \int k(X_i, y) \log \widetilde{p}_{\psi}(y) dy}{\prod_{i \in D_0} \exp \int k(X_i, y) \log \widetilde{p}_{\theta^*}(y) dy} \right] \\ &= \prod_{i \in D_0} \int \exp \left(\int k(x, y) \log \frac{\widetilde{p}_{\psi}(y)}{\widetilde{p}_{\theta^*}(y)} dy \right) p_{\theta^*}(x) dx \leq \cdots \leq 1. \end{split}$$

メロト メタト メヨト メヨト 二日

Sequential Testing

92

æ

*ロ * * @ * * 注 * * 注 *

- Consider the following, standard, sequential testing/estimation setup:
- We observe an i.i.d. sequence Y_1, Y_2, \ldots from P_{θ^*} .

- Consider the following, standard, sequential testing/estimation setup:
- We observe an i.i.d. sequence Y_1, Y_2, \ldots from P_{θ^*} .
- Let $\hat{\theta}_{1,t-1}$ be any *non-anticipating* estimator based on the first t-1 samples.

イロト イボト イヨト イヨト

- Consider the following, standard, sequential testing/estimation setup:
- We observe an i.i.d. sequence Y_1, Y_2, \ldots from P_{θ^*} .
- Let $\hat{\theta}_{1,t-1}$ be any *non-anticipating* estimator based on the first t-1 samples.
- Denote the null MLE as $\hat{\theta}_{0,t} = \arg \max_{\theta \in \Theta_0} \prod_{i=1}^t p_{\theta}(Y_i)$.

イロト イボト イヨト イヨト

- Consider the following, standard, sequential testing/estimation setup:
- We observe an i.i.d. sequence Y_1, Y_2, \ldots from P_{θ^*} .
- Let $\hat{\theta}_{1,t-1}$ be any *non-anticipating* estimator based on the first t-1 samples.
- ▶ Denote the null MLE as $\hat{\theta}_{0,t} = \arg \max_{\theta \in \Theta_0} \prod_{i=1}^{t} p_{\theta}(Y_i)$.
- At any time t, reject the null and stop if

$$M_t := \frac{\prod_{i=1}^t p_{\widehat{\theta}_{1,i-1}}(Y_i)}{\prod_{i=1}^t p_{\widehat{\theta}_{0,t}}(Y_i)} > 1/\alpha.$$

(日)

- Consider the following, standard, sequential testing/estimation setup:
- We observe an i.i.d. sequence Y_1, Y_2, \ldots from P_{θ^*} .
- Let $\hat{\theta}_{1,t-1}$ be any *non-anticipating* estimator based on the first t-1 samples.
- ▶ Denote the null MLE as $\hat{\theta}_{0,t} = \arg \max_{\theta \in \Theta_0} \prod_{i=1}^{t} p_{\theta}(Y_i)$.
- At any time t, reject the null and stop if

$$M_t := \frac{\prod_{i=1}^t p_{\widehat{\theta}_{1,i-1}}(Y_i)}{\prod_{i=1}^t p_{\widehat{\theta}_{0,t}}(Y_i)} > 1/\alpha.$$

• Let τ_{θ} denote the stopping time when the data is drawn from P_{θ} .

イロト イポト イヨト イヨト

- Consider the following, standard, sequential testing/estimation setup:
- We observe an i.i.d. sequence Y_1, Y_2, \ldots from P_{θ^*} .
- Let $\hat{\theta}_{1,t-1}$ be any *non-anticipating* estimator based on the first t-1 samples.
- ▶ Denote the null MLE as $\hat{\theta}_{0,t} = \arg \max_{\theta \in \Theta_0} \prod_{i=1}^{t} p_{\theta}(Y_i)$.
- At any time t, reject the null and stop if

$$M_t := \frac{\prod_{i=1}^t p_{\widehat{\theta}_{1,i-1}}(Y_i)}{\prod_{i=1}^t p_{\widehat{\theta}_{0,t}}(Y_i)} > 1/\alpha.$$

• Let τ_{θ} denote the stopping time when the data is drawn from P_{θ} .

Theorem

The running MLE LRT has type I error at most α , meaning that $\sup_{\theta^* \in \Theta_0} P_{\theta^*}(\tau_{\theta^*} < \infty) \le \alpha$.

Proof

For M_t we can write:

$$M_{t} := \frac{\prod_{i=1}^{t} p_{\widehat{\theta}_{1,i-1}}(Y_{i})}{\prod_{i=1}^{t} p_{\widehat{\theta}_{0,t}}(Y_{i})} \leq \underbrace{\frac{\prod_{i=1}^{t} p_{\widehat{\theta}_{i-1}}(Y_{i})}{\prod_{i=1}^{t} p_{\theta^{*}}(Y_{i})}}_{L_{t}} = L_{t-1} \frac{p_{\widehat{\theta}_{t-1}}(Y_{t})}{p_{\theta^{*}}(Y_{t})}.$$

Ξ.

▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ →

Proof

For M_t we can write:

$$M_t := \frac{\prod_{i=1}^t p_{\widehat{\theta}_{1,i-1}}(Y_i)}{\prod_{i=1}^t p_{\widehat{\theta}_{0,t}}(Y_i)} \leq \underbrace{\frac{\prod_{i=1}^t p_{\widehat{\theta}_{i-1}}(Y_i)}{\prod_{i=1}^t p_{\theta^*}(Y_i)}}_{L_t} = L_{t-1} \frac{p_{\widehat{\theta}_{t-1}}(Y_t)}{p_{\theta^*}(Y_t)}.$$

▶ It is easy to verify that L_t is a nonnegative super-martingale with respect to the natural filtration $\mathcal{F}_t = \sigma(Y_1, \ldots, Y_t)$:

$$\mathbb{E}_{\theta^*}[L_t | \mathcal{F}_{t-1}] = \mathbb{E}_{\theta^*} \left[\frac{\prod_{i=1}^t p_{\widehat{\theta}_{i-1}}(Y_i)}{\prod_{i=1}^t p_{\theta^*}(Y_i)} \middle| \mathcal{F}_{t-1} \right]$$
$$= L_{t-1} \mathbb{E}_{\theta^*} \left[\frac{p_{\widehat{\theta}_{t-1}}(Y_t)}{p_{\theta^*}(Y_t)} \middle| \mathcal{F}_{t-1} \right] \le L_{t-1} \rightsquigarrow \text{Super-Martingale}$$

э

Proof

For M_t we can write:

$$M_t := \frac{\prod_{i=1}^t p_{\widehat{\theta}_{1,i-1}}(Y_i)}{\prod_{i=1}^t p_{\widehat{\theta}_{0,t}}(Y_i)} \leq \underbrace{\frac{\prod_{i=1}^t p_{\widehat{\theta}_{i-1}}(Y_i)}{\prod_{i=1}^t p_{\theta^*}(Y_i)}}_{L_t} = L_{t-1} \frac{p_{\widehat{\theta}_{t-1}}(Y_t)}{p_{\theta^*}(Y_t)}.$$

▶ It is easy to verify that L_t is a nonnegative super-martingale with respect to the natural filtration $\mathcal{F}_t = \sigma(Y_1, \ldots, Y_t)$:

$$\mathbb{E}_{\theta^*}[L_t | \mathcal{F}_{t-1}] = \mathbb{E}_{\theta^*} \left[\frac{\prod_{i=1}^t p_{\widehat{\theta}_{i-1}}(Y_i)}{\prod_{i=1}^t p_{\theta^*}(Y_i)} \middle| \mathcal{F}_{t-1} \right]$$
$$= L_{t-1} \mathbb{E}_{\theta^*} \left[\frac{p_{\widehat{\theta}_{t-1}}(Y_t)}{p_{\theta^*}(Y_t)} \middle| \mathcal{F}_{t-1} \right] \le L_{t-1} \rightsquigarrow \text{Super-Martingale}$$

Now we proceed as follows:

$$\begin{split} \mathcal{P}_{\theta^*} \big(\exists t \in \mathbb{N} : M_t > 1/\alpha \big) &\leq \mathcal{P}_{\theta^*} \big(\exists t \in \mathbb{N} : L_t > 1/\alpha \big) \\ &\stackrel{(\star)}{\leq} \mathbb{E}_{\theta^*} \big[L_0 \big] : \alpha \mathrel{\scriptstyle{\flat}} = \underline{\sigma} \alpha, \quad \text{for all } \beta \in \mathbb{R} \end{split}$$

Theorem [Ville (1939)]

For any nonnegative supermartingale L_t and any x > 1, we have

$$\mathbb{P}[\exists t: L_t \ge x] \le \frac{\mathbb{E}[L_0]}{x}$$

Proof.

The idea is to consider the following stopping time

$$N = \inf\{t \ge 1 : L_t \ge x\},\$$

and use the optional stopping time theorem.

Image: A mathematical states and a mathem

Conclusion

Behrad Moniri

103

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Inference based on the split likelihood ratio statistic (and variants) leads to simple tests and confidence sets with finite-sample guarantees.

《口》《聞》《臣》《臣》

- Inference based on the split likelihood ratio statistic (and variants) leads to simple tests and confidence sets with finite-sample guarantees.
- These methods are most useful in problems where standard asymptotic methods are difficult/impossible to apply.

Going forward: Optimality? Power of the Test? How does the choice of θ̂₁ affect the power of the test?

(日)

Thank You!

Behrad Moniri

106

æ

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>