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What is this presentation about?

Published in the Proceedings of the National Academy of Sciences (PNAS).
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Introduction

▶ Pillars of classical statistics: Likelihood ratio test, and confidence
intervals obtained from asymptotically pivotal estimators.

▶ These methods rely on large sample asymptotic theory and this
often need regularity conditions.

▶ When these conditions do not hold, there is no general method for
statistical inference, with provable guarantees and these settings are
typically considered in an ad-hoc manner.
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Summary

▶ One-sentence summary:

They propose a general method for constructing confidence sets and
hypothesis tests that have finite-sample guarantees without
regularity conditions. ⇝ Universal Inference.

▶ Based on a modified version of the usual likelihood ratio statistic,
called “the split likelihood ratio statistics”.

▶ They also develop various extensions of this basic methods.
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Notation

▶ Consider a parametric family {Pθ : θ ∈ Θ}, for some set Θ.

▶ Assume that each distribution has density with respect to some fixed
measure µ. Let the corresponding densities be pθ.

▶ We are given Y1, . . . ,Y2n ∼ Pθ∗ for some θ∗ ∈ Θ.

▶ We want to construct confidence intervals for θ∗.
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Recap: Regular Models
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Regular Models: Likelihood-Ratio Statistics

For regular models, we proceed as follows:

▶ If Θ = Rd , set

An =

{
θ : 2 log

L(θ̂)
L(θ)

≤ cα,d

}
,

▶ cα,d is the α-quantile of a χ2
d distribution.

▶ L(·) is the likelihood function.
▶ θ̂ is the MLE.

Wilks’ Theorem (Wilks, 1938)

For regular models,
Pθ∗ (θ

∗ ∈ An) → 1− α.
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Universal Confidence Intervals
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Universal: Split Likelihood-Ratio Statistics

Confidence Intervals with Split Likelihood-Ratio Statistics

▶ Split data into two sets D0, D1 randomly.

▶ Let θ̂1 be any estimator constructed from D1.
This can be the MLE, a Bayes estimator that utilizes prior knowledge, a

robust estimator, etc.

▶ The likelihood function based on D0 is L0(θ) =
∏

i∈D0
pθ(Yi )

▶ Define the split likelihood ratio statistic as

Tn(θ) =
L0(θ̂1)

L0(θ)

▶ The universal confidence set is

Cn =
{
θ ∈ Θ : Tn(θ) ≤

1

α

}
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Discussion

▶ If we did not split the data and θ̂1 was the MLE, then Tn(θ) would
have been the usual likelihood ratio statistic.

▶ Can we prove an analog of Wilks’ theorem here? The answer is yes.

▶ Finding or approximating the distribution of the likelihood ratio
statistic is highly nontrivial in irregular models. The split LRS avoids
these complications.
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Coverage

Theorem
Cn is a finite-sample valid 1− α confidence set for θ∗, meaning that

Pθ∗(θ
∗ ∈ Cn) ≥ 1− α.

The proof is extremely simple.
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Proof

Proof.

Consider any fixed ψ ∈ Θ and let A denote the support of Pθ∗ .

Eθ∗
[
L0(ψ)

L0 (θ∗)

]
= Eθ∗

[ ∏
i∈D0

pψ (Yi )∏
i∈D0

pθ∗ (Yi )

]

=

∫
A

∏
i∈D0

pψ (yi )∏
i∈D0

pθ∗ (yi )

∏
i∈D0

pθ∗ (yi ) dy1 · · · dyn

=

∫
A

∏
i∈D0

pψ (yi ) dy1 · · · dyn ≤
∏
i∈D0

[∫
pψ (yi ) dyi

]
= 1

θ̂1 is fixed when we condition on D1. So we have

Eθ∗ [Tn (θ
∗) | D1] = Eθ∗

L0

(
θ̂1

)
L0 (θ∗)

∣∣∣∣∣∣D1

 ≤ 1.
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Proof

Now, using Markov’s inequality,

Pθ∗ (θ
∗ /∈ Cn) = Pθ∗

(
Tn (θ

∗) >
1

α

)
≤ αEθ∗ [Tn (θ

∗)]

= αEθ∗

L0

(
θ̂1

)
L0 (θ∗)

 = αEθ∗

Eθ∗

L0

(
θ̂1

)
L0 (θ∗)

∣∣∣∣∣∣D1

 ≤ α

This completes the proof.
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Non-parametric Settings

▶ The parametric setup adopted above generalizes easily to
nonparametric settings as long as we can calculate a likelihood.

▶ For a collection of densities P, and a true density p∗ ∈ P , suppose
we use D1 to identify p̂1 ∈ P, and D0 to calculate

Tn(p) =
∏
i∈D0

p̂1 (Yi )

p (Yi )
.

▶ We then define, Cn = {p ∈ P : Tn(p) ≤ 1
α}, and our previous

argument ensures that

Pp∗(p∗ ∈ Cn) ≥ 1− α.
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Universal Hypothesis Testing
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Universal Hypothesis Testing

▶ Let Θ0 ⊂ Θ be a null-set and consider testing

H0 : θ
∗ ∈ Θ0 versus θ∗ /∈ Θ0

▶ Using the duality between hypothesis testing and confidence
intervals:
We simply reject the null hypothesis if Cn ∩Θ0 = ∅. The type I error
of this test is clearly at most α.

▶ Can we find a computationally efficient way?
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Universal Hypothesis Testing

▶ Let θ̂1 be any estimator constructed from D1.

▶ Let θ̂0 := argmax
θ∈Θ0

L0(θ) be the MLE under null from D0.

▶ Reject H0 if
L0(θ̂1)

L0(θ̂0)
>

1

α
.

Theorem
This test controls the type I error at level α.

Proof.
The proof is one line.

Pθ∗
(
L0

(
θ̂1

)
/L0

(
θ̂0

)
> 1/α

)
≤ αEθ∗

L0

(
θ̂1

)
L0

(
θ̂0

)
 ≤ αEθ∗

L0

(
θ̂1

)
L0 (θ∗)

 ≤ α
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>

1

α
.

Theorem
This test controls the type I error at level α.

Proof.
The proof is one line.

Pθ∗
(
L0

(
θ̂1

)
/L0

(
θ̂0

)
> 1/α

)
≤ αEθ∗

L0

(
θ̂1

)
L0

(
θ̂0

)
 ≤ αEθ∗

L0

(
θ̂1

)
L0 (θ∗)

 ≤ α
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Some Discussions
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What are we doing?

▶ Regular models:
Compare the log-likelihood ratio to the (1− α)-quantile of a χ2

distribution (dof = dimension of null - dimension of alternative)

▶ This paper:
Compare the split-log-split-likelihood ratio to
log(1/α)⇝ (1− α)-quantile of a χ2 distribution with one degree of
freedom.

Behrad Moniri Universal Inference 53



What are we doing?

▶ Regular models:
Compare the log-likelihood ratio to the (1− α)-quantile of a χ2

distribution (dof = dimension of null - dimension of alternative)

▶ This paper:
Compare the split-log-split-likelihood ratio to
log(1/α)⇝ (1− α)-quantile of a χ2 distribution with one degree of
freedom.

Behrad Moniri Universal Inference 54



Poor Man’s Chernoff Bound

▶ You are only using Markov?! This isn’t tight enough!

Yes and No!

▶ We are really using the fact that log L0(θ̂1)

L0(θ̂0)
has an exponential tail,

just as an asymptotic argument would.

▶ In true Chernoff bounds:

Eθ∗
[
exp

(
a log

L0(θ̂1)

L0(θ̂0)

)]
≤ MGF of χ2,N , . . .

▶ One should view this proof as a poor man’s Chernoff bound:

Eθ∗
[
exp

(
log

L0(θ̂1)

L0(θ̂0)

)]
≤ 1
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Sanity Check: Regular Models
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Sanity Check: Gaussian Models

▶ Suppose that Y1, . . . ,Yn ∼ Nd(θ, I ) where θ ∈ Rd .

▶ Let cα,d and zα denote the upper α quantiles of the χ2
d and

standard Gaussian respectively.

▶ The usual confidence set for θ based on the LRT can be computed
as follows:
▶ The likelihood function and MLE:

L(θ) =
n∏

i=1

1√
2π

exp

(
− (Yi − µ)2

2

)
, θ̂MLE = Ȳ

An =
{
θ : ∥θ − Y ∥2 ≤ cα,d

n

}
=

{
θ : ∥θ − Y ∥2 ≤ d +

√
2dzα + o(

√
d)

n

}
.
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Sanity Check: Gaussian Models

▶ Denoting the sample means Y 1 and Y 0 we see that:

logL0(Y 1)− logL0(θ) = −
(n
2

) ∥Y 0 − Y 1∥2

2
+
(n
2

) ∥θ − Y 0∥2

2
.

▶ The universal confidence set is

Cn =
{
θ : logL0(Y 1)− logL0(θ) ≤ log(1/α)

}
=

{
θ : ∥θ − Y 0∥2 ≤

4

n
log

(
1

α

)
+ ∥Y 0 − Y 1∥2

}
.

▶ Note that ∥Y 0 − Y 1∥2 = Op(d/n), so both sets have radii Op(d/n).

▶ For constant α, the radius is four times larger.
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Sanity Check: Regular Models

1. Identifiable: any θ ̸= θ∗ it is the case that Pθ ̸= Pθ∗ .

2. Differentiable in quadratic mean (DQM) at θ∗: there exists a
function sθ∗ such that:∫ [

√
pθ −

√
pθ∗ − 1

2
(θ − θ∗)T sθ∗

√
pθ∗

]2
dµ = o(∥θ − θ∗∥2), as θ → θ∗.

3. The parameter space Θ ⊂ Rd is compact.

4. Smoothness: There is a function ℓ with supθ Ex∼Pθ
ℓ2(X ) <∞ s.t.

∀θ1, θ2 ∈ Θ : | log pθ1(x)− log pθ2(x)| ≤ ℓ(x)∥θ1 − θ2∥.

5. A consequence of the DQM condition is that the Fisher information
matrix is well-defined, and we assume it is non-degenerate.
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Sanity Check: Regular Models

Theorem
Under the regularity conditions in the previous slide, and
||θ̂1 − θ∗|| = Op(1/

√
n), the split LRT has diameter Op(

√
log(1/δ)/n)

Proof.
The high level idea: it suffices to show that for all θ sufficiently far from
θ∗, we have

L0(θ)

L0(θ̂1)
≤ α.
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Example of an Irregular Model
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Example: Mixture Models

▶ Let Y1, . . . ,Y2n ∼ P where Yi ∈ R.
▶ We want to test

H0 : P ∈ M1 versus H1 : P ∈ M2,

where Mk denotes the set of mixtures of k Gaussians, with an
appropriately restricted parameter space Θ.

▶ LRT has an intractable limiting distribution. There is no known
confidence set for mixture problems with guaranteed coverage
properties.
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Example: Mixture Models

▶ The true model is assumed to be 1
2ϕ(y ;−µ, 1) +

1
2ϕ(y ;µ, 1)

▶ The null: µ = 0. We set α = 0.1 and n = 200.

▶ Let θ̂1 be the MLE under M2.

▶ This MLE is calculated using the EM algorithm (does it converge?
IDK!)
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Example: Mixture Models

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

µ

P
ow

er

Figure: Black = Universal / Red = Bootstrap

The bootstrap test does not have any guarantee on the type I error.
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Extensions
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De-randomization

▶ The universal method involves randomly splitting the data and the
final inferences will depend on the randomness of the split.

▶ For the test to work, we needed Eθ∗ [Tn] ≤ 1 where Tn = L0(θ̂1)

L0(θ̂0)
.

▶ Imagine that we obtained B such statistics Tn,1...,Tn,B with the
same property. Let

T̄n = B−1
B∑
j=1

Tn,j .

Then we still have that Eθ∗ [T̄n].

▶ K-fold and All split.

▶ Broader Impact:
These methods will potentially lead to cherry-picking :)
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Upper Bounding the Likelihood

▶ Computing the maximum likelihood (under the null) is sometimes
computationally hard.

▶ Suppose one could come up with a relaxation F0 of the null
likelihood L0:

max
θ

F0(θ) ≥ max
θ

L0(θ).

▶ Define θ̂F0 := argmax
θ

F0(θ), and consider the statistics

T ′
n :=

L0

(
θ̂1

)
F0

(
θ̂F0

)
▶ then the split LRT may proceed using T ′ instead of T . This is

because F (θ̂F0 ) ≥ L(θ̂), and hence T ′
n ≤ Tn.
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Smoothed Likelihood

▶ Sometimes the MLE may not exist since the likelihood function is
unbounded. A smoothed likelihood has been proposed as an
alternative.

▶ Consider a kernel k(x , y) such that
∫
k(x , y)dy = 1 for any x .

p̃θ(y) :=

∫
k(x , y)pθ(x)dx .

▶ Denote the smoothed empirical density based on D0 as

p̃n :=
1

|D0|
∑
i∈D0

k(Xi , ·).

▶ Define the smoothed likelihood on D0 as

L̃0(θ) :=
∏
i∈D0

exp

∫
k(Xi , y) log p̃θ(y)dy ⇝ θ̃0 := arg min

θ∈Θ0

KL(p̃n, p̃θ)
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▶ As before, let θ̂1 ∈ Θ be any estimator based on D1. The smoothed
split LRT:

reject H0 if Ũn > 1/α, where Ũn =
L̃0(θ̂1)

L̃0(θ̃0)
.

Fix ψ ∈ Θ, we have

Eθ∗
[
L̃0(ψ)

L̃0(θ̃0)

]
(i)

≤ Eθ∗
[
L̃0(ψ)

L̃0(θ∗)

]
= Eθ∗

[ ∏
i∈D0

exp
∫
k(Xi , y) log p̃ψ(y)dy∏

i∈D0
exp

∫
k(Xi , y) log p̃θ∗(y)dy

]

=
∏
i∈D0

∫
exp

(∫
k(x , y) log

p̃ψ(y)

p̃θ∗(y)
dy

)
pθ∗(x)dx ≤ · · · ≤ 1.
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Sequential Testing
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Sequential Split Likelihood Ratio Test

▶ Consider the following, standard, sequential testing/estimation
setup:

▶ We observe an i.i.d. sequence Y1,Y2, . . . from Pθ∗ .

▶ Let θ̂1,t−1 be any non-anticipating estimator based on the first t − 1
samples.

▶ Denote the null MLE as θ̂0,t = argmaxθ∈Θ0

∏t
i=1 pθ(Yi ).

▶ At any time t, reject the null and stop if

Mt :=

∏t
i=1 pθ̂1,i−1

(Yi )∏t
i=1 pθ̂0,t (Yi )

> 1/α.

▶ Let τθ denote the stopping time when the data is drawn from Pθ.

Theorem
The running MLE LRT has type I error at most α, meaning that
supθ∗∈Θ0

Pθ∗(τθ∗ <∞) ≤ α.
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Proof

▶ For Mt we can write:

Mt :=

∏t
i=1 pθ̂1,i−1

(Yi )∏t
i=1 pθ̂0,t (Yi )

≤
∏t

i=1 pθ̂i−1
(Yi )∏t

i=1 pθ∗(Yi )︸ ︷︷ ︸
Lt

= Lt−1

pθ̂t−1
(Yt)

pθ∗(Yt)
.

▶ It is easy to verify that Lt is a nonnegative super-martingale with
respect to the natural filtration Ft = σ(Y1, . . . ,Yt):

Eθ∗ [Lt |Ft−1] = Eθ∗
[∏t

i=1 pθ̂i−1
(Yi )∏t

i=1 pθ∗(Yi )

∣∣∣∣∣ Ft−1

]

= Lt−1Eθ∗
[
pθ̂t−1

(Yt)

pθ∗(Yt)

∣∣∣∣∣ Ft−1

]
≤ Lt−1 ⇝ Super-Martingale

▶ Now we proceed as follows:

Pθ∗(∃t ∈ N : Mt > 1/α) ≤ Pθ∗(∃t ∈ N : Lt > 1/α)

(⋆)

≤ Eθ∗ [L0] · α = α,
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(⋆) Ville’s Inequality

Theorem [Ville (1939)]

For any nonnegative supermartingale Lt and any x > 1, we have

P[∃t : Lt ≥ x ] ≤ E[L0]
x

Proof.
The idea is to consider the following stopping time

N = inf{t ≥ 1 : Lt ≥ x},

and use the optional stopping time theorem.
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Conclusion
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Conclusion

▶ Inference based on the split likelihood ratio statistic (and variants)
leads to simple tests and confidence sets with finite-sample
guarantees.

▶ These methods are most useful in problems where standard
asymptotic methods are difficult/impossible to apply.

▶ Going forward: Optimality? Power of the Test?
How does the choice of θ̂1 affect the power of the test?
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Thank You!
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