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@ Introduction

@ Linear Regression

© Random Features Regression

O Accuracy-on-the-line and Agreement-on-the-line

Last part is based on a recent joint work with Donghwan Lee,
Xinmeng Huang, Edgar Dobriban, and Hamed Hassani.
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Introduction

e State-of-the-art deep learning models have millions or
billions of parameters.

® Resnetl8: 11 million
e DALL-E 2: 3.5 billion
® Chat GPT: 175 billion

* Common wisdom suggests they should overfit. But this
can’t be true :)
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Experiments on MNIST
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Figure: [Belkin et al., 2018].
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@ Double Descent

Question:
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Question:

Is double descent unique to deep neural networks?
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@ Double Descent

Question:

Is double descent unique to deep neural networks?

No! It can even be seen in very simple models.
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Linear Regression



High—Dimensional Linear Regression

Lets first define the problem.
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High—Dimensional Linear Regression

Lets first define the problem.
® Data Generation:

B eRY Y e R4
{xit, ~N(0,%) 1)
yi = B'x; + & where & ~ N(0,0?)

¢ Fit with ridge regression:

- I T2 2
ﬁx—argirel]g} [n;(yz b xz) +/\Hb||z] )
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® Ridgeless Limit A\ — 0:

Bo=XTX)*XTy
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® Ridgeless Limit A\ — 0:

Bo=XTX)*XTy

In the overparameterized case, this is the minimum-norm
interpolator.
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® Ridgeless Limit A\ — 0:

Bo=XTX)*XTy

In the overparameterized case, this is the minimum-norm
interpolator.

e When X has full column rank: 5y = (X' X)X Y.
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@ Risk of the estimator

e Question: What is the risk of 3y?
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@ Risk of the estimator

e Question: What is the risk of 3y?

A~

Rx (3;8) = E[(x, B — x, 8)*| X]

0'2 ~
=gTsng+ 2T (Sty)
—_———
. —_————

wherelI=1— 3%, and & = %XTX.
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Proportional Regime

2
Rx(B: Bo) = ATIISTIS + % Tr (2+2) M=1-355
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Proportional Regime

2
Rx(B: Bo) = ATIISTIS + % Tr (2+2) M=1-355

® This is not that insightful!

® How does Rx(fy, 3) depend on sample size and
dimension?

® This is well known in the regime where n >> d.
(classical asymptotic statistics)

® What about the regime where d and 7 are of the same
order?
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Proportional Regime

2
Rx(B: Bo) = ATIISTIS + % Tr (2+2) M=1-355

This is not that insightful!

How does Rx(/, 5) depend on sample size and
dimension?

This is well known in the regime where n >> d.
(classical asymptotic statistics)

What about the regime where d and n are of the same
order? Let

d
n— oo, d— o0, £—>7.

[Tulino and Verdu, 2004], [Dobriban and Wager, 2015], [Hastie et al., 2020].
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A~ 2 A A
Rx(5; Bo) = BTG + % Tr (z+z) M=I—-$+$
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Computing the risk

A~ 2 A A~ A
Rx(5; Bo) = BTG + % Tr (z+z) M=I—-$+$

One can use the Marchenko-Pastur Theorem to compute this
limit.

Figure: Histogram of the eigenvalues of 3} with d/n — v
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o= v<1

2 421

2
Rx(53; o) = TIISIIS + % Tr (2*2) _yas. {
5

where d/n — v and ||S|[* — r?, where ¥ = [ for simplicity.
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o’ v <1

1 *
;)-l-j v>1

2
Rx(53; o) = TIISIIS + % Tr (2*2) _yas. {
5

where d/n — v and ||S|[* — r?, where ¥ = [ for simplicity.
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2 4 — SNR=1
— SNR=233
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— SNR=5
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This is good, but not double descent :)
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Computing the risk

SNR=1
SNR =2.33
SNR = 3.66
SNR=5

Risk

0.1 0.2 0.5 1.0 2.0 5.0 10.0

This is good, but not double descent :)

We need a mechanism to vary the overparameterization.

14/34 Behrad Moniri High Dimensional Regression



Random Features Regression



Random Features Regression

* Weight matrix W € RN*? with i.i.d. random N(0, 1)
entries, and activation function o : R — R:

Fw(x) =0 (\}an> € RN,
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Random Features Regression

* Weight matrix W € RN*? with i.i.d. random N(0, 1)
entries, and activation function o : R — R:

Fw(x) =0 (\}an> € RN,

® The random features model is defined by

fivalx) = \}NQTFw(x), -

® Benefit: variable capacity ( N vs d parameters)
® Neural network at early phase of training.
[Rahimi and Recht, 2007]
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Training a RF Regression

® The random features model is defined by

1
fw,a(x) = —=a'Fy(x), acRV.

VN
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Training a RF Regression

® The random features model is defined by

1
fw,a(x) = —=a'Fy(x), acRV.

VN
® We train it using ridge regularization:
n

. ) 2
ay = arg;gﬂl@% z; Wi — fw,a(x:))* + Aal3
i=
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Training a RF Regression

® The random features model is defined by

L+ N
xX)=—=a Fw(x), aeR".
fW,ll( ) \/N W( )
® We train it using ridge regularization:
n

. ) 2
ay = arg;gﬂlél] z; Wi — fw,a(x:))* + Aal3
i=

® Proportional limit:
n,N,d — oo, with N/d — 1, n/d — ¢.

[Mei and Montanari, 2019] and [Adlam and Pennington, 2020].
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Universality Results

¢ Input: For linear regression and random features
regression, the distribution of X can typically be replaced
with a Gaussian with the same mean and covariance with
no change.
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Universality Results

¢ Input: For linear regression and random features
regression, the distribution of X can typically be replaced
with a Gaussian with the same mean and covariance with
no change.

® Nonlinearity: In RF regression, we can replace
Fw(x) ~ u1Wx + u20.

where © is an independent Gaussian vector. Constants i1
and p» are chosen to match the first and second moments.

® Good or bad? Can only learn a linear function; hence, set
y; = B7x; + ¢; as before.
® One gradient step on W? [Ba et al, 2022]

[Hu and Lu, 2020], [Mei and Montanari, 2020], [Hassani and Javanmard
2022], [Montanari and Saeed, 2022] and many others.
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' Double Descent!

4 m T T
= Predicted test error
—— Predicted training error
35 « Simulated test error
« Simulated training error
3
25
2
1.5
1
05
0
0 1 2 3 4

¥1/v2 = N/n

A =0+

= Predicted test error

U1 /42 = N/n

A=3x10"*
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Double Descent disappears with Optimal Ridge

=== Train A =0
e Test A = 0

====Train A optimal
== Test A optimal

Y1/yp2 = N/n
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Accuracy-on-the-line

and
Agreement-on-the-line



@ Distribution Shift

® (Classici.i.d. assumption between train/test:

Ptrain(x) = Ptest(x)a Ptrain(y|x) = Ptest(y‘x)
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@ Distribution Shift

® (Classici.i.d. assumption between train/test:

Ptrain(x) = Ptest<x)a Ptrain(y|x) = Ptest(y‘x)

e ] et’s assume that this does not hold.
Sketch Cartoon Art painting Photo

*?xiﬁﬂﬁﬁ;
= 0) w2 R

Training set Test set
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Distribution Shift

® (Classici.i.d. assumption between train/test:

Ptrain(x) = Ptest(x)a Ptrain(y|x) = Ptest(y‘x)

e ] et’s assume that this does not hold.
Sketch Cartoon Art painting Photo
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Training set Test set

® How does our model perform in the test domain?
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Distribution Shift

Classic i.i.d. assumption between train/test:

Ptrain(x) = Ptest(x)a Ptrain(y|x) = Ptest(y‘x)

e ] et’s assume that this does not hold.
Sketch Cartoon Art painting Photo

Ui R R tﬂﬁ 3o
7 6 s B

Training set Test set

® How does our model perform in the test domain?
Labeled data from test?
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' Observation 1: Accuracy-on-the-line

CIFAR-10.2 test accuracy

® Dating at least back to [Recht et al., 2019], we know that:

©
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Hyperparameter variation

Training duration variation Training set size variation

Linear Fit e Linear Fit 7’ Linear Fit 7
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CIFAR-10 test accuracy CIFAR-10 test accuracy CIFAR-10 test accuracy
—_-_y=X ® ResNet ® Random Features Ridge Regression
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Accuracy-on-the-line in RF Regression

[Tripuraneni, Adlam, and Pennington, 2021] considered
covariate shift in random features model.
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[Tripuraneni, Adlam, and Pennington, 2021] considered
covariate shift in random features model.

Train: x ~ N(0,%;) — Test: x ~ N (0, ;)

N N
)} =)

N

Error component
o

o

— Total error
Bias
Variance

—0=12

n B
o
o

— 6=-0.5 (hard)
6= 1.5 (easy)
-~ Identity line

E“ (Shifted test errof

0,01 0.10 1 10 100
Overparameterization ratio, ¢/y

-15 -1.0 -05 0.0
—Eﬂw (Unshifted test error)
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Error component

[Tripuraneni, Adlam, and Pennington, 2021] considered
covariate shift in random features model.

Train: x ~ N(0,%;) — Test: x ~ N (0, ;)

— Total error
Bias
Variance

—0=12

n B
o
o

— 6=-0.5 (hard)
6= 1.5 (easy)
-~ Identity line

—E“ (Shifted test errof

Does not necessarily hold for other shifts!

0.01 0.10 1 10 100
Overparameterization ratio, ¢/y

-15 -1.0 -05 0.0
—Eﬂw (Unshifted test error)
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Observation 2: Agreement-on-the-line

® Now back to the main question. Estimating test with only
unlabeled data from test domain.

~25/34 Behrad Moniri High Dimensional Regression



Observation 2: Agreement-on-the-line

® Now back to the main question. Estimating test with only
unlabeled data from test domain.

¢ Recently, [Baek et al., 2022] suggested using
(dis)agreement-on-the-line:
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Observation 2: Agreement-on-the-line

® Now back to the main question. Estimating test with only

unlabeled data from test domain.

Recently, [Baek et al., 2022] suggested using
(dis)agreement-on-the-line:

CIFAR-10-C Fog Accuracy CIFAR-10-C Fog Agreement
90 90
0%
s =
570 %8 970
] ” o
< Ve =)
> "/ <
7/ =)
o
& 50 . £ 50
7
//
30 /,’ 30
#
30 50 70 920 30 50 70 920
CIFAR-10 Test Accuracy CIFAR-10 Test Agreement
= Neural Network Random Forest == SVM AdaBoost
- Random Features KNN = Linear Model === Accuracy
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Types of (Dis)agreement?

Based on the type of randomness shared, we can define three
non-trivial notions of disagreement:

¢ Independent:

Disy = EWth,Xl,Yl,Xz,YLX [(9W17X17Y1 (x> - 9W27X2,Y2(x))2]
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Types of (Dis)agreement?

Based on the type of randomness shared, we can define three
non-trivial notions of disagreement:
¢ Independent:

Disy = EWth,Xl,Yl,Xz,YLX [(9W17X17Y1 (x> - 9W27X2,Y2(x))2]

® Shared Sample:

Disss = Ew,,w, x,v.x [(f/wl,X,Y(X) — sz,x,Y(x))z}
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Types of (Dis)agreement?

Based on the type of randomness shared, we can define three
non-trivial notions of disagreement:
¢ Independent:

Disy = EWth,Xl,Yl,Xz,YLX [@Wl,XhYl (x> - 9W27X2,Y2(x))2]

® Shared Sample:

Disss = Ew,,w, x,v.x [(f/wl,X,Y(X) — sz,x,Y(x))z}

¢ Shared Weights:

Dissw = Ew,x;,v,,%,Y,.x [(?wxl,n (X) —ywx,. v, (X))Z}
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Asymptotics of Disagreement

We derive the asymptotics of disagreement in the proportional
limit:
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Asymptotics of Disagreement

We derive the asymptotics of disagreement in the proportional
limit:

—— I disagr.
SS disagr.
= SW disagr.

Target disagr.
w
1
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Agreement—on—the-line in RF Regression

Agreement-on-the-line is a nuanced phenomenon:
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Agreement-on—the-line in RF Regression

Agreement-on-the-line is a nuanced phenomenon:

® Overparameterized vs. Underparameterized (ridgeless):
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greement—on—the—line in RF Regression

Agreement-on-the-line is a nuanced phenomenon:

® Overparameterized vs. Underparameterized (ridgeless):

1.50 .
I i
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o Risk //
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2 w© / /
< Iy /
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Ed e g
3 4
= 0.50 S/
/
0254/
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Source disagr. Source
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Agreement—on—the-line in RF Regression

Agreement-on-the-line is a nuanced phenomenon.
® Non-zero Ridge:

— _ —4
0.005 - v=10
y=10"?
0.004 { —— =102
=] -1
K] — 7=10
£ 0.003
!
53
A 0.002 A
0.001 1
0.000 |

/s
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Universality!

() ®) ()
. s 4 P
0.3 4 ° - - ° P g
) // 34— Rl .
= 024 _—
5,02 — )] . Risk
53 SS disagr.
] 0.1 4
0.1 i
0.0 0.0 4 04
T T T T T T T T T T T
0.0 0.1 0.2 0.3 0.0 0.2 04 0.6 0.0 0.2 0.4
Source Source Source

Figure 4: (a) CIFAR-10-C-Snow (severity 3) (b) Tiny ImageNet-C-Fog (severity 3) (¢) CamelyonlT;
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Thank You!
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