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Introduction



• State-of-the-art deep learning models have millions or
billions of parameters.

• Resnet18: 11 million

• DALL-E 2: 3.5 billion

• Chat GPT: 175 billion

• Common wisdom suggests they should overfit. But this
can’t be true :)
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Figure: [Belkin et al., 2018].

Experiments on MNIST
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Question:

Is double descent unique to deep neural networks?

No! It can even be seen in very simple models.

Double Descent
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Linear Regression



Lets first define the problem.

• Data Generation:
β ∈ Rd,Σ ∈ Rd×d

{xi}n
i=1 ∼ N (0,Σ)

yi = β⊤xi + εi where εi ∼ N (0, σ2)

(1)

• Fit with ridge regression:

β̂λ = argmin
b∈Rd

[
1
n

n∑
i=1

(
yi − b⊤xi

)2
+ λ||b||22

]
(2)

High-Dimensional Linear Regression
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• Ridgeless Limit λ→ 0:

β̂0 = (X⊤X)+X⊤Y

In the overparameterized case, this is the minimum-norm
interpolator.

• When X has full column rank: β̂0 = (X⊤X)−1X⊤Y.

Ridgeless Limit
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• Question: What is the risk of β̂0?

RX (β̂;β) = E[(x⊤o β̂ − x⊤o β)
2 |X ]

= βTΠΣΠβ︸ ︷︷ ︸
BX(β̂;β)

+
σ2

n
Tr

(
Σ̂+Σ

)
︸ ︷︷ ︸

VX(β̂;β)

where Π = I − Σ̂+Σ̂, and Σ̂ = 1
n X⊤X.

Risk of the estimator
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RX(β̂;β0) = βTΠΣΠβ +
σ2

n
Tr

(
Σ̂+Σ

)
Π = I − Σ̂+Σ̂

• This is not that insightful!
• How does RX(β0, β̂) depend on sample size and

dimension?
• This is well known in the regime where n >> d.

(classical asymptotic statistics)

• What about the regime where d and n are of the same
order? Let

n → ∞, d → ∞,
d
n
→ γ.

[Tulino and Verdu, 2004], [Dobriban and Wager, 2015], [Hastie et al., 2020].

Proportional Regime
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RX(β̂;β0) = βTΠΣΠβ +
σ2

n
Tr

(
Σ̂+Σ

)
Π = I − Σ̂+Σ̂

One can use the Marchenko–Pastur Theorem to compute this
limit.

Figure: Histogram of the eigenvalues of Σ̂ with d/n → γ

.

Computing the risk
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RX(β̂;β0) = βTΠΣΠβ +
σ2

n
Tr

(
Σ̂+Σ

)
→a.s.

{
σ2 γ

1−γ γ < 1
r2(1 − 1

γ ) +
σ2

γ−1 γ ≥ 1

where d/n → γ and ||β||2 → r2, where Σ = I for simplicity.

Computing the risk
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This is good, but not double descent :)

We need a mechanism to vary the overparameterization.

Computing the risk
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Random Features Regression



• Weight matrix W ∈ RN×d with i.i.d. random N(0, 1)
entries, and activation function σ : R → R:

FW(x) = σ

(
1√
d

Wx
)

∈ RN.

• The random features model is defined by

fW, a(x) =
1√
N

a⊤FW(x), a ∈ RN.

• Benefit: variable capacity ( N vs d parameters)
• Neural network at early phase of training.

[Rahimi and Recht, 2007]
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• The random features model is defined by

fW, a(x) =
1√
N

a⊤FW(x), a ∈ RN.

• We train it using ridge regularization:

âλ = arg min
a∈RN

[
n∑

i=1

(yi − fW, a(xi))
2 + λ∥a∥2

2

]

• Proportional limit:

n,N, d → ∞, with N/d → ψ, n/d → ϕ.

[Mei and Montanari, 2019] and [Adlam and Pennington, 2020].

Training a RF Regression
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• Input: For linear regression and random features
regression, the distribution of X can typically be replaced
with a Gaussian with the same mean and covariance with
no change.

• Nonlinearity: In RF regression, we can replace

FW(x) ≈ µ1Wx + µ2Θ.

where Θ is an independent Gaussian vector. Constants µ1
and µ2 are chosen to match the first and second moments.

• Good or bad? Can only learn a linear function; hence, set
yi = β⊤xi + εi as before.

• One gradient step on W? [Ba et al, 2022]

[Hu and Lu, 2020], [Mei and Montanari, 2020], [Hassani and Javanmard
2022], [Montanari and Saeed, 2022] and many others.

Universality Results
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Double Descent!
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Double Descent disappears with Optimal Ridge
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Accuracy-on-the-line

and
Agreement-on-the-line



• Classic i.i.d. assumption between train/test:

Ptrain(x) = Ptest(x), Ptrain(y|x) = Ptest(y|x)

• Let’s assume that this does not hold.

• How does our model perform in the test domain?
• Labeled data from test?

Distribution Shift
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• Dating at least back to [Recht et al., 2019], we know that:

Observation 1: Accuracy-on-the-line
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[Tripuraneni, Adlam, and Pennington, 2021] considered
covariate shift in random features model.

Train: x ∼ N (0,Σs) → Test: x ∼ N (0,Σt)

Does not necessarily hold for other shifts!

Accuracy-on-the-line in RF Regression
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• Now back to the main question. Estimating test with only
unlabeled data from test domain.

• Recently, [Baek et al., 2022] suggested using
(dis)agreement-on-the-line:

Observation 2: Agreement-on-the-line
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Based on the type of randomness shared, we can define three
non-trivial notions of disagreement:

• Independent:

DisI = EW1,W2,X1,Y1,X2,Y2,x

[
(ŷW1,X1,Y1(x)− ŷW2,X2,Y2(x))

2
]

• Shared Sample:

DisSS = EW1,W2,X,Y,x

[
(ŷW1,X,Y(x)− ŷW2,X,Y(x))

2
]

• Shared Weights:

DisSW = EW,X1,Y1,X2,Y2,x

[
(ŷW,X1,Y1(x)− ŷW,X2,Y2(x))

2
]

Types of (Dis)agreement?

26/34 Behrad Moniri High Dimensional Regression



Based on the type of randomness shared, we can define three
non-trivial notions of disagreement:

• Independent:

DisI = EW1,W2,X1,Y1,X2,Y2,x

[
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We derive the asymptotics of disagreement in the proportional
limit:

Asymptotics of Disagreement
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Agreement-on-the-line is a nuanced phenomenon:

• Overparameterized vs. Underparameterized (ridgeless):

Agreement-on-the-line in RF Regression
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Agreement-on-the-line is a nuanced phenomenon.
• Non-zero Ridge:

Agreement-on-the-line in RF Regression
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Universality!
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Thank You!
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