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• Data Generation Model: Y = Xβ0 + ϵ where ϵ ∼ N (0, I).
• The LASSO optimization problem:

β̂LASSO
λ = argmin

β∈Rp

[
∥Y − Xβ∥2

2 + 2λ∥β∥1
]

(1)

• The posterior mode for the prior βi ∼ Laplace(λ). Hence it
has a Bayesian flavor.

• Frequentist Optimality: Can attain the (near) minimax
rate O(s log n) for the square Euclidean loss over s-sparse
signals, if λ ≈

√
2 log(n).

LASSO is not fully Bayesian.
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• We will show that the full posterior does not contract at the
same speed as its mode!

• Useless for uncertainty quantification, the central idea of
Bayesian inference.

• The good behavior of the LASSO estimators must be due
to the sparsity-inducing form of the posterior mode,
not the Bayesian connection.

Not really Bayesian!
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Theorem (7) from [CSV15]

Assume that X = I. For any λ = λn such that
√

n/λn → ∞,
there exists δ > 0 such that, as n → ∞,

Eβ0=0Π
LASSO
λn

(
β : ∥β∥2 ≤ δ

√
n
(

1
λn

∧ 1
)∣∣∣Y) → 0.

• Let λn =
√

2 log(n). The posterior places no weight on the

ball ∥β∥2 = O
(√

n
log n

)
which is substantially larger than

the minimax rate
√

s log(n) (unless the signal is extremely dense).

The Main Result
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We will first state two lemmas:

Lemma (5.2) form [CV12]
For any prior probability distribution Πn on Rn, any positive measure
Π̃n with Π̃n ≤ Πn, and any β0,∫

pβ
pβ0

(Y) dΠn(β) ≥ ∥Π̃n∥e−σ̃2/2+µ̃T(Y−β0),

where µ̃ =
∫
(β − β0) dΠ̃n(β)/∥Π̃n∥ and σ̃2 =

∫
∥β − β0∥2

2 dΠ̃n(β)/∥Π̃n∥.
Also, for any r > 0,

Pβ0

(∫
pβ

pβ0

(Y) dΠn(β) ≥ e−r2
Πn

(
β : ∥β − β0∥2 < r

))
≥ 1 − e−r2/8.

Lemma (5.2) form [CV12]
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We can write:

log

(∫
pβ
pβ0

(Y)
dΠn(β)

∥Π̃n∥

)
≥

∫
log

(
pβ

pβ0

(Y)
)

dΠn(β)

∥Π̃n∥
(Jensen’s)

≥
∫

log

(
pβ

pβ0

(Y)
)

dΠ̃n(β)

∥Π̃n∥
(Π̃n ≤ Πn)

= − σ̃2

2
+ µ̃⊤(Y − β) (Gaussianity)

Where µ̃ =
∫
(β − β0)

dΠ̃n
∥Π̃n∥

and σ̃2 =
∫
∥β − β0∥2

2
dΠ̃n
∥Π̃n∥

.
Hence: ∫

pβ
pβ0

(Y) dΠn(β) ≥ ∥Π̃n∥e−σ̃2/2+µ̃T(Y−β0).

Proof of Lemma (5.2): First Assertion
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• Let Π̃n be Πn restricted to the set {β : ∥β − β0∥2 ≤ r}. Trivially
Π̃n ≤ Πn, ∥µ̃∥ ≤ r, σ̃ ≤ r, and ∥Π̃n∥ = Πn(β : ∥β − β0∥2 < r).

• Under Pβ0 , we have that µ̃⊤(Y − β0) has the same distribution as
∥µ̃∥Z where Z ∼ N (0, In).

• Note that

P
[

Zr ≤ −r2 + r2/2
]
≤ exp

(
− r2/8

)
.

• Hence:

Pβ0

(∫
pβ
pβ0

(Y) dΠn(β) ≥ e−r2
Πn

(
β : ∥β − β0∥ < r

))
≥ 1 − e−r2/8.

Which concludes the proof.

Proof of Lemma (5.2): Second Assertion
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Lemma (7.1) from [CV12]

We have Eβ0Πn(β : ∥β − β0∥ < sn|Y) → 0, for any sn for which
there exist rn such that

Πn(β : ∥β − β0∥ < sn)

Πn(β : ∥β − β0∥ < rn)
= o

(
e−r2

n
)
.

Lemma (7.1) from [CV12]
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Based on the previous lemma, there exists and event An with
Pr[An] ≥ 1 − exp(−r2

n/8) such that∫
pβ
pβ0

(Y) dΠn(β) ≥ e−r2
Πn

(
β : ∥β − β0∥ < r

)
.

Eβ0

[
Πn(β : ∥β − β0∥ < sn|Y)1An

]
= Eβ0

[∫
β:∥β−β0∥<sn

pβ(Y) dΠn(β)∫
pβ(Y)dΠn(β)

1An

]

≤ Eβ0

[∫
β:∥β−β0∥<sn

pβ
pβ0

(Y) dΠn(β)

e−r2
nΠn(β : ∥β − β0∥ ≤ rn)

]

≤ Πn(β : ∥β − β0∥ < sn)

e−r2
nΠn(β : ∥β − β0∥ ≤ rn)

→ 0.

Which concludes the proof.

Proof of Lemma (7.1)
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Assume that β0 = 0. We will use lemma (7.1) to prove this theorem.
We will need to show that for proper sequences rn and sn,

Πn(β : ∥β∥2 < sn)

Πn(β : ∥β∥2 < rn)
= o

(
e−r2

n
)
.

• Under the prior, |βi| ∼ Exp(λ) and ∥β∥1 ∼ Gamma(λ,n). Thus,

Πn(β : ∥β∥2 < sn) ≤ Πn(β : ∥β∥1 < sn
√

n)

=

∫ √
nsn

0
λnun−1 e−λu

Γ(n)
du ≤ (λ

√
nsn)

n

Γ(n + 1)
.

• We can write,

Πn(β : ∥β∥2 < rn) =
(λ

2

)n
∫
∥b∥2≤rn

e−λ∥b∥1 db ≥
(λ

2

)n
e−λ

√
nrn vnrn

n,

where vn is the area of unit l2 ball in Rn and the last inequality
follows from ∥β∥1 ≤

√
n∥β∥2.

Proof of the Main Theorem
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By substituting vn = π
n
2 /Γ(1 + n

2 ), and last two inequalities,

Π(∥β∥2 < sn)

Π(∥β∥2 < rn)
≤

( 2√
π

)n Γ( n
2 + 1)

Γ(n + 1)
nn/2 exp

(
λ
√

nrn − n log
( rn

sn

))
≤ exp

(
λ
√

nrn − n log(c
rn

sn
)

)
.

Set rn =
√

n
(
max(λ−1, 1)

)
and sn = δrn. Under these assumptions, the

conditions of lemma (7.1) hold and we have:

Eβ0Πn(β : ∥β − β0∥ < sn|Y, ) → 0,

equivalently,

Eβ0=0Πλn

(
β : ∥β∥2 ≤ δ

√
n
(

1
λn

∧ 1
)∣∣∣Y) → 0.

Which concludeds the proof of the main theorem.
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