Non-Parametric Least Squares

Based on Chapter 13 of *High Dimensional Statistics* by Martin Wainwright

Behrad Moniri

Department of Electrical Engineering Sharif University of Technology

Statistics Reading Group Tehran Institute for Advanced Studies (TeIAS)

First Session:

- Introduction
- Examples
- 3 Critical Radius: Bounding the Prediction Error
- 4 How to Compute the Critical Radius?

Second Session:

- Seview and Examples
- Oracle Inequalities
- Examples
- Regularized Estimators
- Mernel Ridge Regression

Part I

First Session

Section 1

Introduction

Non-Parametric Least Squares

• MMSE Estimation:

$$\bar{\mathcal{L}}_f = \mathbb{E}_{X,Y}[(Y - f(X))^2] \implies f^*(x) = \mathbb{E}[Y|X = x]$$

• In practice we are given a collection of samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, which can be used to compute an empirical analog of the MSE:

$$\widehat{\mathcal{L}}_f = \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2$$

• Non-Parametric Least Squares: Minimizing this criterion over some suitably controlled function class.

Different Measures of Quality

• Excess Risk:

$$||f-f^{\star}||_{L^{2}(\mathbb{P})}=\mathbb{E}_{X\sim\mathbb{P}}\Big[\big(f(X)-f^{\star}(X)\big)^{2}\Big]$$

where \mathbb{P} denotes the distribution over covariates.

• This Chapter: Let $\{\mathbf{x}_i\}_{i=1}^n$ be the set of fixed covariates and \mathbb{P}_n be their Empirical measure. Define:

$$||f-f^{\star}||_{L^{2}(\mathbb{P}_{n})}=\left[\frac{1}{n}\sum_{i=1}^{n}\left(f(\mathbf{x}_{i})-f^{\star}(\mathbf{x}_{i})\right)^{2}\right]^{1/2}.$$

In this talks, we will use this measure and denote it as $||f - f^*||_n$.

Fixed or Stochastic Covariates?

Note

- We will view the samples $\{\mathbf{x}_i\}_{i=1}^n$ as being fixed, a set-up known as regression with a fixed design.
- Results from Chapter 14 to follow can be used to translate these bounds into equivalent results in the population $L_2(\mathbb{P})$ -norm.

Estimation via Least Squares

Given a fixed collection $\{\mathbf{x}_i\}_{i=1}^n$, model the responses as

$$y_i = f^*(\mathbf{x}_i) + \nu_i$$
, for $i = 1, 2, ..., n$.

where $\nu_i = \sigma w_i$ in which $w_i \sim \mathcal{N}(0,1)$. The least squares estimate is given by the function

$$\widehat{f} \in \arg\min_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \right\}.$$

- When $\nu_i \sim \mathcal{N}(0, \sigma^2)$, the LS estimate is equivalent to the constrained maximum likelihood.
- When $\mathcal F$ is an RKHS, it can also be convenient to use regularized estimators of the form:

$$\widehat{f} \in \arg\min_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda_n ||f||_{\mathcal{F}}^2 \right\}.$$

Section 2

Examples

Parametric: Linear Regression

- For a given vector $\theta \in \mathbb{R}^d$, define $f_{\theta}(\mathbf{x}) = \langle \theta, \mathbf{x} \rangle$ and consider the function class $\mathcal{F}_C = \{ f_{\theta} : \mathbb{R}^d \to \mathbb{R} | \theta \in C \}$ for a compact C.
- The least squares estimate:

$$\widehat{\boldsymbol{\theta}} \in \arg\min_{\boldsymbol{\theta} \in C} \left\{ \frac{1}{n} ||y - \mathbf{X}\boldsymbol{\theta}||_2^2 \right\}$$

where $\mathbf{X} \in \mathbb{R}^{n \times d}$ is the design matrix.

• The constrained form of Ridge Regression:

$$C = \{ \boldsymbol{\theta} \in \mathbb{R}^d \mid ||\boldsymbol{\theta}||_2^2 \le R \}.$$

• The constrained form of LASSO:

$$C = \{ \boldsymbol{\theta} \in \mathbb{R}^d \mid ||\boldsymbol{\theta}||_1 \leq R \}.$$

Non-Parametric: Cubic Smoothing Spline

Consider the class of twice cont. differentiable functions $f:[0,1] \to \mathbb{R}$ and for a given radius R, define:

$$\mathcal{F}(R) = \left\{ f \colon [0,1] \to \mathbb{R} \; \middle| \; \int_0^1 \Big(f''(x) \Big)^2 dx \le R \right\}.$$

The integral can be understood as a Hilbert norm bound in the second-order Sobolev space.

Section 3

Critical Radius: Bounding the Prediction Error

Critical Radius: Bounding the Prediction Error

- Intuitively, the difficulty of estimating the function f^* should depend on the complexity of the function class \mathcal{F} in which it lies.
- a localized form of Gaussian complexity: it measures the complexity of the function class \mathcal{F} , locally in a neighborhood around the true regression function f^* .

Local Gaussian Complexity

Define $f^* = \mathcal{F} - \{f^*\} = \{f - f^* | f \in \mathcal{F}\}$. For a given radius $\delta > 0$, the local Gaussian complexity around f^* at scale δ is given by:

$$\mathcal{G}_{n}(\delta; f^{\star}) = \mathbb{E}_{w} \left[\sup_{g \in \mathcal{F}^{\star}, ||g||_{n} \leq \delta} \left| \frac{1}{n} \sum_{i=1}^{n} w_{i} g(\mathbf{x}_{i}) \right| \right]$$

Critical Inequality

Critical Inequality

A central object in our analysis is the set of positive scalars δ that satisfy the *critical inequality*:

$$\frac{\delta}{2\sigma} \geq \frac{\mathcal{G}_n(\delta; \mathcal{F}^{\star})}{\delta}$$

- \bullet We refer to any $\delta>0$ satisfying the critical inequality as being valid.
- We use δ_n^* to denote the smallest positive radius for which the critical inequality holds.

Some Intuition

- Note that $\frac{1}{2n} \sum_{i=1}^{n} (y_i \widehat{f}(\mathbf{x}_i))^2 \leq \frac{1}{2n} \sum_{i=1}^{n} (y_i f^*(\mathbf{x}_i))^2$.
- After some computations: $\frac{1}{2}||\widehat{f} f^{\star}||_n^2 \leq \frac{\sigma}{n} \sum_{i=1}^n w_i \left(\widehat{f}(\mathbf{x}_i) f^{\star}(\mathbf{x}_i)\right)$.
- Note that $\widehat{f} f^* \in f^*$. Reasoning hueristically, this observation suggests that

$$\frac{\delta^2}{2} \leq \sigma \mathcal{G}_n(\delta; \mathcal{F}^\star) \text{ or equivalently } \frac{\delta}{2\sigma} \leq \frac{\mathcal{G}_n(\delta; \mathcal{F}^\star)}{\delta}.$$

• We will present a rigorous result later in this talk.

The Main Result

Star-Shaped Classes

a function class ${\mathcal F}$ is star-shaped if for any $\alpha \in [0,1]$ we have

$$f \in \mathcal{F} \implies \alpha f \in \mathcal{F}$$
.

Theorem

Suppose that the shifted function class \mathcal{F}^* is star-shaped, and let δ be any solution to the critical inequality. Then for any $t \geq \delta$, the nonparametric least-squares estimate $\widehat{f_n}$ satisfies the bound

$$\mathbb{P}\big[||\widehat{f}_n - f^*||_n^2 \ge 16t\delta\big] \le \exp\left(\frac{-nt\delta}{2\sigma^2}\right) \tag{1}$$

Properties of Star-Shaped Classes

- The star shaped condition on \mathcal{F}^{\star} is needed in various parts of the proof, including ensuring a valid radii δ exists.
- \mathcal{F}^* Star shaped = \mathcal{F} is star shaped around f^* .

Property

If \mathcal{F} is convex, it is star-shaped around any f^* .

Proof

Let $\widetilde{f}=f-f^\star\in\mathcal{F}^\star$ be an arbitrary point in \mathcal{F}^\star with $f,f^\star\in\mathcal{F}$. For any $\alpha\in[0,1]$, by convexity we have $g=\alpha f+(1-\alpha)f^\star\in\mathcal{F}$. Hence $\alpha\widetilde{f}=\alpha(f-f^\star)=g-f^\star\in\mathcal{F}^\star$, proving \mathcal{F}^\star is star-shaped.

Conversely

Similarly if \mathcal{F} is not convex, there must exists a f^* such that \mathcal{F} is not star shaped around f^* .

Properties of Star-Shaped Classes

• If the star-shaped condition fails to hold, then the main Theorem can instead by applied with δ defined in terms of the star hull (we will see next session.)

$$\operatorname{star}(\mathcal{F}^{\star}) = \{ \alpha(f - f^{\star}) | f \in \mathcal{F}, \alpha \in [0, 1] \}.$$

Existence of Critical Radius

For any star shaped class \mathcal{F}^* , the function $\delta \to \frac{\mathcal{G}_n(\delta,\mathcal{F}^*)}{\delta}$ is non-increasing on $(0,\infty)$. Consequently, for any c>0, the inequality

$$\frac{\mathcal{G}_n(\delta,\mathcal{F}^*)}{\delta} \leq c\delta$$

has a smallest positive solution.

Proof of the Existence of Critical Radius

Given $0<\delta\leq t$, we should show that $\frac{\delta}{t}\mathcal{G}_n(t)\leq \mathcal{G}_n(\delta)$. Given any $h\in\mathcal{F}^\star$ with $||h||_n\leq t$, define $\widetilde{h}=\frac{\delta}{t}h\in\mathcal{F}^\star$ (by star-shaped assumption) and write

$$\frac{1}{n}\left\{\frac{\delta}{t}\sum_{i=1}^n w_i h(\mathbf{x}_i)\right\} = \frac{1}{n}\left\{\sum_{i=1}^n w_i \widetilde{h}(\mathbf{x}_i)\right\}.$$

By construction, $||\dot{h}||_n \leq \delta$. Consequently:

- The RHS is at most $\mathcal{G}_n(\delta)$ in expectation.
 - Taking supremum over the set $\mathcal{F} \cap \{||h||_n \le t\}$ following by expectation, yields $\frac{\delta}{t}\mathcal{G}_n(t)$ on the left hand side.

This concludes the proof.

Figure 13.2 Illustration of the critical radius for sample size n=100 and two different function classes. (a) A first-order Sobolev space. (b) A Gaussian kernel class. In both cases, the function $\delta \mapsto \frac{\mathcal{G}_n(\delta; \mathscr{F})}{\delta}$, plotted as a solid line, is non-increasing, as guaranteed by Lemma 13.6. The critical radius δ_n^* , marked by a gray dot, is determined by finding its intersection with the line of slope $1/(2\sigma)$ with $\sigma=1$, plotted as the dashed line. The set of all valid δ_n consists of the interval $[\delta_n^*, \infty)$.

Proof of the main theorem

Theorem

Suppose that the shifted function class \mathcal{F}^* is star-shaped, and let δ be any solution to the critical inequality. Then for any $t \geq \delta$, the nonparametric least-squares estimate $\widehat{f_n}$ satisfies the bound

$$\mathbb{P}\big[||\widehat{f}_n - f^{\star}||_n^2 \ge 16t\delta\big] \le \exp\left(\frac{-nt\delta}{2\sigma^2}\right)$$

• Denote $\widehat{\Delta} = \widehat{f} - f^* \in \mathcal{F}^*$, we have $\frac{1}{2} ||\widehat{\Delta}||_n^2 \leq \frac{\sigma}{n} \sum_{i=1}^n w_i \widehat{\Delta}(\mathbf{x}_i)$. We need to control the stochastic component of the right-hand side.

Auxiliary Lemma

Let \mathcal{F}^{\star} be a star-shaped class and δ satisfy the critical inequality. Define the bad event A(u) as

$$A(u) = \left\{ \exists g \in \mathcal{F}^*, ||g||_n \geq u : \left| \frac{\sigma}{n} \sum_{i=1}^n w_i g(\mathbf{x}_i) \right| \geq 2u||g||_n \right\}.$$

For a given $u \geq \delta$, we have $\mathbb{P}[A(u)] \leq \exp\left(\frac{-nu^2}{2\sigma^2}\right)$.

Now consider two cases:

- Case 1: $||\widehat{\Delta}||_n < \sqrt{t\delta}$ which implies $||\widehat{\Delta}||_n^2 \le t\delta$ trivially.
- Case 2: $||\widehat{\Delta}||_n \ge \sqrt{t\delta}$. We condition on $A^c(\sqrt{t\delta})$. Set $u = \sqrt{t\delta}$, so that we have $\mathbb{P}[A^c(\sqrt{t\delta})] \ge 1 \exp(\frac{-nt\delta}{2\sigma^2})$. Hence:

$$||\widehat{\Delta}||_n^2 \le 2 \left| \frac{\sigma}{n} \sum_{i=1}^n w_i \widehat{\Delta}(\mathbf{x}_i) \right| \le 4 ||\widehat{\Delta}||_n \sqrt{t\delta} \implies ||\Delta||_n^2 \le 16t\delta. \quad \Box$$

Proof of the Auxiliary Lemma

Recall $A(u) = \left\{ \exists g \in \mathcal{F}^*, ||g||_n \ge u : \left| \frac{\sigma}{n} \sum_{i=1}^n w_i g(\mathbf{x}_i) \right| \ge 2u||g||_n \right\}.$

Step 1: reduce to controlling a sup over a subset with $||\widetilde{g}||_n \leq u$.

• Suppose that A(u) is true, hence there exists $g \in \mathcal{F}^{\star}$ with $||g||_n \geq u$ such that

$$\left|\frac{\sigma}{n}\sum_{i=1}^n w_i g(\mathbf{x}_i)\right| \geq 2||g||_n u.$$

• Define $\widetilde{g} = \frac{u}{||g||_n} g \in \mathcal{F}^\star$, we observe that $||\widetilde{g}||_n = u$. We have

$$\left|\frac{\sigma}{n}\sum_{i=1}^{n}w_{i}\widetilde{g}(\mathbf{x}_{i})\right|=\frac{u}{||g||_{n}}\left|\frac{\sigma}{n}\sum_{i=1}^{n}w_{i}g(\mathbf{x}_{i})\right|\geq 2u^{2}.$$

• We thus conclude that:

$$\mathbb{P}[A(u)] \leq \mathbb{P}[Z_n(u) \geq 2u^2], \ Z_n(u) := \sup_{\widetilde{g} \in \mathcal{F}^*, \ ||\widetilde{g}||_n \leq u} \left| \frac{\sigma}{n} \sum_{i=1}^n w_i \widetilde{g}(\mathbf{x}_i) \right|.$$

Proof of the Auxiliary Lemma

$$\mathbb{P}[A(u)] \leq \mathbb{P}[Z_n(u) \geq 2u^2], \ Z_n(u) := \sup_{\widetilde{g} \in \mathcal{F}^*, \ ||\widetilde{g}||_n \leq u} \left| \frac{\sigma}{n} \sum_{i=1}^n w_i \, \widetilde{g}(\mathbf{x}_i) \right|.$$

Step 2: Concentration of suprema.

- Recall that $w_i \sim \mathcal{N}(0,1)$, hence $\frac{\sigma}{n} \sum_{i=1}^n w_i \widetilde{g}(\mathbf{x}_i) \sim \mathcal{N}\Big(0, \frac{\sigma^2}{n} ||\widetilde{g}||_n^2\Big)$.
- $Z_n(u) = h(w_1, \ldots, w_n) := \sup_{\widetilde{g} \in \mathcal{F}^*, \|\widetilde{g}\|_n \le u} \left| \frac{\sigma}{n} \sum_{i=1}^n w_i \widetilde{g}(\mathbf{x}_i) \right|.$
- The Lipschitz constant of h is at most $\frac{\sigma u}{\sqrt{n}}$.
- We know that for $Z_i \sim \mathcal{N}(0, \sigma^2)$ and h a L-Lipschitz function:

$$\mathbb{P}[h(Z) - \mathbb{E}h(Z) \ge t] \le e^{-\frac{s^2}{2L^2\sigma^2}}.$$

• Let $s=u^2$, we obtain $\mathbb{P}(Z_n(u)\geq \mathbb{E}[Z_n(u)]+u^2)\leq \exp\left(\frac{-nu^2}{2\sigma^2}\right)$.

Proof of the Auxiliary Lemma

Step 3: Bounding the expectation.

- Note that $\mathbb{E}[Z_n(u)] = \sigma \, \mathcal{G}_n(u)$.
- We know that $\nu \to \frac{\mathcal{G}_n(\nu)}{\nu}$ is non-increasing. We have also assumed that $u > \delta$.

$$\sigma \frac{\mathcal{G}_n(u)}{u} \leq \sigma \frac{\mathcal{G}_n(\delta)}{\delta} \leq \frac{\delta}{2} \leq \delta \implies \mathbb{E}[Z_n(u)] \leq u\delta \leq u^2.$$

Comibining our results, we obtain

$$\mathbb{P}[A(u)] \leq \mathbb{P}[Z_n(u) \geq 2u^2] \leq \mathbb{P}(Z_n(u) \geq \mathbb{E}[Z_n(u)] + u^2) \leq \exp\left(\frac{-nu^2}{2\sigma^2}\right),$$

Which concludes the proof.

Section 4

How to Compute the Critical Radius?

Bounds via Metric Entropy

For any star-shaped function class \mathcal{F}^* , define:

- $B(\delta; \mathcal{F}^*) = \{h \in \mathcal{F}^* \mid ||h||_n \leq \delta\}$
- $\mathcal{N}\left(t; B_n(\delta; \mathcal{F}^\star)\right)$ be the *t*-convering number of $B_n(\delta; \mathcal{F})$ in norm $||.||_n$.

Critical Inequality via Metric Entropy

Any $\delta \in (0, \infty]$ satisfying

$$\frac{16}{\sqrt{n}} \int_{\frac{\delta^2}{4\pi}}^{\delta} \sqrt{\log \mathcal{N}(t; B(\delta; \mathcal{F}^*))} \ dt \leq \frac{\delta^2}{4\sigma},$$

satisfies the critical inequality.

Bounds via Metric Entropy: Proof

- Construct a $\frac{\delta^2}{4\sigma}$ -covering of the set $B(\delta; \mathcal{F})$, say $\{g^1, \dots, g^M\}$. For any function $g \in B(\delta; \mathcal{F})$, there is a $j \in [M]$ such that $||g^j g||_n \leq \frac{\delta^2}{4\sigma}$.
- We have

$$\left| \frac{1}{n} \sum_{i=1}^{n} w_{i} g(\mathbf{x}_{i}) \right| \leq \left| \frac{1}{n} \sum_{i=1}^{n} w_{i} g^{j}(\mathbf{x}_{i}) \right| + \left| \frac{1}{n} \sum_{i=1}^{n} w_{i} \left(g(\mathbf{x}_{i}) - g^{j}(\mathbf{x}_{i}) \right) \right| \\
\leq \max_{j=1,\dots,M} \left| \frac{1}{n} \sum_{i=1}^{n} w_{i} g^{j}(\mathbf{x}_{i}) \right| + \sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{n}} \sqrt{\frac{\sum_{i=1}^{n} (g(\mathbf{x}_{i}) - g^{k}(\mathbf{x}_{i}))^{2}}{n}} \\
\leq \max_{j=1,\dots,M} \left| \frac{1}{n} \sum_{i=1}^{n} w_{i} g^{j}(\mathbf{x}_{i}) \right| + \frac{\delta^{2}}{4\sigma} \sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{n}}.$$

Hence

$$\mathcal{G}_n(\delta) \leq \mathbb{E}\left[\max_{j=1,\ldots,M}\left|\frac{1}{n}\sum_{i=1}^n w_i g^j(\mathbf{x}_i)\right|\right] + \frac{\delta^2}{4\sigma}.$$

Bounds via Metric Entropy: Proof

- To upper bound the first term, we use Dudley's Integral. Define $Z(g^j) = \frac{1}{\sqrt{n}} \sum_{i=1}^n w_i g^j(\mathbf{x}_i)$ for $j = 1, \dots, M$.
- The induced metric: $\rho_Z^2(g^j,g^k) := \operatorname{Var} \left(Z(g^j) Z(g^k) \right) = ||g^j gk||_n^2$
- Since $||g||_n \leq \delta$ for all $g \in B_n(\delta, \mathcal{F}^*)$, the coarsest resolution of the chaining can be set to δ . We can terminate it at $\frac{\delta^2}{4\sigma}$ since any member of our finite set can be reconstructed at this resolution.

$$\mathbb{E}\left[\max_{j=1,...,M}\left|\frac{1}{n}\sum_{i=1}^{n}w_{i}g^{j}(\mathbf{x}_{i})\right|\right] = \mathbb{E}\left[\max_{j=1,...,M}\frac{\left|Z(g^{j})\right|}{\sqrt{n}}\right]$$

$$\leq \frac{16}{\sqrt{n}}\int_{\frac{\delta^{2}}{4\sigma}}^{\delta}\sqrt{\log N_{n}(t;B_{n}(\delta;\mathcal{F}))}dt$$

Hence
$$\mathcal{G}_n(\delta) \leq \frac{\delta^2}{4\sigma} + \frac{16}{\sqrt{n}} \int_{\frac{\delta^2}{4\sigma}}^{\delta} \sqrt{\log N_n(t; B_n(\delta; \mathcal{F}))} dt$$
.

Part II

Second Session

Section 5

Review and Examples

Review: Estimator, Models, and Definitions

Model

Let \mathcal{F} be a function class and $f^* \in \mathcal{F}$ and $\{\mathbf{x}_i\}_{i=1}^n$ be a set of n covariates. Assume that $y_i = f^*(\mathbf{x}_i) + \sigma w_i$ where $w_i \sim \mathcal{N}(0,1)$.

Estimator

Given the set $\{(x_1, y_1), ..., (x_n, y_n)\}$:

$$\widehat{f} \in \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2.$$

Measure of Goodness

Let $\{\mathbf{x}_i\}_{i=1}^n$ be the set of fixed covariates:

$$||f-f^*||_n := \left[\frac{1}{n}\sum_{i=1}^n (f(\mathbf{x}_i) - f^*(\mathbf{x}_i))^2\right]^{1/2}.$$

Local Gaussian Complexity

$$\mathcal{G}_{n}(\delta)\mathbb{E}_{w}\left[\sup_{\substack{g \in \mathcal{F} \\ ||g||_{n} \leq \delta}} \left| \frac{1}{n} \sum_{i=1}^{n} w_{i} f(\mathbf{x}_{i}) \right| \right]$$

Critical Inequality

A central object in our analysis is the set of positive scalars δ that satisfy the *critical inequality*:

$$\frac{\delta}{2\sigma} \geq \frac{\mathcal{G}_n(\delta; \mathcal{F}^{\star})}{\delta}$$

Existence of Critical Radius

For any star shaped class \mathcal{F}^{\star} , the function $\delta \to \frac{\mathcal{G}_n(\delta,\mathcal{F}^{\star})}{\delta}$ is non-increasing on $(0,\infty)$. Consequently, for any c>0, the inequality $\frac{\mathcal{G}_n(\delta,\mathcal{F}^{\star})}{\delta} \leq c\delta$ has a smallest positive solution.

Review: Main Results

Theorem

Suppose that the shifted function class \mathcal{F}^* is star-shaped, and let δ be any solution to the critical inequality. Then for any $t \geq \delta$, the nonparametric least-squares estimate $\widehat{f_n}$ satisfies the bound

$$\mathbb{P}\big[||\widehat{f}_n - f^{\star}||_n^2 \ge 16t\delta\big] \le \exp\left(\frac{-nt\delta}{2\sigma^2}\right)$$

Auxiliary Lemma

Let \mathcal{F}^{\star} be a star-shaped class and δ satisfy the critical inequality. Define the bad event A(u) as

$$A(u) = \left\{ \exists g \in \mathcal{F}^*, ||g||_n \geq u : \left| \frac{\sigma}{n} \sum_{i=1}^n w_i g(\mathbf{x}_i) \right| \geq 2u||g||_n \right\}.$$

For a given $u \geq \delta$, we have $\mathbb{P}[A(u)] \leq \exp\left(\frac{-nu^2}{2\sigma^2}\right)$.

Review: How to Compute a Critical Radius

For any star-shaped function class \mathcal{F}^* , define:

- $B(\delta; \mathcal{F}^*) = \{h \in \mathcal{F}^* \mid ||h||_n \leq \delta\}$
- $\mathcal{N}\left(t; B(\delta; \mathcal{F}^{\star})\right)$ be the *t*-convering number of $B(\delta; \mathcal{F})$ in norm $||.||_n$.

Critical Inequality via Metric Entropy

Any $\delta \in (0, \infty]$ satisfying

$$\frac{16}{\sqrt{n}} \int_{\frac{\delta^2}{4\pi}}^{\delta} \sqrt{\log \mathcal{N}(t; B(\delta; \mathcal{F}^{\star}))} dt \leq \frac{\delta^2}{4\sigma},$$

satisfies the critical inequality.

Parametric Example: Linear Regression

- Consider $y_i = \langle \boldsymbol{\theta}^{\star}, \mathbf{x}_i \rangle + w_i$ with $\boldsymbol{\theta}^{\star} \in \mathbb{R}^d$.
- Hypothesis class: $\mathcal{F} = \{ f_{\theta}(.) = \langle \theta, . \rangle \mid \theta \in \mathbb{R}^d \}.$
- Let $\mathbf{X} \in \mathbb{R}^{d \times n}$ be the design matrix with rank r.
- ullet $\mathcal{F}=\mathcal{F}^{\star}$ and convex. Thus star-shaped around any point.
- $\forall f_{\theta} \in \mathcal{F}$, the function $\theta \to ||f_{\theta}||_n^2 = \frac{||\mathbf{X}\theta||_2^2}{n}$.
- $B(\delta; \mathcal{F})$ is a δ -ball in Range(**X**).
- Dimension of Range(X) is r. By a volume argument:

$$\log \left(\mathcal{N} (t, B(\delta; \mathcal{F})) \right) \leq r \log \left(1 + \frac{2\delta}{t} \right).$$

We have

$$\frac{1}{\sqrt{n}} \int_{\frac{\delta^2}{\delta r}}^{\delta} \sqrt{\log \mathcal{N}\big(t; B\big(\delta; \mathcal{F}^\star\big)\big)} \ dt \leq c \delta \sqrt{\frac{r}{n}} \implies ||\widehat{f} - f^\star||_n \leq c \sigma \sqrt{\frac{r}{n}}.$$

Non-Parametric Example: Lipschitz Functions

Consider the function class

$$\mathcal{F}_{\operatorname{Lip}}(L) = \{f \colon [0,1] o \mathbb{R} \big| f(0) = 0, f \text{ is L-Lip} \}.$$

- Note that $\mathcal{F}_{\operatorname{Lip}}(L) \mathcal{F}_{\operatorname{Lip}}(L) = 2\mathcal{F}_{\operatorname{Lip}}(L) \subseteq \mathcal{F}_{\operatorname{Lip}}(2L)$.
- The Dudley's integral can be bounded as follows:

$$rac{1}{\sqrt{n}} \int_0^\delta \sqrt{\log N_n \Big(t; B_n ig(\mathcal{F}_{\mathrm{Lip}}(2L)ig)\Big)} \ dt \ \lesssim rac{1}{\sqrt{n}} \int_0^\delta \sqrt{\log N_\infty \Big(t; B_n ig(\mathcal{F}_{\mathrm{Lip}}(2L)ig)\Big)} \ dt \ \lesssim rac{1}{\sqrt{n}} \int_0^\delta \Big(rac{L}{t}\Big)^{rac{1}{2}} \ dt \ \lesssim \sqrt{rac{L\delta}{n}}.$$

- It suffices to choose $\delta > 0$ such that $\sqrt{\frac{L\delta}{n}} \le \frac{\delta^2}{\sigma} \implies \delta^2 \simeq \left(\frac{L\sigma^2}{n}\right)^{\frac{2}{3}}$.
- According to the main theorem: $||\hat{f} f^*||_n^2 \lesssim \left(\frac{L\sigma^2}{n}\right)^{\frac{2}{3}}$ with probability at least $1 c_1 \exp\left(-c_2\left(\frac{n}{L\sigma^2}\right)^{\frac{1}{3}}\right)$.

Section 6

Oracle Inequalities

Oracle Inequalities

- In our analysis so far, we have assumed that $f^* \in \mathcal{F}$. If we lift this assumption, we have:
 - Prediction Error
 - Approximation Error
- It is natural to measure the approximation error in terms of the best approximating function in \mathcal{F} , i.e. $\inf_{f \in \mathcal{F}} ||f f^*||_n$.
- Only an oracle that has access to $f^*(\mathbf{x}_i)$ can calculate $\inf_{f \in \mathcal{F}} ||f f^*||_n$. Hence we call inequalities with $\inf_{f \in \mathcal{F}} ||f f^*||_n$, the Oracle Inequalities.

Oracle Inequalities

Assume that $y_i = f^*(\mathbf{x}_i) + \sigma w_i$, where $w_i \sim \mathcal{N}(0,1)$. Define $\partial \mathcal{F} = \{f_1 - f_2 | f_1, f_2 \in \mathcal{F}\}$. We assume that this set is star-shaped.

Oracle Inequality

Let δ be any positive solution to the critical inequality $\frac{\mathcal{G}_n(\delta,\partial\mathcal{F})}{\delta} \leq \frac{\delta}{2\sigma}$. For any $t \geq \delta$, the non-parametric least-square estimate \widehat{f} satisfies the bound

$$||\widehat{f} - f^{\star}||_n^2 \leq \inf_{\gamma \in (0,1)} \left\{ \frac{1+\gamma}{1-\gamma} ||f - f^{\star}||_n^2 + \frac{c_0}{\gamma(1-\gamma)} t\delta \right\} \text{ for all } f \in \mathcal{F},$$

with probability at least $1-c_1\exp(-\frac{c_2nt\delta}{\sigma^2})$.

When $f^* \in \mathcal{F}$, we can set $f = f^*$. Hence, $||\widehat{f} - f^*||_n^2 \lesssim t\delta$, recovering the previous result up to constants.

Oracle Inequalities

$$||\widehat{f} - f^{\star}||_n^2 \leq \inf_{\gamma \in (0,1)} \left\{ \frac{1+\gamma}{1-\gamma} ||f - f^{\star}||_n^2 + \frac{c_0}{\gamma(1-\gamma)} t\delta \right\} \text{ for all } f \in \mathcal{F}.$$

• When $f^{\star} \notin \mathcal{F}$, setting $t = \delta$ and taking infimum over $f \in \mathcal{F}$, yields

$$||\widehat{f} - f^{\star}||_{n}^{2} \lesssim \inf_{f \in \mathcal{F}} ||f - f^{\star}||_{n}^{2} + \delta^{2}$$

with high probability. The term δ^2 can be viewed as the estimation error and $\inf_{f \in \mathcal{F}} ||\widehat{f} - f^*||_n^2$ as the approximation error.

Oracle Inequalities: Proof

Given an arbitrary $\widetilde{f} \in \mathcal{F}$, define $\widehat{\Delta} = \widehat{f} - f^*$ and $\widetilde{\Delta} = \widehat{f} - \widetilde{f}$. We have

$$0 \ge \frac{1}{2n} \sum_{i=1}^{n} (y_i - \widehat{f}_i)^2 - \frac{1}{2n} \sum_{i=1}^{n} (y_i - \widetilde{f}_i)^2$$

$$= \frac{1}{2} ||\widehat{\Delta}||_n^2 + \frac{1}{2n} \sum_{i=1}^{n} (y_i - f_i^*)^2 + \frac{1}{n} \sum_{i=1}^{n} (\underbrace{y_i - f_i^*}) (f_i^* - \widehat{f}_i) - \frac{1}{2n} \sum_{i=1}^{n} (y_i - \widetilde{f}_i)^2$$

Hence
$$\begin{aligned} &\frac{1}{2}||\widehat{\Delta}||_{n}^{2} \leq \frac{1}{2n}\sum_{i=1}^{n}\left(\widetilde{\Delta}_{i}-\widehat{\Delta}_{i}\right)(2y_{i}-\widetilde{f}_{i}-f_{i}^{\star})-\frac{1}{n}\sum_{i=1}^{n}\sigma w_{i}(f_{i}^{\star}-\widehat{f}_{i}^{\star}).\\ &\frac{1}{2}||\widehat{\Delta}||_{n}^{2} \leq \frac{1}{2n}\sum_{i=1}^{n}\left[\left(\widetilde{\Delta}_{i}-\widehat{\Delta}_{i}\right)(2\sigma w_{i}-\widetilde{\Delta}_{i}-\widehat{\Delta}_{i})+2\sigma w_{i}\widehat{\Delta}_{i}\right]\\ &=\frac{1}{n}\sum_{i=1}^{n}\sigma w_{i}\widetilde{\Delta}_{i}+\frac{1}{2}||f_{i}^{\star}-\widetilde{f}_{i}||_{n}^{2} \leq \frac{1}{2}||f_{i}^{\star}-\widetilde{f}_{i}||_{n}^{2}+\frac{\sigma}{n}\left|\sum_{i=1}^{n}w_{i}\widetilde{\Delta}_{i}\right|.\end{aligned}$$

Oracle Inequalities: Proof

To bound the error, we consider two cases:

• Case 1: Suppose that $||\widetilde{\Delta}||_n \leq \sqrt{t\delta}$.

$$||\widehat{\Delta}||_n^2 = ||\widetilde{f} - f^*) + \widetilde{\Delta}||_n^2 \le \left(||\widetilde{f} - f^*||_n + \sqrt{t\delta}\right)^2$$

$$\le (1 + 2\beta)||\widetilde{f} - f^*||_n^2 + \left(1 + \frac{2}{\beta}\right)t\delta.$$

Set $\beta = \frac{\gamma}{1-\gamma}$. This yields

$$||\widehat{f} - f^{\star}||_n^2 \leq \inf_{\gamma \in (0,1)} \Big\{ \frac{1+\gamma}{1-\gamma} ||\widetilde{f} - f^{\star}||_n^2 + \frac{c_0}{\gamma(1-\gamma)} t\delta \Big\}.$$

• Case 2: Suppose that $||\widetilde{\Delta}||_n > \sqrt{t\delta}$.

Auxiliary Lemma

Let \mathcal{H} be a star-shaped class and δ satisfy the critical inequality:

$$\forall u \geq \delta: \quad \mathbb{P}\Bigg[\exists \, g \in \mathcal{H}, ||g||_n \geq u \, : \, \left|\frac{\sigma}{n} \sum_{i=1}^n w_i g(\textbf{x}_i)\right| \geq 2u||g||_n \Bigg] \leq \exp\big(\frac{-nu^2}{2\sigma^2}\big).$$

Let $u = \sqrt{t\delta}$ and $\mathcal{H} = \partial \mathcal{F}$. We have

$$\mathbb{P}\Big[2\Big|\frac{\sigma}{n}\sum_{i=1}^{n}w_{i}\widetilde{\Delta}(\mathbf{x}_{i})\Big| \geq 4\sqrt{t\delta}||\widetilde{\Delta}||_{n}\Big] \leq \exp\Big(-\frac{nt\delta}{2\sigma^{2}}\Big).$$

Hence, with high probability

$$\begin{split} ||\widehat{\Delta}||_{n}^{2} &\leq ||\widetilde{f} - f^{*}||_{n}^{2} + 4\sqrt{t\delta}||\widetilde{\Delta}||_{n}^{2} \leq ||\widetilde{f} - f^{*}||_{n}^{2} + 4\sqrt{t\delta}\left\{||\widehat{\Delta}||_{n}^{2} + ||\widetilde{f} - f^{*}||_{n}^{2}\right\} \\ &\leq ||\widetilde{f} - f^{*}||_{n}^{2} + \left[4\beta||\widehat{\Delta}||_{n}^{2} + \frac{4}{\beta}t\delta\right] + \left[4\beta||\widetilde{f} - f^{*}||_{n}^{2} + \frac{4}{\beta}t\delta\right]. \end{split}$$

Rearrenging terms: $||\widehat{\Delta}||_n^2 \leq \frac{1+4\beta}{1-4\beta}||\widetilde{f}-f^\star||_n^2 + \frac{8}{\beta(1-4\beta)}t\delta$.

Section 7

Examples

Example: Best Sparse Approximation

- Consider $\mathcal{F}(s) = \{ f = \langle \boldsymbol{\theta}, . \rangle \mid ||\boldsymbol{\theta}||_0 \leq s \}.$
- Disregarding the computational complexity, let

$$\widehat{\theta} \in \arg \min_{||\boldsymbol{\theta}||_0 \leq s} ||\boldsymbol{y} - \mathbf{X}\boldsymbol{\theta}||_0^2.$$

• We will prove that with high probability:

$$||\widehat{f} - f^*||_n^2 \lesssim \inf_{f \in \mathcal{F}(s)} ||f - f^*||_n^2 + \underbrace{\frac{\sigma^2 s \log(ed/s)}{n}}_{\delta^2}$$

• The penalty grows linearly with s and logarithmic with d. We only pay a logarithmic price for not knowing the support set in advance.

Example: Best Sparse Approximation

- Note that $\partial \mathcal{F}(s) \subset \mathcal{F}(2s)$. Hence $\mathcal{G}_n(\delta; \partial \mathcal{F}(s)) \leq \mathcal{G}_n(\delta; \mathcal{F}(2s))$.
- Let $S \subseteq \{1, \ldots, d\}$ be an arbitrary 2s-sized subset.
- Let $\mathbf{X}_S \in \mathbb{R}^{n \times 2s}$ the sub-matrix with columns in S.
- Define

$$Z_n(S) = \sup_{\substack{\theta_S \in \mathbb{R}^{2s} \\ ||\mathbf{X}_S \theta_S||_2/\sqrt{n} \le \delta}} \left| \frac{\mathbf{w}^T \mathbf{X}_S \theta_S}{n} \right|.$$

- ullet We have $\mathcal{G}_nig(\delta;\mathcal{F}(2s)ig)=\mathbb{E}_w\Big[\max_{|S|=2s}Z_n(S)\Big]$
- Viewed as a function of \mathbf{w} , $Z_n(S)$ is $\frac{\delta}{\sqrt{n}}$ Lipschitz. Hence

$$\mathbb{P}[Z_n(S) \ge \mathbb{E}(Z_n(S)) + t\delta] \le \exp\left(\frac{-nt^2}{2}\right)$$

ullet Consider the SVD of $\mathbf{X}_S = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$. We have $||\mathbf{X}_S\boldsymbol{\theta}_S||_2 = ||\mathbf{D}\mathbf{V}^{\top}\boldsymbol{\theta}_S||_2$:

$$\mathbb{E}\big[Z_n(S)\big] = \mathbb{E}\Big[\sup_{\begin{subarray}{c} \beta \in \mathbb{R}^{2s} \\ ||\beta||_2 \le \delta \end{subarray}} \Big|\frac{1}{\sqrt{n}} \langle \mathbf{U}^\top \mathbf{w}, \beta \rangle |\Big] \le \frac{\delta}{\sqrt{n}} \mathbb{E}\big[||\mathbf{U}^\top \mathbf{w}||_2\big].$$

- Since **U** is orthogonal and $\mathbf{w} \sim \mathcal{N}(0, \mathbf{I}_n)$, thus $\mathbf{U}^{\top}\mathbf{w} \sim \mathcal{N}(0, \mathbf{I}_{2s})$.
- Therefore $\mathbb{E}[||\mathbf{U}^{\top}\mathbf{w}||] \leq \sqrt{2s}$. Applying the union bound to the Lip upper bound:

$$\mathbb{P}\Big[\max_{|S|=2s} Z_n(S) \geq \delta\Big(\sqrt{\frac{2s}{n}} + t\Big)\Big] \leq \binom{d}{2s} \exp\Big(\frac{-nt^2}{2}\Big).$$

By integrating:

$$\frac{\mathbb{E}[\max_{|S|=2s} Z_n(S)]}{\delta} = \frac{\mathcal{G}_n(\delta)}{\delta} \lesssim \sqrt{\frac{s}{n}} + \sqrt{\frac{\log \binom{d}{2s}}{n}} \lesssim \sqrt{\frac{s \log \left(\frac{ed}{s}\right)}{n}}.$$

• Thus $\delta \simeq \sigma^2 \frac{s \log(ed/s)}{n}$ satisfies critical inequality.

Section 8

Regularized Estimators

Oracle Inequalities for Regularized Estimators

• Given a space \mathcal{F} of real-valued functions, an associated norm $||.||_{\mathcal{F}}$, consider the family of regularized least-square problems:

$$\widehat{f} \in \arg\min_{\mathcal{F}} \Big\{ \frac{1}{2n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2 + \lambda_n ||f||_{\mathcal{F}}^2 \Big\}.$$

A Local Gaussian Complexity Measure:

$$\mathcal{G}_{n}(\delta) \triangleq \mathcal{G}_{n}(\delta; B_{\partial \mathcal{F}}(3)) = \mathbb{E}_{w} \left[\sup_{\substack{g \in \partial \mathcal{F} \\ ||g||_{n} \leq \delta \\ ||g||_{x} < 3}} \left| \frac{1}{n} \sum_{i=1}^{n} w_{i} f(\mathbf{x}_{i}) \right| \right]$$

• The critical inequality for a user defined *R*:

$$\frac{\mathcal{G}_n(\delta)}{\delta} \leq \frac{R}{2\sigma}\delta.$$

Oracle Inequalities for Regularized Estimators

Theorem

Consider a convex function class ${\cal F}$ and assume that δ satisfies the critical inequality

$$\frac{\mathcal{G}_n(\delta)}{\delta} \leq \frac{R}{2\sigma}\delta.$$

If $\lambda_n \geq 2\delta^2$. There exists universal constants c_0, c_1, c_2, c_3 such that

$$||\hat{f} - f^*||_n^2 \le c_0 \inf_{\|f\|_F \le R} ||f - f^*||_n^2 + c_1 R^2 (\delta^2 + \lambda_n)$$

with probability grater than $1 - c_2 \exp\left(-c_3 \frac{nR^2 \delta^2}{\sigma^2}\right)$.

Oracle Inequalities for Regularized Estimators: Proof

- $y_i = f^*(\mathbf{x}_i) + \sigma w_i$. Rescale the model by R.
 - Rescaled Noise variance: $\tilde{\sigma}^2 = \left(\frac{\sigma}{R}\right)^2$.
 - Rescaled approx. error: $\inf_{||f||_{\mathcal{F}} \le 1} ||f f^*||_n^2$.
 - The final MSE should be multiplied by R^2 .
- Let \widetilde{f} be an arbitrary element in $\mathcal F$ with $||\widetilde{f}||_{\mathcal F} \leq 1$.
- We have

$$\frac{1}{2}\sum_{i=1}^n (y_i - \widehat{f}(\mathbf{x}_i))^2 + \lambda_n ||\widehat{f}||_{\mathcal{F}}^2 \leq \frac{1}{2}\sum_{i=1}^n (y_i - \widetilde{f}(\mathbf{x}_i))^2 + \lambda_n ||\widetilde{f}||_{\mathcal{F}}^2.$$

• Denote $\widehat{\Delta} = \widehat{f} - f^*$ and $\widetilde{\Delta} = \widehat{f} - \widetilde{f}$. With a simple calculation (next slide):

$$\frac{1}{2}||\widehat{\Delta}||_n^2 \leq \frac{1}{2}||\widetilde{f} - f^{\star}||_n^2 + \frac{\widetilde{\sigma}}{n}\Big|\sum_{i=1}^n w_i \widetilde{\Delta}(\mathbf{x}_i)\Big| + \lambda_n \big[||\widetilde{f}||_{\mathcal{F}}^2 - ||\widehat{f}||_{\mathcal{F}}^2\big].$$

Given an arbitrary $f \in \mathcal{F}$, we have

$$0 \geq \frac{1}{2n} \sum_{i=1}^{n} (y_{i} - \widehat{f}_{i})^{2} + \lambda_{n} ||\widehat{f}||_{\mathcal{F}}^{2} - \frac{1}{2n} \sum_{i=1}^{n} (y_{i} - \widetilde{f}_{i})^{2} - \lambda_{n} ||\widetilde{f}||_{\mathcal{F}}^{2}$$

$$= \frac{1}{2} ||\widehat{\Delta}||_{n}^{2} + \frac{1}{2n} \sum_{i=1}^{n} (y_{i} - f_{i}^{*})^{2} + \frac{1}{n} \sum_{i=1}^{n} (y_{i} - f_{i}^{*}) (f_{i}^{*} - \widehat{f}_{i})$$

$$- \frac{1}{2n} \sum_{i=1}^{n} (y_{i} - \widetilde{f}_{i})^{2} + \lambda_{n} ||\widehat{f}||_{\mathcal{F}}^{2} - \lambda_{n} ||\widetilde{f}||_{\mathcal{F}}^{2}$$

Rearranging terms:

$$\begin{split} &\frac{1}{2}||\widehat{\Delta}||_{n}^{2} \leq \frac{1}{2n}\sum_{i=1}^{n}\big(\widetilde{\Delta}_{i}-\widehat{\Delta}_{i}\big)\big(2y_{i}-\widetilde{f}_{i}-f_{i}^{*}\big) - \frac{1}{n}\sum_{i=1}^{n}\sigma w_{i}\big(f_{i}^{*}-\widehat{f}_{i}^{*}\big) + \lambda_{n}||\widetilde{f}||_{\mathcal{F}}^{2} - \lambda_{n}||\widehat{f}||_{\mathcal{F}}^{2} \\ &\leq \frac{1}{2n}\sum_{i=1}^{n}\Big[\big(\widetilde{\Delta}_{i}-\widehat{\Delta}_{i}\big)\big(2\sigma w_{i}-\widetilde{\Delta}_{i}-\widehat{\Delta}_{i}\big) + 2\sigma w_{i}\widehat{\Delta}_{i}\Big] + \lambda_{n}||\widetilde{f}||_{\mathcal{F}}^{2} - \lambda_{n}||\widehat{f}||_{\mathcal{F}}^{2} \\ &\leq \frac{1}{n}\sum_{i=1}^{n}\sigma w_{i}\widetilde{\Delta}_{i} + \frac{1}{2}||f_{i}^{*}-\widetilde{f}_{i}||_{n}^{2} + \lambda_{n}||\widetilde{f}||_{\mathcal{F}}^{2} - \lambda_{n}||\widehat{f}||_{\mathcal{F}}^{2} \\ &\leq \frac{1}{2}||f^{*}-\widetilde{f}||_{n}^{2} + \frac{\sigma}{n}\Big|\sum_{i=1}^{n}w_{i}\widetilde{\Delta}_{i}\Big| + \lambda_{n}||\widetilde{f}||_{\mathcal{F}}^{2} - \lambda_{n}||\widehat{f}||_{\mathcal{F}}^{2}. \end{split}$$

Parts of Proof

- If $||\widetilde{\Delta}||_n \leq \sqrt{t\delta}$: It is trivial.
- Assume that $||\widetilde{\Delta}||_n > \sqrt{t\delta}$.
 - Case 1 Suppose that $||\widehat{f}||_{\mathcal{F}} \leq 2$. This is also very similar to the previous session.
 - Case 2 Suppose that $||\widehat{f}||_{\mathcal{F}} > 2$. We will prove this statement here.

Case 2:
$$||\widehat{f}||_{\mathcal{F}} > 2 > 1 \ge ||\widetilde{f}||_{\mathcal{F}}$$
.

$$\frac{1}{2}||\widehat{\Delta}||_n^2 \leq \frac{1}{2}||f^* - \widetilde{f}||_n^2 + \frac{\widetilde{\sigma}}{n}\Big|\sum_{i=1}^n w_i \widetilde{\Delta}_i\Big| + \lambda_n||\widetilde{f}||_n^2 - \lambda_n||\widehat{f}||_n^2$$

We have

$$||\widetilde{f}||_{\mathcal{F}}^{2} - ||\widehat{f}||_{\mathcal{F}}^{2} = \underbrace{\left[||\widetilde{f}||_{\mathcal{F}} + ||\widehat{f}||_{\mathcal{F}}\right]}_{>1} \cdot \underbrace{\left[||\widetilde{f}||_{\mathcal{F}} - ||\widehat{f}||_{\mathcal{F}}\right]}_{<0} \leq \left[||\widetilde{f}||_{\mathcal{F}} - ||\widehat{f}||_{\mathcal{F}}\right].$$

$$\text{Writing } \widehat{f} = \widecheck{f} + \widecheck{\Delta} \implies ||\widehat{f}||_{\mathcal{F}} \geq ||\widecheck{\Delta}||_{\mathcal{F}} - ||\widecheck{f}||_{\mathcal{F}} \colon$$

$$\lambda_{n} \Big[||\widetilde{f}||_{\mathcal{F}}^{2} - ||\widehat{f}||_{\mathcal{F}}^{2} \Big] \leq \lambda_{n} \Big[||\widetilde{f}||_{\mathcal{F}} - ||\widehat{f}||_{\mathcal{F}} \Big]$$

$$\leq \lambda_{n} \Big[2||\widetilde{f}||_{\mathcal{F}} - ||\widetilde{\Delta}||_{\mathcal{F}} \Big] \leq \lambda_{n} \Big[2 - ||\widetilde{\Delta}||_{\mathcal{F}} \Big].$$

Substituting in the basic inequality:

$$\frac{1}{2}||\widehat{\Delta}||_n^2 \leq \frac{1}{2}||f^* - \widetilde{f}||_n^2 + \frac{\widetilde{\sigma}}{n}\Big|\sum_{i=1}^n w_i \widetilde{\Delta}_i\Big| + 2\lambda_n - \lambda_n||\widetilde{\Delta}||_{\mathcal{F}}.$$

Auxiliary Lemma 2

There exists positive constants c_1, c_2 such that with prob. at least $1-c_1\exp\left(\frac{-n\delta^2}{c_2\tilde{\sigma}^2}\right)$, we have

$$\left|\frac{\tilde{\sigma}}{n}\sum_{i=1}^n w_i \Delta(\mathbf{x}_i)\right| \leq 2\delta||\Delta||_n + 2\delta^2||\Delta||_{\mathcal{F}} + \frac{1}{16}||\Delta||_n^2,$$

for all $\Delta \in \partial \mathcal{F}$ with $||\Delta||_{\mathcal{F}} \geq 1$.

$$||\widetilde{f}||_{\mathcal{F}} \leq 1, ||\widehat{f}||_{\mathcal{F}} > 2 \text{, the trig. ineq. yields: } ||\widetilde{\Delta}||_{\mathcal{F}} \geq ||\widehat{f}||_{\mathcal{F}} - ||\widetilde{f}||_{\mathcal{F}} > 1.$$

$$\begin{split} \frac{1}{2}||\widehat{\Delta}||_n^2 &\leq \frac{1}{2}\,||f^\star - \widetilde{f}||_n^2 + 2\delta||\widetilde{\Delta}||_n + \big(2\delta^2 - \lambda_n\big)||\widetilde{\Delta}||_{\mathcal{F}} + 2\lambda_n + \frac{||\widetilde{\Delta}||_n^2}{16} \\ &\leq \frac{1}{2}\,||f^\star - \widetilde{f}||_n^2 + \underbrace{2\delta||\widetilde{\Delta}||_n}_{\leq 2\delta||\widetilde{f} - f^\star||_n + 2\delta||\widehat{\Delta}||_n} + 2\lambda_n + \underbrace{\frac{||\widetilde{\Delta}||_n^2}{16}}_{\leq \frac{1}{8}\left[||\widetilde{f} - f^\star||_n^2 + ||\widehat{\Delta}||_n^2\right]}. \end{split}$$

Auxiliary Lemma 2

There exists positive constants c_1,c_2 such that with prob. at least $1-c_1\exp\left(\frac{-n\delta^2}{c_2\tilde{\sigma}^2}\right)$, we have

$$\left|\frac{\tilde{\sigma}}{n}\sum_{i=1}^n w_i \Delta(\mathbf{x}_i)\right| \leq 2\delta||\Delta||_n + 2\delta^2||\Delta||_{\mathcal{F}} + \frac{1}{16}||\Delta||_n^2,$$

for all $\Delta \in \partial \mathcal{F}$ with $||\Delta||_{\mathcal{F}} \geq 1$.

It suffices to prove the theorem for $g \in \partial \mathcal{F}$ such that $||g||_{\mathcal{F}} = 1$. Given $\Delta \in \partial \mathcal{F}$ with $||\Delta||_{\mathcal{F}} > 1$, apply the lemma for $g = \frac{\Delta}{||\Delta||_{\mathcal{F}}} \in \mathcal{F}$. Hence:

$$\left|\frac{\tilde{\sigma}}{n}\sum_{i=1}^n w_i \Delta(\mathbf{x}_i)\right| \leq c_1 \delta ||\Delta||_n + c_2 \delta^2 ||\Delta||_n + \frac{1}{16} \frac{\underbrace{\leq ||\Delta||_n^2}{||\Delta||_n^2}}{||\Delta||_{\mathcal{F}}}.$$

• We first consider it over $\{||g||_n \le t\}$. Define

$$Z_n(t) = \sup_{\substack{||g||_{\mathcal{F}} \leq 1 \\ ||g||_n \leq t}} \left| \frac{\tilde{\sigma}}{n} \sum_{i=1}^n w_i g(\mathbf{x}_i) \right|.$$

Lipschitz with constant $\frac{\tilde{\sigma}t}{\sqrt{n}}$. Consequently,

$$\mathbb{P}\big[Z_n(t) \geq \mathbb{E}[Z_n(t)] + u\big] \leq \exp\Big(\frac{-nu^2}{2t^2\tilde{\sigma}^2}\Big).$$

• Let $t = \delta$. Note that $\mathbb{E}[Z_n(\delta)] \leq \tilde{\sigma} \mathcal{G}_n(\delta) \leq \delta^2$.

$$\mathbb{P}\big[Z_n(\delta) \geq 2\delta^2\big] \leq \exp\Big(\frac{-n\delta^2}{2\tilde{\sigma}^2}\Big).$$

• Also note that $\mathbb{E}[Z_n(t)] \leq \tilde{\sigma}\mathcal{G}_n(t) = t \frac{\tilde{\sigma}\mathcal{G}_n(t)}{t} \leq t \frac{\tilde{\sigma}\mathcal{G}_n(\delta)}{\delta} \leq t \delta$:

$$\mathbb{P}\Big[Z_n(t) \geq t\delta + \frac{t^2}{32}\Big] \leq \exp\Big(\frac{-c_2nt^2}{\tilde{\sigma}^2}\Big), \text{ for } t > \delta.$$

Auxiliary Lemma 2

$$\left|\frac{\tilde{\sigma}}{n}\sum_{i=1}^{n}w_{i}\Delta(\mathbf{x}_{i})\right| \leq 2\delta||\Delta||_{n} + 2\delta^{2}||\Delta||_{\mathcal{F}} + \frac{1}{16}||\Delta||_{n}^{2},\tag{2}$$

for all $\Delta \in \partial \mathcal{F}$ with $||\Delta||_{\mathcal{F}} \geq 1$ with prob. at least $1 - c_1 \exp\left(\frac{-n\delta^2}{c_2\tilde{\sigma}^2}\right)$.

- We will complete the proof by a *peeling* argument.
- Let $\mathcal E$ the event that (2) is violated for some $g \in \partial \mathcal F$ with $||g||_{\mathcal F} = 1$.
- For $a, b \in \mathbb{R}$, let $\mathcal{E}(a, b)$ be the event that (2) is violated for some function such that $||g||_n \in [a, b]$ and $||g||_{\mathcal{F}} = 1$.
- For $m \in \mathbb{I}$, define $t_m = 2^m \delta$. We have $\mathcal{E} = \mathcal{E}(0, t_0) \cup \Big(\bigcup_{m=0}^{\infty} \mathcal{E}(t_m, t_{m+1})\Big)$.
- Hence, $\mathbb{P}[\mathcal{E}] \leq \mathbb{P}[\mathcal{E}(0,t_0)] + \sum_{m=0}^{\infty} \mathbb{P}[\mathcal{E}(t_m,t_{m+1})].$
- Since $t_0 = \delta$, we have $\mathbb{P}[\mathcal{E}(0, t_0)] \leq \mathbb{P}[Z_n(\delta) \geq 2\delta^2] \leq \exp\left(\frac{-n\delta^2}{2\tilde{\sigma}^2}\right)$.

• Assume that $\mathcal{E}(t_m,t_{m+1})$ holds. Meaning there exists g with $||g||_{\mathcal{F}}=1$, and $||g||_n\in[t_m,t_{m+1}]$, such that

$$\left| \frac{\tilde{\sigma}}{n} \sum_{i=1}^{n} w_{i} g(\mathbf{x}_{i}) \right| \geq 2\delta ||g||_{n} + 2\delta^{2} + \frac{1}{16} ||g||_{n}^{2}$$

$$\geq 2\delta t_{m} + 2\delta^{2} + \frac{1}{8} t_{m}^{2}$$

$$= \delta t_{m+1} + 2\delta^{2} + \frac{1}{32} t_{m+1}^{2}.$$

ullet This lower bound implies that $Z_n(t_{m+1}) \geq \delta t_{m+1} + rac{t_{m+1}^2}{32}$. Thus

$$\mathbb{P}[\mathcal{E}(t_m, t_{m+1})] \leq \exp\left(\frac{-c_2 n 2^{2m+2} \delta^2}{\tilde{\sigma}^2}\right)$$

Wrapping up:

$$\mathbb{P}[\mathcal{E}] \leq \exp\left(\frac{-n\delta^2}{2\tilde{\sigma}^2}\right) + \sum_{m=0}^{\infty} \exp\left(\frac{-c_2n2^{2m+2}\delta^2}{\tilde{\sigma}^2}\right) \leq c_1 \exp\left(\frac{-c_2n\delta^2}{\tilde{\sigma}^2}\right).$$

Section 9

Kernel Ridge Regression

Local Gaussian Complexity of unit Ball of an RKHS

Theorem

Consider an RKHS with kernel k. For a given set of points $\{\mathbf{x}_i\}_{i=1}^n$, let $\hat{\mu}_1 \geq \hat{\mu}_2 \geq \cdots \geq \hat{\mu}_n \geq 0$ be the eigenvalues of normalized kernel matrix \mathbf{K} with entries $\mathbf{K}_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)/n$. For all $\delta > 0$, we have

$$\mathbb{E}\left[\sup_{\substack{||f||_{\mathcal{F}} \leq 1 \\ ||f||_{n} \leq \delta}} \left| \frac{1}{n} \sum_{i=1}^{n} w_{i} f(\mathbf{x}_{i}) \right| \right] \leq \sqrt{\frac{2}{n}} \sqrt{\sum_{j=1}^{n} \min\left(\delta^{2}, \hat{\mu}_{j}\right)}$$

It suffices to consider functions of the form $g(.) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \alpha_i k(., \mathbf{x}_i)$. Any function of the Hilbert space \mathcal{F} can be written as $f = g + g^{\perp}$. We must have $g^{\perp}(\mathbf{x}_i) = \langle g^{\perp}, k(., \mathbf{x}) \rangle = 0$. We also have $||f||_{\mathcal{F}}^2 = ||g||_{\mathcal{F}}^2 + ||g^{\perp}||_{\mathcal{F}}^2$. Without loss of generality, we can assume $g^{\perp} = 0$.

- The constraint $||g||_n \le \delta$ is equivalent to $||\mathbf{K}\alpha||_2 \le \delta$.
- The constraint $||g||_{\mathcal{F}} \leq 1$ is equivalent to $\alpha^{\top} \mathbf{K} \alpha \leq 1$.
- The local complexity:

$$\mathcal{G}_n(\delta) = \frac{1}{\sqrt{n}} \mathbb{E} \left[\sup_{\substack{\alpha^\top \mathbf{K} \alpha \leq 1 \\ \alpha \mathbf{K}^2 \alpha \leq \delta^2}} \left| w^\top \mathbf{K} \alpha \right| \right]$$

- **K** is PSD, hence $\mathbf{K} = \mathbf{U}^{\top} \Lambda \mathbf{U}$: $\mathcal{G}_n(\delta) = \frac{1}{\sqrt{n}} \mathbb{E} \left[\sup_{\beta \in D} |w^{\top} \beta| \right]$ where $D = \left\{ \beta \in \mathbb{R}^n \ \middle| \ ||\beta||_2^2 \le \delta^2, \sum_{j=1}^n \frac{\beta_j^2}{\hat{\mu}_j} \le 1 \right\}$
- Define $\mathcal{E} = \{ eta \in \mathbb{R}^d \mid \sum_{j=1}^n \eta_j \beta_j^2 \leq 2 \}$, where $\eta_j = \max\{\delta^{-2}, \hat{\mu}_j^{-1}\}$
- For any $\beta \in D$, we have $\sum_{j=1}^n \max\{\delta^{-2}, \hat{\mu}_j^{-1}\}\beta_j^2 \leq \sum_{j=1}^m \frac{\beta_j^2}{\delta^2} + \frac{\beta_j^2}{\hat{\mu}_j} \leq 2$. Hence $D \subseteq D$.
- As a result, by Hölder Inequality

$$\mathcal{G}_n(\delta) \leq \sqrt{\frac{2}{n}} \mathbb{E} \sqrt{\sum_{j=1}^n \frac{w_j^2}{\eta_j}} \leq \sqrt{\frac{2}{n}} \sqrt{\sum_{j=1}^n \frac{1}{\eta_j}}.$$

Corollary

Any $\delta > 0$ satisfying

$$\sqrt{\frac{2}{n}}\sqrt{\sum_{j=1}^{n}\min\left(\delta^{2},\hat{\mu}_{j}\right)}\leq\frac{R}{4\sigma}\delta,$$

satisfies the critical inequality.

Some examples from the book here...