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Introduction

Non-Parametric Least Squares

o MMSE Estimation:
Lf= Ex y[(Y— f(X))z] = *(x) = E[Y|X = x]

@ In practice we are given a collection of samples {(x;, y;)}7_;, which
can be used to compute an empirical analog of the MSE:

~ 1< 5
Lr= ;Z (vi— f(x1))
i=1
@ Non-Parametric Least Squares: Minimizing this criterion over some
suitably controlled function class.
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Different Measures of Quality

o Excess Risk:
1F = 12y = Exwr [ (F(X) = F())7]

where P denotes the distribution over covariates.

o This Chapter: Let {x;}7 ; be the set of fixed covariates and P, be
their Empirical measure. Define:

n

) 1/2
=l 2@, = [n Z (f(xi) — f*(x,-))zl )

i=1

In this talks, we will use this measure and denote it as ||f— f*||,.
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Introduction

Fixed or Stochastic Covariates?

Note

o We will view the samples {x;}7 ; as being fixed, a set-up known as
regression with a fixed design.

@ Results from Chapter 14 to follow can be used to translate these
bounds into equivalent results in the population Ly(P)-norm.
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Introduction

Estimation via Least Squares

Given a fixed collection {x;}7 ;, model the responses as
yi=f*(x;)+v;, fori=12 ... n.

where v; = ow; in which w; ~ N(0,1). The least squares estimate is given

by the function
-~ 1 2
f - i — f(x; .
eafg,cg'ﬁ{niv () }

i=1

e When v; ~ N(0,02), the LS estimate is equivalent to the constrained
maximum likelihood.

@ When F is an RKHS, it can also be convenient to use regularized
estimators of the form:

~ 1 2
fe arg)r%ljg{nz(y;— f(xi)) +)\n|\f|2f}-

i=1
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Examples

Section 2

Examples
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Examples

Parametric: Linear Regression

o For a given vector 8 € R, define fy(x) = (0, x) and consider the
function class Fc = {fp : RY — R|@ € C} for a compact C.

@ The least squares estimate:

—~ . 1
0c arg;,pelg{nlly— X9||§}

where X € R"*9 is the design matrix.

@ The constrained form of Ridge Regression:
C={6ecR?||0]|3 < R}.
@ The constrained form of LASSO:
C={0ecR?| 0], < R}.

Behrad Moniri (EE @ Sharif) Non-Parametric Least Squares 10/ 64



Examples

Non-Parametric: Cubic Smoothing Spline

Consider the class of twice cont. differentiable functions f: [0,1] — R and

for a given radius R, define:
1 2
/ (f”(x)) dx<Rj.
0

The integral can be understood as a Hilbert norm bound in the
second-order Sobolev space.

F(R) = {f: [0,1] - R
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Critical Radius: Bounding the Prediction Error
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Critical Radius: Bounding the Prediction Error

Critical Radius: Bounding the Prediction Error

@ Intuitively, the difficulty of estimating the function f* should depend
on the complexity of the function class F in which it lies.

@ a localized form of Gaussian complexity: it measures the
complexity of the function class F, locally in a neighborhood around
the true regression function f*.

Local Gaussian Complexity
Define f* = F — {f*} = {f— f*|fe€ F}. For a given radius 6 > 0, the
local Gaussian complexity around f* at scale § is given by:

’ Zng

Gn(6; f*) = Ey

gEF* ||an<5
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Critical Inequality

Critical Inequality

A central object in our analysis is the set of positive scalars J that satisfy
the critical inequality:
Gn(5; F*)

)
= >
20 — 1)

o We refer to any & > 0 satisfying the critical inequality as being valid.

@ We use J; to denote the smallest positive radius for which the critical
inequality holds.
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Critical Radius: Bounding the Prediction Error

Some Intuition

o Note that == E,"_l (y; —?(Xi))2 < 2*1,, > (y, —f* (X:))2-
o After some computations: ZHf 12 < 2y W (f (xi) — F*(x ))

o Note that f— f* € f*. Reasoning hueristically, this observation
suggests that

52 6 _ Gn(6; F")
— < — <
5 0Gn(6; F*) or equivalently 5 5

@ We will present a rigorous result later in this talk.
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The Main Result

Star-Shaped Classes

a function class F is star-shaped if for any o € [0, 1] we have

fe F — afe F.

Theorem

Suppose that the shifted function class F* is star-shaped, and let § be any
solution to the critical inequality. Then for any t > 4, the nonparametric
least-squares estimate f, satisfies the bound

PlIf — FI 2 1665 < exp (525) (1)

v
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Properties of Star-Shaped Classes
@ The star shaped condition on F* is needed in various parts of the

proof, including ensuring a valid radii J exists.
@ F* Star shaped = F is star shaped around f*.

Property

If F is convex, it is star-shaped around any f*.

Proof

Let f= f— f* € F* be an arbitrary point in F* with £, f* € F.
For any a € [0,1], by convexity we have g = af+ (1 — a)f* € F.
Hence af = a(f— f*) = g— f* € F*, proving F* is star-shaped.

Conversely
Similarly if F is not convex, there must exists a * such that F is not star
shaped around f*.
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Properties of Star-Shaped Classes

o If the star-shaped condition fails to hold, then the main Theorem can
instead by applied with ¢ defined in terms of the star hull (we will see
next session.)

star(F*) = {a(f— f*)|fe F,a € [0,1]}.

Existence of Critical Radius
Gn(6,F*)

For any star shaped class F*, the function 6 — *"—" is non-increasing
on (0,00). Consequently, for any ¢ > 0, the inequality
*
0. _

has a smallest positive solution.
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Proof of the Existence of Critical Radius

Given 0 < ¢ < t, we should show that %Qn(t) < Gn(9).

Given any h € F* with ||h]|, < t, define h = éth € F* (by star-shaped
assumption) and write

{ Zw,h(x, = {ZW, (xi)}

By construction, ||A||, < 6. Consequently:
@ The RHS is at most G,(d) in expectation.

e Taking supremum over the set F N {||h||, < t} following by
expectation, yields étg,,(t) on the left hand side.

This concludes the proof. O
Non-Parametric Least Squares
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Critical Radius: Bounding the Prediction Error
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Figure 13.2 Illustration of the critical radius for sample size n = 100 and two dif-
ferent function classes. (a) A first-order Sobolev space. (b) A Gaussian Kernel class.
In both cases, the function & +— %’z’ plotted as a solid line, is non-increasing, as
guaranteed by Lemma 13.6. The critical radius 6, marked by a gray dot, is deter-
mined by finding its intersection with the line of slope 1/(2¢7) with o = 1, plotted as
the dashed line. The set of all valid §,, consists of the interval [;, c0).

n*
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Critical Radius: Bounding the Prediction Error

Proof of the main theorem

Theorem

Suppose that the shifted function class F* is star-shaped, and let § be any
solution to the critical inequality. Then for any t > 4, the nonparametric
least-squares estimate f, satisfies the bound

P[||f — ]2 > 16t6] < exp (;Z’;‘S)
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@ Denote A = f— f* € F*, we have 1[|A[|2 < 237 wiA(x;). We
need to control the stochastic component of the right-hand side.

Auxiliary Lemma

Let F* be a star-shaped class and § satisfy the critical inequality. Define

the bad event A(u) as
* < .
Au) = {ﬂge F* llglln = u - ‘Zzw,-g(xf) > 2UIIgIn}.
=1
For a given u > §, we have P[A(u)] < exp (7"”2).
Now consider two cases:
o Case 1: ||A]|, < V5 which implies ||A]|2 < t0 trivially.
o Case 2: ||A||, > V/td. We condition on A°(\/5). Set u=+/t4, so

202
that we have P[A°(V/16)] > 1 — exp(522). Hence:

202

IA]13 <22 > wl(x)| < 4l|AlLVE = [|A|} <166,
i=1
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Critical Radius: Bounding the Prediction Error

Proof of the Auxiliary Lemma

Recall A(u) = {3g € 7", llglln > u : |2 0, wig(x)| > 2ullgll |
Step 1: reduce to controlling a sup over a subset with ||g||, < u.

@ Suppose that A(u) is true, hence there exists g € F* with ||g||» > u

such that
’f W,g(x
@ Define g = 5 || g € F*, we observe that ||g||, = u. We have
0~ u |o 5
e : N = — | = . 3 > .
[ L] = 7 2 et 2 2

@ We thus conclude that:

n

% Z W,'E(X,') .

PIAW] < BIZo(w) 2 27), Zy(u) i= swp
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Critical Radius: Bounding the Prediction Error

Proof of the Auxiliary Lemma

PIA(u)] < P[Zy(u) > 2], Zy(u) = Supgere, ||, <u |G i1 Wig(Xi)]|-

Step 2: Concentration of suprema.
o Recall that w; ~ N(0,1), hence 2377, w;g(x;) ~ N(O, %2||§H,2,)

%27:1 w; g (x)|-

o Z,,(u) = h(Wl, ey Wn) = sup zeF*, ||B|ln<u
@ The Lipschitz constant of h is at most %
@ We know that for Z; ~ N(0,02) and h a L-Lipschitz function:

P[h(Z) — EK(Z) > {] < e 552

o Let s = u?, we obtain P(Z,(u) > E[Z,(u)] + v?) < exp (_2;”;2)
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Critical Radius: Bounding the Prediction Error

Proof of the Auxiliary Lemma

Step 3: Bounding the expectation.
e Note that E[Z,(u)] = 0 Gn(u).

@ We know that v — @ is non-increasing. We have also assumed
that u > 6.
O'gn(U) < o_gn(gd) < g <5 — E[Zn(u)] <u < U2.
u

Comibining our results, we obtain

PIA(u)] < PIZy(u) > 207] < B(Zo(u) = E[Zo(u)]+07) < exp (5 ).

Which concludes the proof. O
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How to Compute the Critical Radius?

Section 4

How to Compute the Critical Radius?
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Bounds via Metric Entropy

For any star-shaped function class F*, define:
e B(6; F*)={he F* ] [|hl|ln < 0}
o N (t; Bn(0; F*)) be the t-convering number of B,(8; F) in norm ||.|| .

Critical Inequality via Metric Entropy
Any § € (0, o] satisfying

f \/Iogj\/ t; B(6; F*)) dt < 22

satisfies the critical inequality.
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Bounds via Metric Entropy: Proof

e Construct a ﬁ—covering of the set B(J; F), say {g',...,gM}. For
any function g € B(3; F), there is a j € [M] such that ||g/ —g][» < 2.
o We have

‘ ZWI ‘ Z wi g (x;) ’ 1 Z wi (g (x;) — gj(x,-))‘
<. maxM‘ Z w; J(x \/Z,—1 w; \/Z’_ gk(xi))?

> g wi?
m J i=
< axM‘ E w; g7 (x;) ’—1— \/T

max‘ EW, X;)
j M
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Bounds via Metric Entropy: Proof

@ To upper bound the first term, we use Dudley’s Integral. Define
Z(gh) = B L wigh (xi) for j=1..... M.

@ The induced metric: % (g/, g¥) := Var(Z(g’) — Z(g*)) = ||g’ — gk||?

e Since ||g]||n < 0 for all g€ B,(d, F*), the coarsest resolution of the

. . . 2
chaining can be set to . We can terminate it at f—a since any
member of our finite set can be reconstructed at this resolution.

|2(¢7)|
el o, st -2 o, S
5
< % /55 V/log N, (t; B,(5; F))dt
Hence G,(6) < & + f52 Vog N, (t; B,(5; F))dt. O
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Review and Examples

Section 5

Review and Examples
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Review and Examples

Review: Estimator, Models, and Definitions

Model

Let F be a function class and f* € F and {x;}!; be a set of n covariates.
Assume that y; = f*(x;) + ow; where w; ~ N(0, 1).

.

Estimator

Given the set {(x1,y1),---, (Xn, ¥n)}:

n

fearg rfgy % 2; (y,-— f(x,-)>2.

=

Measure of Goodness

Let {x;}7_; be the set of fixed covariates:

Lo 1/2
[[f— ]| = ln Z (f(xi) — f*(Xi))zl .

i=1
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Review and Examples

Local Gaussian Complexity

gn(5)EW[ sup ’1ZW;f(X,')]
ger NI
||g||nS5

Critical Inequality

A central object in our analysis is the set of positive scalars § that satisfy
the critical inequality:

0 Gl F)
20 1)
Existence of Critical Radius
For any star shaped class F*, the function § — % is non-increasing

on (0,00). Consequently, for any ¢ > 0, the inequality M < ¢b has a

smallest positive solution.

Behrad Moniri (EE @ Sharif) Non-Parametric Least Squares 33 /64



Review: Main Results

Theorem

Suppose that the shifted function class F* is star-shaped, and let ¢ be any
solution to the critical inequality. Then for any t > 4, the nonparametric
least-squares estimate f, satisfies the bound

Bl 1> 1660] < exp (5w )

Auxiliary Lemma

Let F* be a star-shaped class and § satisfy the critical inequality. Define
the bad event A(u) as
> 2UI|g|n}.

Alu) = {agef*,|g||n2u: 5y _ we(x)
Non-Parametric Least Squares 34 /64
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Review and Examples

Review: How to Compute a Critical Radius

For any star-shaped function class F*, define:
o B(6;F*)={he F*|||hl|n <6}
o N (t; B(8; F*)) be the t-convering number of B(d; F) in norm ||.||,.

Critical Inequality via Metric Entropy
Any § € (0, o] satisfying

2

f \/Iog./\f £ B(5; F*)) dt < ;i

o

satisfies the critical inequality.
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Review and Examples

Parametric Example: Linear Regression

o Consider y; = (6*,x;) + w; with 8* € RY.

o Hypothesis class: F = {fp(.) = (0,.) | 8 € R9}.

o Let X € R be the design matrix with rank r.

@ F = F* and convex. Thus star-shaped around any point.
e Vfy € F, the function 8 — ||fg |2 = %.

e B(§; F) is a 6-ball in Range(X).

e Dimension of Range(X) is r. By a volume argument:

log (N(t, B((S;]-"))) < rlog (1 + ?)

@ We have

! 6\/IN-B<5-]-'*d<6r e 0 < oy~
ﬁ/gz og N (:B(5, 7)) dt < i\ | © = |[F— [l < ey [~
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Review and Examples

Non-Parametric Example: Lipschitz Functions

@ Consider the function class
Fuip(L) = {f: [0,1] — R|f(0) = 0, fis L-Lip}.

@ Note that fLip(L) — fLip(L) = 2fLip(L) - fLip(2L).
@ The Dudley’s integral can be bounded as follows:

n 0 2L

2
. 2 2 3
o It suffices to choose § > 0 such that w/%; < % — 2~ (L%) ’.

winy

@ According to the main theorem: H?— 12 < (%2) with probability

1
_ 3
at least 1 — crexp (— &2(1%)?)-
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Oracle Inequalities

Section 6

Oracle Inequalities
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Oracle Inequalities

Oracle Inequalities

@ In our analysis so far, we have assumed that * € F. If we lift this
assumption, we have:

o Prediction Error
o Approximation Error
@ It is natural to measure the approximation error in terms of the best
approximating function in F, i.e. infecr ||[f— ]| 5.
@ Only an oracle that has access to f*(x;) can calculate
infrer ||f— F*||n. Hence we call inequalities with infrcz ||f— f*||,, the
Oracle Inequalities.
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Oracle Inequalities

Oracle Inequalities

Assume that y; = *(x;) + ow;, where w; ~ N (0,1).
Define OF = {fi — f|A, f» € F}. We assume that this set is star-shaped.

Oracle Inequality

.. : o : g,,(6 dF)
Let § be any positive solution to the critical inequality < g
For any t > 9, the non-parametric least-square estimate fsatlsfles the
bound

~ 1+
IF— 12 < ?Ofl){ ||f 2+ ﬁt&}forallfe]—',

with probability at least 1 — ¢; exp(— C2”f5)

When * € F, we can set f= f*. Hence, ||/7\‘— *||2 < td, recovering the
previous result up to constants.
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Oracle Inequalities

Oracle Inequalities

~ 14+~ o)
f— 2 < inf f— |24+ ———t5 for all fe F.
(=< inf T Pl o o)

o When f* ¢ F, setting t = § and taking infimum over f € F, yields
[[F= F1[5 < Inf [[F = £4[5 + 62
feF

with high probability. The term 82 can be viewed as the estimation

error and infecx ||f— £*||2 as the approximation error.
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Oracle Inequalities

Oracle Inequalities: Proof

~ ~ ~ ~

Given an arbitrary f€ F, define A = f— f* and A = f— f. We have

~v2 1 ~\2
OZZZ(}’f—ﬁ) —ZZ(}’,‘—fi)

=1 i=1

1 ~ 1 n 2 1 n . . 1 .,
= SIBIE+ =" (= )+ S D= fE =) = o= > (= F)

i=1 i=1 i=1

Hence 3|IAIZ < £ Y0, (A= A)(2yi— fi— %) = L L, ow(f; — ).

1 1 [~ = ~ - ~
§||A||f, <o 3y {(A,-— A)Qow;— A, — D) + 2UW,A,-}

=

1 ~ 1 ~ 1 ~ Olnem
= 23 owdi+ Sl =R < S I1F - FIR+ 2| D ws
2o owidit M7 =R < 511 =T+ T 3w
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Oracle Inequalities

Oracle Inequalities: Proof
To bound the error, we consider two cases:
e Case 1: Suppose that ||A||, < V1.

—~ ~ ~ ~ 2
IAI[ = 1(F= £) + Al < (1[F= £l + VD)
~ 2
§(1+2B)|\f—f*]|f,+(1+5)t6.
Set B = % This yields
. . 14+v ~ Co
f— 2 < inf §—L||f— |2+ ———1t5¢.
=l (T F= Pl + - 0

’76(071)
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e Case 2: Suppose that ||Al], > V1.

Auxiliary Lemma

Let H be a star-shaped class and § satisfy the critical inequality:

2

—nu
] §exp( 52 )

Yu>6: IP’[EIgE’H llglln>u : ’—ZW,

Let u=/t0 and H = OF. We have

p2/2 }iju > VB4l < e (~ 20).

Hence, with high probablllty
A7 < [[F= 117+ 4VBl Al < [[F- f*||2+4f{IIAII2+IIf f*ll}
<117 1B+ [4811AIE + S o3] + [4811F— 115+ S].

Rearrenging terms: ||A||]2 < 1+4ﬁHf )2 + A= 4ﬁ) to. O
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Examples

Section 7

Examples
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Examples

Example: Best Sparse Approximation

o Consider F(s) = {f=(0,.)||6]o < s}
o Disregarding the computational complexity, let

0e argllnﬁm lly — X0[3.

@ We will prove that with high probability:

- 24|
Fo IR S inf [f— | 4 Cto8led/s)
feF(s) n
———
52

@ The penalty grows linearly with s and logarithmic with d. We only

pay a logarithmic price for not knowing the support set in advance.

Behrad Moniri (EE @ Sharif) Non-Parametric Least Squares

46 /64



Examples

Example: Best Sparse Approximation

@ Note that 0F(s) C F(2s). Hence Gn(d; 0F(s)) < Gn(6; F(25)).
o Let SC {1,...,d} be an arbitrary 2s-sized subset.

o Let X5 € R"™*? the sub-matrix with columns in S.

@ Define

Z,(S) = sup
05 € R?®
[[XsOs|l2/+/n < 8

’WTXSOS‘
7[} .

® We have G, (6 F(25)) = Eu| max|si—as Zu(S)|

e Viewed as a function of w, Z,(S) is % Lipschitz. Hence

P[Z,(S) 2 E(Z,(S)) + 0] < exp (_Tntz)
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o Consider the SVD of Xs = UDV'". We have ||Xs0s||> = ||[DV 85|

1 )
E[Z, =F — (T < —E[|luT .
2(9] =E[ swp | 70w, 0)]| < ZE(IUT k]
[18ll2 < &
o Since U is orthogonal and w ~ A(0,1,), thus UTw ~ A(0, L).

o Therefore E[||UTw||] < +/2s. Applying the union bound to the Lip
upper bound:

s —nt?
o as 292 o(\/% 9] < (1) e ()

@ By integrating:

y od
I}E[max|5|;2S Z,(9)] _ gn(g(s) < \/EJF \/|ogn(25) < \/Slogn( s )

@ Thus § ~ 025|°g(ned/s) satisfies critical inequality.
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Regularized Estimators

Section 8

Regularized Estimators
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Regularized Estimators

Oracle Inequalities for Regularized Estimators

o Given a space F of real-valued functions, an associated norm ||.|| 7,
consider the family of regularized least-square problems:

n

~ ) 1
Feammin {5037 (= )" + Al

=

@ A Local Gaussian Complexity Measure:

1 n
Gn(0) £ Gn(6; Bor(3)) =Ew| sup ‘f Z w; f(x;)
gEeoOF n =1
llglln <6
llellr<3

|

@ The critical inequality for a user defined R:

9nl0) L
5 ~ 20
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Regularized Estimators

Oracle Inequalities for Regularized Estimators

Theorem
Consider a convex function class F and assume that § satisfies the critical
inequality
1) R
G:(3) _ R g
1) 20
If X, > 262. There exists universal constants co, ¢, ¢, ¢3 such that

F— 2 < inf |If— FI2+ caRP(6% + An)
Il <R

with probability grater than 1 — ¢ exp ( —c3 ”R2252).

o
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. Proof

Oracle Inequalities for Regularized Estimators

e y; = f*(x;) + ow;. Rescale the model by R.
~2 _ (o 2

o Rescaled Noise variance: &
o Rescaled approx. error: IanfH}'<1Hf )12
o The final MSE should be multiplied by R2.

o Let fbe an arbitrary element in F with ||f||r < 1

o We have
n

1 ~ ~
5 Z " MallFllF < 5D (= Flxi) + Ml
i=1

o Denote A =f— f* and A = f— f. With a simple calculation

(next slide):

1o~ 1~ s T~ %
- < Z||lf— el .
SIA G < SIIf f*lln+n‘i§_1 wiA(x;)| +
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Regularized Estimators

Given an arbitrary fe F, we have

1 ~\2 - 18 ~ _
02 =37 (vi— 1)+ MallFl5 = 5 D0 (= ) = MllFll3
n i=1 n i=1
Lo~ 1 a2 1< .
=SB+ 3 D= ) =D = AT 1)
n i=1 n i=1
1< ~\2 - ~
= 5 20 i = )7+ Mallf1l5 = AalIFIl5
i=1

Rearranging terms:

n

1~ 1 ~ ~ 1 ~ ~ ~
5||A||2<—Z(A;—Af)(2y,-—ﬁ—ﬁ*)—;Zawf(f,-*—ﬁ)+An||f||3r—Aan||_2r

2<
2n i=1 i=1
1§ A A A A N 712 (712
<o [(Bi = B)) (20w — Bi = B) + 20w | + Al I3 — Al IFl13
i=1
AN A e e T2 _ v |72
< -2 owildit SIFF = fillh + Anllfl[F — AallflI%
i=1

A

+ Anl I3 = Aal[F1%-

1 ~ o1l
< SNF - fls+ *’ZW:‘A:'
n i=1
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Parts of Proof

o If ||A]|, < Vtd: It is trivial.
o Assume that [|A|[, > V1.

o Case 1 Suppose that ||?||; < 2. This is also very similar to the
previous session. N
e Case 2 Suppose that ||f|| > 2. We will prove this statement here.
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Regularized Estimators

Case 2: |\Af||f >2>1> H?Hf

+ Xl [F115 = Al 117

SI815.< 1 =71+ 7| 3w
We have
1% = 1115 = [Pl + 1712|111 = 1F115] < (1l = 171
>1 <0
Writing = f+ A = [[f||= > ||All» — ||f]|#:
M[IIFIB: = 1F1E] < 11717 = 11F1L]

< A 20Fllr = 1A I1F] < Aa[2— 1A 1],

Substituting in the basic inequality:

Lxeg_lym 72,0 . N N
SIBIE < S IF f|n+n\;w,-A,-1+2AnAn|A|f.
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Regularized Estimators

Auxiliary Lemma 2

There exists positive constants ci, ¢, such that with prob. at least
2
1—cexp (;2"—&52) we have

23

for all A € OF with [|Al|x > 1.

+207/|A]|5 + 511,

IFll < L,|[fl|7 > 2, the trig. ineq. yields: || A= > |[f||7 — |[fllF > 1.

LA < L5 12 4 anllElL (26 — A 1A
SIAIR < S 11F = FI2+ 2611l + (26 = AL + 2, +

16
1 ~ ~ A2
<TIF-HRe 2Bl 2ar S0k 0
—— NS

<26|[F—£*{],+26]|B] |
<t[IiF=F 12412112
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Proof of Auxiliary Lemma 2
Auxiliary Lemma 2

There exists positive constants ci, ¢; such that with prob. at least
1— clexp(cg‘l) we have

73 i

for all A € OF with [|Al|x > 1.

+207/|A]|5 + 51N,

It suffices to prove the theorem for g € OF such that ||g]|x = 1. Given A € OF
with ||Al|= > 1, apply the lemma for g = HAAII € F. Hence:

<lall;
1 J|A[
— 0% A I
; ZW’ et lIA 35 1A
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Regularized Estimators

Proof of Auxiliary Lemma 2

o We first consider it over {||g||» < t}. Define
5_ n
Zy(t) = sup ‘z Z wi g (x;)
llellm <177 i1
llglln <t

Lipschitz with constant % Consequently,
2

—nu

P(Zo(t) > EIZn(8)] + u] < exp (52 ).

o Let t = 4. Note that E[Z,(0)] < 5G.(5) < 62

]P’[Z,,((S) > 252] < exp (7,752).

252

o Also note that E[Z,(t)] < 5G,(t) = 290 < 1790) < 5.

(—ant2

=2 ), for t > 4.

P[Zn(t) >t + ;22} < exp
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Regularized Estimators

Proof of Auxiliary Lemma 2
Auxiliary Lemma 2
73

for all A € OF with ||Al|# > 1 with prob. at least 1 — ¢; exp( nd? 7).

+26%(|Al7 + 6HAH§, ()

@ We will complete the proof by a peeling argument.
@ Let &£ the event that (2) is violated for some g € OF with ||g||r = 1.

@ For a,b e R, let £(a, b) be the event that (2) is violated for some function
such that ||g||» € [a, b] and ||g]|F = 1.

@ For m e 1, define t,, = 2™3. We have £ = £(0, tp) U (U;OZOE(tm, tm+1)).
@ Hence, P[] < P[E(O, to)] + > oo PE(tm, tmt1)].

@ Since ty = ¢, we have P[E(0, )] < ]P’[Z,,(é) > 252] < exp (_2;‘22)
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Regularized Estimators

Proof of Auxiliary Lemma 2

@ Assume that &(tm, tmt+1) holds. Meaning there exists g with
l|lgll7 =1, and ||g||n € [tm, tm+1], such that

o5

+20%+ gl

m

> 26ty + 20° + %F
1
= Otpmy1 +20°% + —2tfn+1.
@ This lower bound implies that Z,(tm+1) > dtm+1 + ’”“ . Thus

52

—gyn22m 242 )
G

PIE (trm, tms1)] < exp (

@ Wrapping up:

52 > —cyn22m+242 —cnd?
) S () <o ()

—n
P[E] < exp ( 5%
m=0

—
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Kernel Ridge Regression

Section 9

Kernel Ridge Regression
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Local Gaussian Complexity of unit Ball of an RKHS

Theorem

Consider an RKHS with kernel k. For a given set of points {x;},, let
fl1 > fip > -+ > i, > 0 be the eigenvalues of normalized kernel matrix K
with entries Kj; = k(x;,x;)/n. For all § > 0, we have

f Zm'" 2, 1y)

It suffices to consider functions of the form g(.) = \f ST aik(.,x;). Any

E

1
sup ‘*ZW;)“(X
|z <1' M

n =

v

function of the Hilbert space F can be written as f= g+ g-. We must
have g*(x;) = (g*, k(.,x)) = 0. We also have ||f||% = |lg]|% + [lg "] |5
Without loss of generality, we can assume g+ = 0.
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Kernel Ridge Regression

@ The constraint ||g ||, < 0 is equivalent to ||Kal|, < 0.

@ The constraint ||g||7 < 1 is equivalent to o' Ka < 1.
@ The local complexity:

1
2(8) = —=E TK
g (5) ﬁ [a—rf(l:lp< 1 ‘W a’

aK2a < §2

o K is PSD, hence K= UTAU: G,(8) = %E[supﬁeD lw' B|] where

n n ﬁ
—{Ber[IBI3<? X, 7 <1}
o Define & ={BeR?| 37, ﬁjﬂf S 2}, where nj = max{d~ z,ﬂj }
m B2 52

e For any 3 € D, we have 27:1 max{5_2,,&j_1}ﬂj2 <SYiaptaE <2
Hence D C D.
@ As a result, by Holder Inequality
2 2
6.5) < |28 2 s
n n
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Kernel Ridge Regression

Corollary
Any § > 0 satisfying

R
zmm 2.) < 2,

satisfies the critical inequality.

Some examples from the book here...
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