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Motivation

▶ Modern Neural Networks are very good tools for prediction.

▶ Modern Neural Networks are not robust to adversarial attacks.
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Notations

▶ Data: (xi , yi ) ∼ P(Rd ,R)
▶ Model: fθ(·) : Rd → R
▶ Loss Function: ℓ(θ, x, y) = (y − fθ(x))2
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Traditional Supervised learning

Traditional Supervised learning

▶ Population Loss:
SR(θ) = Ex,y [ℓ(θ, x, y)]

▶ Empirical Risk Minimization:

θ̂ERM = argmin
θ

1

n

n∑
i=1

ℓ(θ, xi , yi )
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Norm-Bounded Perturbation
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Robust supervised learning

Robust supervised learning

▶ Adversarial Loss:

AR(θ) = Ex,y

[
max

||δ||2≤ε
ℓ(θ, x+ δ, y)

]
▶ Adverasrial Training:

θ̂ε = argmin
θ

1

n

n∑
i=1

max
||δi ||2≤ε

ℓ(θ, xi + δi , yi )

Behrad Moniri and Samar Hadou Adversarial Training 8



Observations

▶ AR(θ̂ERM) is large and AR(θ̂ε) is much smaller.

▶ SR(θ̂ε) is larger than SR(θ̂ERM).

Questions:
▶ Is there a fundamental tradeoff between SR and AR?
▶ How can we algorithmically achieve this tradeoff?
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Linear Regression: Fundamental Tradeoffs
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Gaussian Linear Regression

▶ We consider standard gaussian linear regression with

yi = ⟨xi ,θ0⟩+ wi where xi ∼ N (0, Ip) wi ∼ N
(
0, σ2

0

)
for 1 ≤ i ≤ n.

▶ We also focus on training linear models of the form fθ(x) = ⟨x ,θ⟩

▶ We can write:

SR(θ̂) := E
[
(y − ⟨x , θ̂⟩)2

]
= σ2

0 +
∥∥∥θ̂ − θ0

∥∥∥2
ℓ2
,

AR(θ̂) := E
[

max
∥δ∥ℓ2

≤ε
(y − ⟨x + δ, θ̂⟩)2

]
=

(
σ2
0 +

∥∥∥θ̂ − θ0

∥∥∥2
ℓ2
+ ε2∥θ̂∥2ℓ2

)
+ 2

√
2

π
ε ∥θ̂∥ℓ2

(
σ2
0 +

∥∥∥θ̂ − θ0

∥∥∥2
ℓ2

)1/2

.
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Pareto Optimal

Pareto-optimal points are the intersection points of the region with the
supporting lines:

θλ := argmin
θ
λ SR(θ) + AR(θ)

Behrad Moniri and Samar Hadou Adversarial Training 19



Pareto Optimal Curve

The solution θλ is given by

θλ =
(
1 + γλ0

)−1
θ0,

with γλ0 the fixed point of the following two equations:

γλ0 =
ε2test +

√
2
π εtest A

λ

1 + λ+
√

2
π

εtest
Aλ

Aλ =
1

∥θ0∥ℓ2

((
1 + γλ0

)2
σ2
0 +

(
γλ0
)2 ∥θ0∥2ℓ2

)1/2
.
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Linear Regression: Algorithmic Tradeoffs
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Algorithmic Tradeoffs

▶ Consider a class of estimators
{
θ̂ε : ε ≥ 0

}
constructed via the

following saddle point problem:

θ̂ε ∈ arg min
θ∈Rp

max
∥δi∥≤ε

1

n

n∑
i=1

(yi − ⟨x i + δi ,θ⟩)2

▶ Can one of these (adversarially trained) estimators achieve the
optimal tradeoff?

▶ The answer is in the limit.
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Algorithmic Tradeoffs

▶ Assume that n → ∞, d → ∞ and n/d → δ.

▶ Can we find an asymptotic expression for AR(θ̂ε) and SR(θ̂ε)?

▶ Note that these expression can both be written in terms of only∥∥∥θ̂ − θ0

∥∥∥2
ℓ2

and
∥∥∥θ̂∥∥∥2

ℓ2
.

▶ To do this, we will use Convex Gaussian Minmax Theorem (CGMT).
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History

▶ Standard linear regression has widely been studied in the
proportional limit:

▶ The underparameterized regime:

[1] Antonia M. Tulino and Sergio Verdu. Random matrix theory and wireless

communications. Foundations and Trends in Communications and Information

Theory, 2004.

▶ General case:

[2] Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction:
ridge regression and classification. Annals of Statistics, 2018.

[3] Trevor Hastie, Andrea Montanari, Saharon Rosset, Ryan J. Tibshirani. Surprises in

High-Dimensional Ridgeless Least Squares Interpolation, Annals of Statistics, 2022.

They all use the Marchenko-Pastur limit. Here, we cannot use that
because there is no closed form for the estimator.

Behrad Moniri and Samar Hadou Adversarial Training 28



History

▶ Standard linear regression has widely been studied in the
proportional limit:

▶ The underparameterized regime:

[1] Antonia M. Tulino and Sergio Verdu. Random matrix theory and wireless

communications. Foundations and Trends in Communications and Information

Theory, 2004.

▶ General case:

[2] Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction:
ridge regression and classification. Annals of Statistics, 2018.

[3] Trevor Hastie, Andrea Montanari, Saharon Rosset, Ryan J. Tibshirani. Surprises in

High-Dimensional Ridgeless Least Squares Interpolation, Annals of Statistics, 2022.

They all use the Marchenko-Pastur limit. Here, we cannot use that
because there is no closed form for the estimator.

Behrad Moniri and Samar Hadou Adversarial Training 29



History

▶ Standard linear regression has widely been studied in the
proportional limit:

▶ The underparameterized regime:

[1] Antonia M. Tulino and Sergio Verdu. Random matrix theory and wireless

communications. Foundations and Trends in Communications and Information

Theory, 2004.

▶ General case:

[2] Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction:
ridge regression and classification. Annals of Statistics, 2018.

[3] Trevor Hastie, Andrea Montanari, Saharon Rosset, Ryan J. Tibshirani. Surprises in

High-Dimensional Ridgeless Least Squares Interpolation, Annals of Statistics, 2022.

They all use the Marchenko-Pastur limit. Here, we cannot use that
because there is no closed form for the estimator.

Behrad Moniri and Samar Hadou Adversarial Training 30



History

▶ Standard linear regression has widely been studied in the
proportional limit:

▶ The underparameterized regime:

[1] Antonia M. Tulino and Sergio Verdu. Random matrix theory and wireless

communications. Foundations and Trends in Communications and Information

Theory, 2004.

▶ General case:

[2] Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction:
ridge regression and classification. Annals of Statistics, 2018.

[3] Trevor Hastie, Andrea Montanari, Saharon Rosset, Ryan J. Tibshirani. Surprises in

High-Dimensional Ridgeless Least Squares Interpolation, Annals of Statistics, 2022.

They all use the Marchenko-Pastur limit. Here, we cannot use that
because there is no closed form for the estimator.

Behrad Moniri and Samar Hadou Adversarial Training 31



Algorithmic Tradeoffs

Theorem (Convex Gaussian Min-Max Theorem (CGMT) – informal)

For X with i.i.d standard normal entries and ψ(·, ·) a convex-concave
function, define

Φ(X) := min
z

max
u

uTXz+ ψ(z,u) (PO)

ϕ(g,h) := min
z

max
u

∥z∥gTu+ ∥u∥hT z+ ψ(z,u) (AO)

We have Φ(X) ≈ ϕ(g,h), in which g,h are standard Gaussian random
vectors. Also the norms of the solutions for both optimization problems
are equal.

[Thrampoulidis, Oymak, and Hassibi; 2016 & 2018]
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Algorithmic Tradeoffs

Finding the asymptotic expressions for AR(θ̂ε) and SR(θ̂ε):

▶ Step 1: Adversarial loss has a closed form:

θ̂ε ∈ arg min
θ∈Rd

max
∥δi∥≤ε

1

2n

n∑
i=1

(yi − ⟨x i + δi ,θ⟩)2

= arg min
θ∈Rd

1

2n

n∑
i=1

(|yi − ⟨x i ,θ⟩|+ ε∥θ∥ℓ2)
2
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Algorithmic Tradeoffs

▶ Step 2: Write in the form of a Primary Optimization.

min
θ∈Rd

1

2n

n∑
i=1

(|yi − ⟨x i ,θ⟩|+ ε∥θ∥ℓ2)
2

= min
θ∈Rd

1

2n

n∑
i=1

(|wi − ⟨x i ,θ − θ0⟩|+ ε∥θ∥ℓ2)
2

= min
z∈Rd ,v∈Rn

1

2n

n∑
i=1

(|vi |+ ε∥z+ θ0∥ℓ2)
2 s.t. v = w − Xz

= min
z∈Rd ,v∈Rn

1

2n

(
||v||2ℓ2 + nε2||z+ θ0||2ℓ2 + 2ε∥z+ θ0∥ℓ2 ||v||ℓ1

)
= min

z∈Rd ,v∈Rn
max
u∈Rn

1

2n

(
||v||2ℓ2 + nε2||z+ θ0||2ℓ2 + 2ε∥z+ θ0∥ℓ2 ||v||ℓ1

)
+

1

2n
u⊤(v −w + Xz)
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Algorithmic Tradeoffs

▶ CGMT PO and AO forms:

Φ(X) := min
z

max
u

uTXz+ ψ(z,u) (PO)

ϕ(g,h) := min
z

max
u

∥z∥gTu+ ∥u∥hT z+ ψ(z,u) (AO)

▶ Primary Optimization:

min
z∈Rd ,v∈Rn

max
u∈Rn

1

2n

(
||v||2ℓ2 + nε2||z+ θ0||2ℓ2 + 2ε∥z+ θ0∥ℓ2 ||v||ℓ1

)
+

1

2n
u⊤(v −w + Xz)

▶ Hence, the Auxiliary Optimization is:

min
z∈Rd ,v∈Rn

max
u∈Rn

1

2n

(
∥z∥ℓ2gTu + ∥u∥ℓ2h

T z − uTω + uTv
)

+
1

2n

(
||v||2ℓ2 + nε2||z+ θ0||2ℓ2 + 2ε∥z+ θ0∥ℓ2 ||v||ℓ1

)
.
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min
z∈Rd ,v∈Rn

max
u∈Rn

1

2n

(
∥z∥ℓ2gTu + ∥u∥ℓ2h

T z − uTω + uTv
)

+
1

2n

(
||v||2ℓ2 + nε2||z+ θ0||2ℓ2 + 2ε∥z+ θ0∥ℓ2 ||v||ℓ1

)
.
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Algorithmic Tradeoffs

▶ CGMT PO and AO forms:

Φ(X) := min
z

max
u

uTXz+ ψ(z,u) (PO)

ϕ(g,h) := min
z

max
u

∥z∥gTu+ ∥u∥hT z+ ψ(z,u) (AO)

▶ Primary Optimization:

min
z∈Rd ,v∈Rn

max
u∈Rn

1

2n

(
||v||2ℓ2 + nε2||z+ θ0||2ℓ2 + 2ε∥z+ θ0∥ℓ2 ||v||ℓ1

)
+

1

2n
u⊤(v −w + Xz)

▶ Hence, the Auxiliary Optimization is:

min
z∈Rd ,v∈Rn

max
u∈Rn

1

2n

(
∥z∥ℓ2gTu + ∥u∥ℓ2h

T z − uTω + uTv
)

+
1

2n

(
||v||2ℓ2 + nε2||z+ θ0||2ℓ2 + 2ε∥z+ θ0∥ℓ2 ||v||ℓ1

)
.
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Algorithmic Tradeoffs

▶ Step 3: Study the Auxiliary Optimization

min
z∈Rd ,v∈Rn

max
u∈Rn

1

2n

(
∥z∥ℓ2gTu + ∥u∥ℓ2h

T z − uTω + uTv
)

+
1

2n

(
||v||2ℓ2 + nε2||z+ θ0||2ℓ2 + 2ε∥z+ θ0∥ℓ2 ||v||ℓ1

)
.

▶ Scalarization: Starting with the maximization over u, let u = βũ.

max
u∈Rn

1

2n

(
∥z∥ℓ2gTu + ∥u∥ℓ2h

T z − uTω + uTv
)

= max
β

1

2n

(
βhT z+

∥∥∥z∥ℓ2g −w + v
∥∥
ℓ2

)
.

▶ Repeat for the other variables z and v.
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Algorithmic Tradeoffs

Eventually, the AO is reduced to

max
0≤β≤Kβ

sup
γ,τh≥0

min
0≤α≤Kα

min
τg≥0

D (α, β, γ, τh, τg ) ,

with

D (α, β, γ, τh, τg ) =

δβ

2 (τg + β)

(
α2 + σ2

)
− α

2τh

(
γ2 + β2

)
+ γ

√
α2β2

τ 2
h

+ V 2 − ατh
2

+
βτg
2

+ δ1{
γ(τg+β)>

√
2
π
δεβ

√
α2+σ2

} β2
(
α2 + σ2

)
2τg (τg + β)

(
erf

(
τ∗√
2

)
− γ (τg + β)

δεβ
√
α2 + σ2

τ∗

)
and τ∗ is the unique solution to

γ (τg + β)

δεβ
√
α2 + σ2

− β

τg
τ − τ · erf

(
τ√
2

)
−

√
2

π
e−

τ2

2 = 0
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Algorithmic Tradeoffs

▶ It holds in probability that

lim
n→∞

1

d

∥∥∥θ̂ε
− θ0

∥∥∥2
ℓ2
= α2

∗,

lim
n→∞

1√
d

∥∥∥θ̂ε
∥∥∥
ℓ2
=
β⋆τ⋆

√
α2
∗ + σ2

ετg∗
.

▶ Hence, the following also holds in probability

lim
n→∞

SR
(
θ̂ε
)
= σ2 + α2

∗,

lim
n→∞

AR
(
θ̂ε
)
=

(
σ2 + α2

∗ + ε2
(
α2
∗ + σ2

)(β∗τ∗
ετg∗

)2
)

+ 2

√
2

π

ε β∗τ∗
ετg∗

(σ2 + α2
∗).
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Role of Overparameterization
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Overparameterized
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Underparameterized
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Double Descent

Interpolation threshold depends on ε.
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What else can be done?
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What else can be done?

▶ Adversarial training of random feature models: y = θ⊤σ(W x) + ϵ.

▶ W ∈ RN×d , θ ∈ Rd , and we have n samples.

▶ ψ1 = N/n and ψ2 = n/d .

Hamed Hassani and Adel Javanmard. The curse of overparametrization in

adversarial training: Precise analysis of robust generalization for random

features regression, 2022.

▶ Idea (Gaussian Equivalence):

σ(W x) = µ01+ µ1W x + µ2σ⊥(W x) E[W xσ⊥(Wx)⊤] = 0

= µ01+ µ1W x + u

▶ Then, use CGMT for the linear regression that pops out.
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Results for Random Features
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Thanks!

Thank You!
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