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Motivation

Behrad Moniri and Samar Hadou Adversarial Training 3



Motivation

» Modern Neural Networks are very good tools for prediction.
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» Modern Neural Networks are not robust to adversarial attacks.
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Notations

» Data: (x;,y;) ~ P(RY,R)
> Model: fo(-): RY = R
» Loss Function: £(0,x,y) = (y — f(x))?
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Traditional Supervised learning

Traditional Supervised learning

» Population Loss:
SR(6) = Ex,[¢(0,x, y)]

» Empirical Risk Minimization:

~ 1<
Oerm = in=>"0(6,xi,y;
ERM a"gmemn - ( » X Y)
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Norm-Bounded Perturbation
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Robust supervised learning

Robust supervised learning

» Adversarial Loss:

AR(0) =E,, | max £(0,x+ 4,
() |:||5||2< ( y)

» Adverasrial Training:
n

- 1
0° = 60 i 6” i
B 2 i (O 00
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Observations

> AR(@ERM) is large and AR(EE) is much smaller.
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Observations

> AR(@ERM) is large and AR(EE) is much smaller.
> SR(éz) is larger than SR(@ERM).
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Observations

> AR(@ERM) is large and AR(EE) is much smaller.
> SR(éz) is larger than SR(@ERM).
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Questions:

> Is there a fundamental tradeoff between SR and AR?
» How can we algorithmically achieve this tradeoff?
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Linear Regression: Fundamental Tradeoffs
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Gaussian Linear Regression

» We consider standard gaussian linear regression with
yi = (xi,00) + w;  where x; ~N(0,1,) w; ~ N(0,0’S)

for1 <i<n.

» We also focus on training linear models of the form fp(x) = (x, 0)
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Gaussian Linear Regression

» We consider standard gaussian linear regression with
yi = (xi,00) + w;  where x; ~N(0,1,) w; ~ ./\/'(0,03)

for1 <i<n.
» We also focus on training linear models of the form fp(x) = (x, 0)
> We can write:

SR(8) == E[(y - (x.0))’]
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Gaussian Linear Regression

» We consider standard gaussian linear regression with
yi = (xi,00) + w;  where x; ~N(0,1,) w; ~ ./\/'(0,03)

for1 <i<n.
» We also focus on training linear models of the form fp(x) = (x, 0)
> We can write:
2

Y
2

SR(9) == E [(y - (x.8))?] :J§+H:9\700 Z
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Gaussian Linear Regression

» We consider standard gaussian linear regression with
yi = (xi,00) + w;  where x; ~N(0,1,) w; ~ ./\/'(0,03)

for1 <i<n.
» We also focus on training linear models of the form fp(x) = (x, 0)
> We can write:
2

Y
2

o] =+ oo

<e

AR(6) :=E L'Srlnzax (y — (x+ 5,§>)2}
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Gaussian Linear Regression

» We consider standard gaussian linear regression with
yi = (x;,00) +w; where x; ~N(0,1,) w;~ ./\/(O,Jg)
for1 <i<n.
» We also focus on training linear models of the form fp(x) = (x, 0)
» We can write:

SR(@) = (v - (x.0)2] = o3+ [0 - 60,

Y

AR(0) = L'Srlnzaés (y — (x+3, 5))2}

(ao +e- aOH +52||0|€2>

R ) il 5\ 1/2
+2\/;€ 101, (ao n He — 6, 62) .
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Pareto Optimal

Pareto-optimal points are the intersection points of the region with the
supporting lines:

0" = arg main ASR(0) + AR(0)

Pareto Front

o< (SR(®), AR(®))
Q

Pareto Optimal Points

Adversarial risk

Standard risk
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Pareto Optimal Curve

The solution 6” is given by
0" = (1+7%) 6,

with 73 the fixed point of the following two equations:

2 2 A
€test T \/;Etest A

Yo =
T+ A+ /2%
1 2 2 2\ 1/2
A = g (@ +9)" o8+ (60)" lool,)
123
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Linear Regression: Algorithmic Tradeoffs
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Algorithmic Tradeoffs

» Consider a class of estimators {05 e > 0} constructed via the

following saddle point problem:

o e z — 5:,0))°
o i e 220 6.0)

» Can one of these (adversarially trained) estimators achieve the
optimal tradeoff?
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Algorithmic Tradeoffs

» Consider a class of estimators {05 e > 0} constructed via the

following saddle point problem:

o e z — 5:,0))°
o i e 220 6.0)

» Can one of these (adversarially trained) estimators achieve the
optimal tradeoff?

» The answer is in the limit.
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Algorithmic Tradeoffs

» Assume that n — oo, d = oo and n/d — 4.
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Algorithmic Tradeoffs

» Assume that n — oo, d = oo and n/d — 4.
> Can we find an asymptotic expression for AR(@E) and SR(@E)?
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Algorithmic Tradeoffs

» Assume that n — oo, d = oo and n/d — 4.
> Can we find an asymptotic expression for AR(@E) and SR(@E)?
» Note that these expression can both be written in terms of only

~ 12
Hefoo and He .
123

2
123
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Algorithmic Tradeoffs

» Assume that n — oo, d = oo and n/d — 4.

> Can we find an asymptotic expression for AR(@E) and SR(@E)?

» Note that these expression can both be written in terms of only
H’éfOO Z and H@

2
6
» To do this, we will use Convex Gaussian Minmax Theorem (CGMT).
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History

> Standard linear regression has widely been studied in the
proportional limit:
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> Standard linear regression has widely been studied in the
proportional limit:

» The underparameterized regime:

[1] Antonia M. Tulino and Sergio Verdu. Random matrix theory and wireless
communications. Foundations and Trends in Communications and Information
Theory, 2004.
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> Standard linear regression has widely been studied in the
proportional limit:

» The underparameterized regime:

[1] Antonia M. Tulino and Sergio Verdu. Random matrix theory and wireless
communications. Foundations and Trends in Communications and Information
Theory, 2004.

» General case:

[2] Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction:
ridge regression and classification. Annals of Statistics, 2018.

[3] Trevor Hastie, Andrea Montanari, Saharon Rosset, Ryan J. Tibshirani. Surprises in

High-Dimensional Ridgeless Least Squares Interpolation, Annals of Statistics, 2022.
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> Standard linear regression has widely been studied in the
proportional limit:

» The underparameterized regime:

[1] Antonia M. Tulino and Sergio Verdu. Random matrix theory and wireless
communications. Foundations and Trends in Communications and Information
Theory, 2004.

» General case:

[2] Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction:
ridge regression and classification. Annals of Statistics, 2018.

[3] Trevor Hastie, Andrea Montanari, Saharon Rosset, Ryan J. Tibshirani. Surprises in

High-Dimensional Ridgeless Least Squares Interpolation, Annals of Statistics, 2022.

They all use the Marchenko-Pastur limit. Here, we cannot use that
because there is no closed form for the estimator.
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Algorithmic Tradeoffs

Theorem (Convex Gaussian Min-Max Theorem (CGMT) — informal)

For X with i.i.d standard normal entries and (-,-) a convex-concave
function, define

d(X) := mzin max u’ Xz +1(z,u) (PO)

¢(g,h) := minmax |z|g"u + lu[h"z +(z,u) (AO)

We have ®(X) = ¢(g, h), in which g, h are standard Gaussian random
vectors. Also the norms of the solutions for both optimization problems
are equal.

[Thrampoulidis, Oymak, and Hassibi; 2016 & 2018]
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Algorithmic Tradeoffs

Finding the asymptotic expressions for AR(éE) and SR(éE):
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Algorithmic Tradeoffs

Finding the asymptotic expressions for AR(éE) and SR(éE):

» Step 1: Adversarial loss has a closed form:

— 1 <& )
o° i — E i — (xi+0;,0
8 Gero 13, 1<= 2n — (i = {xi +6:,6))

n

.1 2
= argené;lgd n Z (lyi — (xi,0)| +¢<[|0]|¢,)

i=
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Algorithmic Tradeoffs

» Step 2: Write in the form of a Primary Optimization.
1 2
min == " (lyi — (x;,0)| +<[6].)

6cR? 2n

i=
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Algorithmic Tradeoffs

» Step 2: Write in the form of a Primary Optimization.
1 2
min == " (lyi — (x;,0)| +<[6].)

6cR? 2n

i=

1 2
zenghgdﬂgﬂwl'—(Xi79—90>|+€|\9||22)
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Algorithmic Tradeoffs

> Step 2: Write in the form of a Primary Optimization

n

o1 2
gin 5, 3 (b = (.0) 1+ <101

2
_gn;]llgchZﬂW’ X,,9—00>|+5H0”22)

1
' j )
zeR9 IVGIR" 2n — (|V | + EHZ + 0”22)

st.v=w— Xz
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Algorithmic Tradeoffs

» Step 2: Write in the form of a Primary Optimization.

n

o1 2
gin 5, 3 (b = (.0) 1+ <101

— min —Z(|W, (xi,6 = 60)| +£]0]].)’

0cRd 2n
1 n
= min (Ivi| + €l|z + Bol|¢,)? st.v=w— Xz
z€RY veR? 2n —
: 2
i 2 (||V||z2+”€ |z + 60|12, + 2|z + 6ole,||V]|¢,)
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Algorithmic Tradeoffs

» Step 2: Write in the form of a Primary Optimization.

n

1
min —— Z (lyi = (xi,0)] +[10]l.)?

6cRd 2N 4 —

— min —Z(|W, (xi,6 = 60)| +£]0]].)’

0cRd 2n
1 n
= min (Ivi| + €l|z + Bol|¢,)? st.v=w— Xz
z€RY veR? 2n —
: 2
i 2 (||V||z2+”€ |z + 60|12, + 2|z + 6ole,||V]|¢,)

. 1 2 2 2
= ax — + + 0 +2 o
ZEB@]J‘eRanng on (||V\|1z2 nec||z oll7, ellz+ 0H£z||V||21)

1
+ ZUT(V —w + Xz)
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Algorithmic Tradeoffs

» CGMT PO and AO forms:
®(X) := minmax u’ Xz +¢(z,u) (PO)

4(g.h) = minmax [z]gu+ |ullhz + v(z.u) (AO)
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Algorithmic Tradeoffs

» CGMT PO and AO forms:
®(X) := minmax u’ Xz +¢(z,u) (PO)

4(g.h) = minmax [z]gu+ |ullhz + v(z.u) (AO)

» Primary Optimization:

min  max

ein L max o (I[vI2, + ne?||z + @02, + 2¢]|z + Bol|e,]|v]|e,)

1
+§UT(V —w + Xz)
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Algorithmic Tradeoffs

» CGMT PO and AO forms:
®(X) := minmax u’ Xz +¢(z,u) (PO)

4(g.h) = minmax [z]gu+ |ullhz + v(z.u) (AO)

» Primary Optimization:

H 1 2 2 2
seimin max o (IVIIE, + ne®llz + Bal 7, + 2¢l1z + BollesIvlle,)

1
+§UT(V —w + Xz)

» Hence, the Auxiliary Optimization is:

. 1 T T T T
= hz_ )
2 5 (1218 Tu s b7z — e Ty

1
o, (IIvIIZ, + ne?llz + Bol[Z, + 2|z + Bolle. V], -
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Algorithmic Tradeoffs

> Step 3: Study the Auxiliary Optimization

: 1 T T T T
g (T )

1
3, (IIvIIZ, + ne?llz + ol [Z, + 2|z + Bolle V], -

> Scalarization: Starting with the maximization over u, let u = .

1

-
ueR"  2n (”szgTU + ||ll||42h z—u'w + uTv)

1
=max o <5hTZ +|[lIzlle,g —w + VHZZ) :

» Repeat for the other variables z and v.
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Algorithmic Tradeoffs

Eventually, the AO is reduced to

max su min min D (« Thy T,
OSﬁSKﬁ"‘/,T;,F;OOSOéSKa 72>0 (@, 8,7, 7h, Tg)

with
D (Oé, ,8,"}/,7'[,, Tg) =

0B 2 2 a 2 2 a?3? 5 QTh BTe
2(Tg+ﬂ)(a +U) 2T,,(V +5)+7 Z TVim s

B2 (a® +0°) T v (g + B)
+51%%w+ﬂ>¢§&ﬂ¢ﬁ+ﬂ}2@(w—%5)(”f<¢§)_kk6¢a2+02”>

and T, is the unique solution to

v +B) B (r) 2 _22
e Bl T rierf — ) — = 2 =0
sepvartor | \V2 nt
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Algorithmic Tradeoffs

» It holds in probability that

.1 ae 2
lim = {0 — 6 =ao2,
n—o00o d y23
im 1 ‘ & ByTirn/ 2 + 02
im — =
n—o0 \/d A ETgx

» Hence, the following also holds in probability

lim SR (§E> =0 +a?,

n—oo

2
lim AR (9°) = <02+a§ +&2 (a2 + 0?) (57> )

n—oo ETgx
2 s« Tx
+2\/5ﬂ7(02+a3).
T ETgw
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Algorithmic Tradeoffs

—— Theoretical § =4
2.4 ——— Theoretical é = 16
——— Theoretical § = 64
ad Pareto optimal curve
E 2.9 * Empirical § =4
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Z 2
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Role of Overparameterization
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Overparameterized

2
. T M
| hi ~-0=2
. . 1.8 * % e-§=4
z @ y ‘zﬁlj -x-85=6
e BL6fy  F/ ~e-5=8 |
b g N1 ~a-§=10
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; i
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Underparameterized

T
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h -e- =07
8 -x- =08
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° el '
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Double

Standard risk

Interpolation threshold depends on e.

Descent

(a) Theoretical curves

Behrad Moniri and Samar Hadou
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What else can be done?
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What else can be done?

> Adversarial training of random feature models: y = 8 o(Wx) + €.
> W e RVX94 9 ¢ RY, and we have n samples.
» 1 = N/nand ¢, = n/d.
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What else can be done?

> Adversarial training of random feature models: y = 8 o(Wx) + €.
> W e RVX94 9 ¢ RY, and we have n samples.
» 1 = N/nand ¢, = n/d.

Hamed Hassani and Adel Javanmard. The curse of overparametrization in
adversarial training: Precise analysis of robust generalization for random
features regression, 2022.
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What else can be done?

> Adversarial training of random feature models: y = 8 o(Wx) + €.
> W e RVX94 9 ¢ RY, and we have n samples.
» 1 = N/nand ¢, = n/d.

Hamed Hassani and Adel Javanmard. The curse of overparametrization in

adversarial training: Precise analysis of robust generalization for random
features regression, 2022.

> |dea (Gaussian Equivalence):

o(Wx) = ol + i Wx + ppo; (Wx)  E[Wxo, (Wx)'] =0
= [Lol + M1 W x +u
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What else can be done?

> Adversarial training of random feature models: y = 8 o(Wx) + €.
> W e RVX94 9 ¢ RY, and we have n samples.
» 1 = N/nand ¢, = n/d.

Hamed Hassani and Adel Javanmard. The curse of overparametrization in
adversarial training: Precise analysis of robust generalization for random
features regression, 2022.

> |dea (Gaussian Equivalence):

o(Wx) = ol + i Wx + ppo; (Wx)  E[Wxo, (Wx)'] =0
= [Lol + M1 W x +u

» Then, use CGMT for the linear regression that pops out.
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Results for Random Features
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Thanks!

Thank You!
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