EE Department - Sharif University of Technology

Information-Theoretic Analysis of Learning Algorithms

Behrad Moniri bemoniri@ee.sharif.edu

February 8, 2021

Goal: Analysis of the performance of learning algorithms using tools from information theory.

Goal: Analysis of the performance of learning algorithms using tools from information theory.

- Frequentist Setting.
- Ø Bayesian Setting.

Frequentist Setting

• Instance Set: \mathcal{Z} Hypothesis Set: \mathcal{W} Loss Function: $\ell : \mathcal{W} \times \mathcal{Z} \to \mathbb{R}^+$

- Instance Set: \mathcal{Z} Hypothesis Set: \mathcal{W} Loss Function: $\ell : \mathcal{W} \times \mathcal{Z} \to \mathbb{R}^+$
- An unknown distribution μ on \mathcal{Z} .

- Instance Set: \mathcal{Z} Hypothesis Set: \mathcal{W} Loss Function: $\ell : \mathcal{W} \times \mathcal{Z} \to \mathbb{R}^+$
- An unknown distribution μ on \mathcal{Z} .
- Given $S = (Z_1, ..., Z_n) \sim \mu$.

- Instance Set: \mathcal{Z} Hypothesis Set: \mathcal{W} Loss Function: $\ell : \mathcal{W} \times \mathcal{Z} \to \mathbb{R}^+$
- An unknown distribution μ on \mathcal{Z} .
- Given $S = (Z_1, ..., Z_n) \sim \mu$.
- For every $w \in W$, define

$$\begin{cases} L_{\mu}(w) = \mathbb{E}_{\mu}[\ell(w, Z)] = \int \ell(w, z)\mu(dz) \\ \\ L_{S}(w) = \frac{1}{n}\sum_{i=1}^{n}\ell(w, Z_{i}) \end{cases}$$

- Instance Set: \mathcal{Z} Hypothesis Set: \mathcal{W} Loss Function: $\ell : \mathcal{W} \times \mathcal{Z} \to \mathbb{R}^+$
- An unknown distribution μ on \mathcal{Z} .
- Given $S = (Z_1, ..., Z_n) \sim \mu$.
- For every $w \in W$, define

$$\begin{cases} L_{\mu}(w) = \mathbb{E}_{\mu}[\ell(w, Z)] = \int \ell(w, z)\mu(dz) \\ \\ L_{S}(w) = \frac{1}{n}\sum_{i=1}^{n}\ell(w, Z_{i}) \end{cases}$$

• **Goal**: Algorithm picks $W \in W$ according to some $P_{W|S}$. Control

$$\mathbb{E}[\operatorname{gen}(W)] = \mathbb{E}[L_{\mu}(W) - L_{S}(W)],$$

where the expectation is over $P_{S,W} = \mu^{\otimes n} P_{W|S}$.

• Traditional ways of analyzing generalization:

- VC Dimension
- Radamacher Complexities

- Traditional ways of analyzing generalization:
 - VC Dimension
 - Radamacher Complexities
- Uniform Bounds: $\mathbb{E}[\operatorname{gen}(W)] \leq \mathbb{E}[\sup_{w \in W} \operatorname{gen}(w)]$

- Traditional ways of analyzing generalization:
 - VC Dimension
 - Radamacher Complexities
- Uniform Bounds: $\mathbb{E}[\operatorname{gen}(W)] \leq \mathbb{E}[\sup_{w \in W} \operatorname{gen}(w)]$
- These bounds depend only on the hypothesis set: **pessimistic**.

- Traditional ways of analyzing generalization:
 - VC Dimension
 - Radamacher Complexities
- Uniform Bounds: $\mathbb{E}[\operatorname{gen}(W)] \leq \mathbb{E}[\sup_{w \in W} \operatorname{gen}(w)]$
- These bounds depend only on the hypothesis set: **pessimistic**.
- Intuition:

less information usage from $S \implies$ less overfitting

Definition

The random variable *X* is called σ -subgaussian if

$$\forall \lambda \in \mathbb{R} : \mathbb{E}\left[e^{\lambda(X-\mathbb{E}[X])}\right] \leq e^{\lambda^2 \sigma^2/2}.$$

Definition

The random variable *X* is called σ -subgaussian if

$$\forall \lambda \in \mathbb{R} : \mathbb{E}\left[e^{\lambda(X-\mathbb{E}[X])}\right] \leq e^{\lambda^2 \sigma^2/2}.$$

Lemma [Xu and Raginsky, 2017] & [Russo and Zou, 2016]

Let $(X, Y) \sim P_{XY}$, and $\overline{Y} \sim P_Y$ be independent copy. For any real valued $f : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, if $f(X, \overline{Y})$ is σ -subgaussian, then

$$\left|\mathbb{E}[f(X,Y)] - \mathbb{E}[f(X,\bar{Y})]\right| \le \sqrt{2\sigma^2 I(X;Y)}$$

Proof: Donsker-Varadhan variational representation:

$$\mathrm{KL}(\pi||\rho) = \sup_{F} \Big\{ \int_{\Omega} F d\pi - \log \int_{\Omega} e^{F} d\rho \Big\}.$$

Proof: Donsker-Varadhan variational representation:

$$\operatorname{KL}(\pi||
ho) = \sup_{F} \Big\{ \int_{\Omega} F d\pi - \log \int_{\Omega} e^{F} d\rho \Big\}.$$

For any $\lambda \in \mathbb{R}$, we have $\operatorname{KL}(P_{XY}||P_X \otimes P_Y) \ge \mathbb{E}[\lambda f(X,Y)] - \log \mathbb{E}[e^{\lambda f(X,\bar{Y})}]$ $\ge \lambda \mathbb{E}[f(X,Y)] - \lambda \mathbb{E}[f(X,\bar{Y})] - \frac{\lambda^2 \sigma^2}{2}$

Proof: Donsker-Varadhan variational representation:

$$\operatorname{KL}(\pi||
ho) = \sup_{F} \Big\{ \int_{\Omega} F d\pi - \log \int_{\Omega} e^{F} d\rho \Big\}.$$

For any
$$\lambda \in \mathbb{R}$$
, we have
 $\operatorname{KL}(P_{XY}||P_X \otimes P_Y) \ge \mathbb{E}[\lambda f(X,Y)] - \log \mathbb{E}[e^{\lambda f(X,\bar{Y})}]$
 $\ge \lambda \mathbb{E}[f(X,Y)] - \lambda \mathbb{E}[f(X,\bar{Y})] - \frac{\lambda^2 \sigma^2}{2}$

Discriminant must be non-positive, which concludes the proof.

• Let
$$f(s, w) = \frac{1}{n} \sum_{i=1}^{n} \ell(w, z_i)$$
.

• Let
$$f(s, w) = \frac{1}{n} \sum_{i=1}^{n} \ell(w, z_i)$$
. We have

$$\mathbb{E}[\operatorname{gen}(W)] = \mathbb{E}[L_{\mu}(W) - L_{S}(W)]$$

$$= \mathbb{E}[f(\bar{S}, W)] - \mathbb{E}[f(S, W)].$$

• Let
$$f(s, w) = \frac{1}{n} \sum_{i=1}^{n} \ell(w, z_i)$$
. We have

$$\mathbb{E}[\operatorname{gen}(W)] = \mathbb{E}[L_{\mu}(W) - L_{S}(W)]$$

$$= \mathbb{E}[f(\bar{S}, W)] - \mathbb{E}[f(S, W)].$$

• If l(w, Z) is σ -subgaussian $\implies f(S, w)$ is $\frac{\sigma}{\sqrt{n}}$ -subgaussian.

• Let
$$f(s, w) = \frac{1}{n} \sum_{i=1}^{n} \ell(w, z_i)$$
. We have

$$\mathbb{E}[\operatorname{gen}(W)] = \mathbb{E}[L_{\mu}(W) - L_{S}(W)]$$

$$= \mathbb{E}[f(\bar{S}, W)] - \mathbb{E}[f(S, W)].$$

• If l(w, Z) is σ -subgaussian $\implies f(S, w)$ is $\frac{\sigma}{\sqrt{n}}$ -subgaussian.

Theorem [Xu and Raginsky, 2017]

Suppose that $\ell(w, Z)$ is σ -subgaussian for μ , under all $w \in \mathcal{W}$. We have

$$\mathbb{E}[\operatorname{gen}(W)]| \le \sqrt{\frac{2\sigma^2}{n}}I(S;W)$$

• Let
$$f(s, w) = \frac{1}{n} \sum_{i=1}^{n} \ell(w, z_i)$$
. We have

$$\mathbb{E}[\operatorname{gen}(W)] = \mathbb{E}[L_{\mu}(W) - L_{S}(W)]$$

$$= \mathbb{E}[f(\overline{S}, W)] - \mathbb{E}[f(S, W)].$$

• If l(w, Z) is σ -subgaussian $\implies f(S, w)$ is $\frac{\sigma}{\sqrt{n}}$ -subgaussian.

Theorem [Xu and Raginsky, 2017]

Suppose that $\ell(w, Z)$ is σ -subgaussian for μ , under all $w \in \mathcal{W}$. We have

$$|\mathbb{E}[\operatorname{gen}(W)]| \leq \sqrt{\frac{2\sigma^2}{n}}I(S;W)$$

Remark

- The learning algorithm $P_{W|S}$: **channel** from *S* to *W*.
- sup_µ I(S; W): channel capacity of the channel, under the constraint that the input distribution is of a product form.

• When *W* is deterministic given *S*: *I*(*S*; *W*) is infinite.

- When *W* is deterministic given *S*: *I*(*S*; *W*) is infinite.
- Can we tighten our bounds?

- When *W* is deterministic given *S*: *I*(*S*; *W*) is infinite.
- Can we tighten our bounds?
- Assume we intend to upper bound $\mathbb{E}\left[\sup_{t\in T} X_t\right]$.
- (T, d) is a metric space. $X_t X_s \sim d^2(s, t)$ -subgaussian.

- When *W* is deterministic given *S*: *I*(*S*; *W*) is infinite.
- Can we tighten our bounds?
- Assume we intend to upper bound $\mathbb{E}\left[\sup_{t\in T} X_t\right]$.
- (T, d) is a metric space. $X_t X_s \sim d^2(s, t)$ -subgaussian.

Let \mathcal{N}_k be $\epsilon_k = 2^{-k}$ -net of T

- When *W* is deterministic given *S*: *I*(*S*; *W*) is infinite.
- Can we tighten our bounds?
- Assume we intend to upper bound $\mathbb{E}\left[\sup_{t\in T} X_t\right]$.
- (T, d) is a metric space. $X_t X_s \sim d^2(s, t)$ -subgaussian.

Let
$$\mathcal{N}_k$$
 be $\epsilon_k = 2^{-k}$ -net of T

Dudley bound: multi-scale approximation of *T*

$$\mathbb{E}\Big[\sup_{t\in T} X_t\Big] \leq 6\sum_{k\in\mathbb{Z}} 2^{-k} \sqrt{\log \mathcal{N}(T,d,2^{-k})}.$$

Chaining Mutual Information [Asadi, Abbe & Verdu. 2019]

If $\{gen(w)\}_{w \in W}$ is a subgaussian process in (W, d):

$$\mathbb{E}[\operatorname{gen}(W)] \le 3\sqrt{2} \sum_{k=k_1(W)}^{\infty} 2^{-k} \sqrt{I(\pi_k(W);S)}.$$

Bayesian Setting

• Generation Model:

$$P_{W,S,Z} = P_W \otimes \prod_{i=1}^n P_{Z_i|W} \otimes P_{Z|W}$$
$$\forall i \in [n], \ P_{Z_i|W} = P_{Z|W}$$

• Predicting Modeling Framework: Z = (X, Y), and $Z_i = (X_i, Y_i)$.

$$P_{Z|W} = P_X \otimes P_{Y|X,W}$$

• Generation Model:

$$P_{W,S,Z} = P_W \otimes \prod_{i=1}^n P_{Z_i|W} \otimes P_{Z|W}$$
$$\forall i \in [n], \ P_{Z_i|W} = P_{Z|W}$$

• Predicting Modeling Framework: Z = (X, Y), and $Z_i = (X_i, Y_i)$.

$$P_{Z|W} = P_X \otimes P_{Y|X,W}$$

• **Goal**: predict *Y* based on *X* and observations $S = \{Z_1, \ldots, Z_n\}$.

$$R_{\ell}(Y|X) = \inf_{\psi: \mathcal{X} \to \mathcal{Y}} \mathbb{E}[\ell(Y, \psi(X))]$$

$$R_{\ell}(Y|X) = \inf_{\psi: \mathcal{X} \to \mathcal{Y}} \mathbb{E}[\ell(Y, \psi(X)] \rightsquigarrow \psi_{Y|X}^{*}(x).$$

$$R_{\ell}(Y|X) = \inf_{\psi: \mathcal{X} \to \mathcal{Y}} \mathbb{E}[\ell(Y, \psi(X)] \rightsquigarrow \psi_{Y|X}^{*}(x).$$

• Minimum Excess Risk (MER):

$$\mathrm{MER}_{\ell}^{n} = R_{\ell}(Y|S,X) - R_{\ell}(Y|W,X)$$

$$R_{\ell}(Y|X) = \inf_{\psi: \mathcal{X} \to \mathcal{Y}} \mathbb{E}[\ell(Y, \psi(X)] \rightsquigarrow \psi_{Y|X}^{*}(x).$$

• Minimum Excess Risk (MER):

$$\mathrm{MER}_{\ell}^{n} = R_{\ell}(Y|S,X) - R_{\ell}(Y|W,X)$$

• MER is algorithm *independent*.

$$R_{\ell}(Y|X) = \inf_{\psi: \mathcal{X} \to \mathcal{Y}} \mathbb{E}[\ell(Y, \psi(X)] \rightsquigarrow \psi^*_{Y|X}(x).$$

• Minimum Excess Risk (MER):

$$\mathrm{MER}_{\ell}^{n} = R_{\ell}(Y|S,X) - R_{\ell}(Y|W,X)$$

• MER is algorithm *independent*.

Theorem [Xu & Raginsky 2020], [Hafez & Moniri, 2021]

The following bound can be derived for MER:

$$\mathrm{MER}_{\ell}^{n} \leq \sqrt{\frac{b^{2}}{2}I(Y;W|S,X)}.$$

• Lower bounds were left as an open problem in [Xu & Raginsky 2020].

• Lower bounds were left as an open problem in [Xu & Raginsky 2020].

Remark [Hafez & Moniri 2020]

It is *impossible* to find a matching lower bound such that

 $\mathrm{MER}_{\ell}^{n} \geq \alpha \sqrt{I(Y; W|S, X)}.$

• Define the following distortion function:

$$d(w, \hat{h}(.)) = \mathbb{E}_{XY|W=w}[\ell(Y, \hat{h}(X)) - \ell(Y, \psi_{Y|XW}^{*}(w, X))].$$

• Define the following distortion function:

$$d(w, \hat{h}(.)) = \mathbb{E}_{XY|W=w}[\ell(Y, \hat{h}(X)) - \ell(Y, \psi^*_{Y|XW}(w, X))].$$

• **Optimal algorithm**: outputs $\hat{h}(.) = \psi^*_{Y|SX}(s,.)$.

$$\begin{split} \mathbb{E}_{WS}[d(W,\psi_{Y|SX}^*(S,.))] \\ &= \mathbb{E}_{WSXY}[\ell(Y,\psi_{Y|SX}^*(S,X)) - \ell(Y,\psi_{Y|WX}^*(W,X))] \\ &= R_{\ell}(Y|S,X) - R_{\ell}(Y|W,X) = \text{MER}_{\ell}^n. \end{split}$$

• Define the (constrained) rate-distortion optimization:

$$D_n(R) = \inf_{P_{\hat{h}|S}} \mathbb{E}[d(W, \hat{h})], \text{ s.t. } I(W; \hat{h}) \le R.$$

• Define the (constrained) rate-distortion optimization:

$$D_n(R) = \inf_{P_{\hat{h}|S}} \mathbb{E}[d(W, \hat{h})], \text{ s.t. } I(W; \hat{h}) \le R.$$

• Note that $W \to S \to \hat{h}$ and $P_{S|W}$ is fixed.

Theorem

For a given training set size *n*, for all rates $R \ge I(W; S)$, we have

 $D_n(R) = \operatorname{MER}^n_{\ell}.$

Assume that W is a *d*-dimensional subset of \mathbb{R}^d .

- **Upper Bounds** under some regularity conditions on *P*_{*Z*|*W*}:
 - $MER_l^n = O(\frac{1}{n})$ for bounded loss.
 - $MER_2^n = O(\frac{1}{n})$ for quadratic loss.

Assume that W is a *d*-dimensional subset of \mathbb{R}^d .

- **Upper Bounds** under some regularity conditions on *P*_{*Z*|*W*}:
 - $\operatorname{MER}_{l}^{n} = O(\frac{1}{n})$ for bounded loss.
 - MER^{*n*}₂ = $O(\frac{1}{n})$ for quadratic loss.
- **Lower Bounds** using the R/D view and the Shannon Lower Bound, in some cases, we prove $\Omega(\frac{1}{n})$ rates.

Assume that W is a *d*-dimensional subset of \mathbb{R}^d .

- **Upper Bounds** under some regularity conditions on *P*_{*Z*|*W*}:
 - $MER_l^n = O(\frac{1}{n})$ for bounded loss.
 - MER^{*n*}₂ = $O(\frac{1}{n})$ for quadratic loss.
- **Lower Bounds** using the R/D view and the Shannon Lower Bound, in some cases, we prove $\Omega(\frac{1}{n})$ rates.
- For example, in $Y = W^{\top}X + \sigma \nu$ with

 $\begin{cases} W \sim \mathcal{N}(0, I_{p \times p}) \\ X \sim \mathcal{N}(0, \Sigma_{X}) \\ \nu \sim \mathcal{N}(0, I_{p \times p}) \end{cases}$

we have $MER_2^n = \Omega(\frac{p}{n})$.

Using information theoretic tools:

- We upper bounded generalization gap in a frequentist setting.
- We upper and lower bounded minimum excess risk in Bayesian statistics.

References

- Aolin Xu and Maxim Raginsky. Minimum Excess Risk in Bayesian Learning Arxiv, 2020
- Aolin Xu and Maxim Raginsky. Information-Theoretic Analysis of Generalization Capability of Learning Algorithms NeurIPS, 2017
- Baniel Russo and James Zou. How much does you data exploration overfit? AISTAT 2016, IEEE Trans. Info. Theory 2020
- 4 Amir R. Asadi, Emmanuel Abbe, and Sergio Verdu. Chaining Mutual Information and Tightening Generalization Bounds NeurIPS 2019
- 6 Hafez-Kolahi, Golgooni, Kasaei, and Soleymani. Conditioning and Processing: Thechniques to improve information theoretic generalization bounds NeurIPS, 2020.
- 6 Bu, Zou, and Veeravalli. Tightening Mutual Information Based Bounds on Generalization Error IEEE Sel. Areas in Info. Theory, 2020.
- Assadi & Abbe. Maximum Multiscale Entropy and Neural Network Regularization Arxiv, 2020.