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Frequentist Setting



• Instance Set: Z
Hypothesis Set: W
Loss Function: ℓ : W ×Z → R+

• An unknown distribution µ on Z .
• Given S = (Z1, . . . ,Zn) ∼ µ.
• For every w ∈ W , define

Lµ(w) = Eµ[ℓ(w,Z)] =
∫
ℓ(w, z)µ(dz)

LS(w) = 1
n

∑n
i=1 ℓ(w,Zi)

• Goal: Algorithm picks W ∈ W according to some PW|S. Control

E[gen(W)] = E[Lµ(W)− LS(W)],

where the expectation is over PS,W = µ⊗nPW|S.

Problem Formulation
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• Traditional ways of analyzing generalization:
• VC Dimension
• Radamacher Complexities

• Uniform Bounds: E[gen(W)] ≤ E[supw∈W gen(w)]

• These bounds depend only on the hypothesis set: pessimistic.
• Intuition:

less information usage from S =⇒ less overfitting

History

5/19 Behrad Information-Theoretic Analysis of Learning Algorithms



• Traditional ways of analyzing generalization:
• VC Dimension
• Radamacher Complexities

• Uniform Bounds: E[gen(W)] ≤ E[supw∈W gen(w)]

• These bounds depend only on the hypothesis set: pessimistic.
• Intuition:

less information usage from S =⇒ less overfitting

History

5/19 Behrad Information-Theoretic Analysis of Learning Algorithms



• Traditional ways of analyzing generalization:
• VC Dimension
• Radamacher Complexities

• Uniform Bounds: E[gen(W)] ≤ E[supw∈W gen(w)]

• These bounds depend only on the hypothesis set: pessimistic.

• Intuition:
less information usage from S =⇒ less overfitting

History

5/19 Behrad Information-Theoretic Analysis of Learning Algorithms



• Traditional ways of analyzing generalization:
• VC Dimension
• Radamacher Complexities

• Uniform Bounds: E[gen(W)] ≤ E[supw∈W gen(w)]

• These bounds depend only on the hypothesis set: pessimistic.
• Intuition:

less information usage from S =⇒ less overfitting

History

5/19 Behrad Information-Theoretic Analysis of Learning Algorithms



Definition
The random variable X is called σ-subgaussian if

∀λ ∈ R : E
[
eλ(X−E[X])

]
≤ eλ

2σ2/2.

Lemma [Xu and Raginsky, 2017] & [Russo and Zou, 2016]

Let (X,Y) ∼ PXY, and Ȳ ∼ PY be independent copy. For any real
valued f : X × Y → R, if f (X, Ȳ) is σ-subgaussian, then∣∣E[ f (X,Y)]− E[ f (X, Ȳ)]

∣∣ ≤ √
2σ2I(X;Y)

XY Ȳ

f (X,Y) f (X, Ȳ)

Decoupling Estimate
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Proof: Donsker-Varadhan variational representation:

KL(π||ρ) = sup
F

{∫
Ω

Fdπ − log

∫
Ω

eFdρ
}
.

For any λ ∈ R, we have

KL(PXY||PX ⊗ PY) ≥ E[λf (X,Y)]− logE[eλf (X,Ȳ)]

≥ λE[ f (X,Y)]− λE[ f (X, Ȳ)]− λ2σ2

2

Discriminant must be non-positive, which concludes the proof.

Decoupling Estimate

7/19 Behrad Information-Theoretic Analysis of Learning Algorithms



Proof: Donsker-Varadhan variational representation:

KL(π||ρ) = sup
F

{∫
Ω

Fdπ − log

∫
Ω

eFdρ
}
.

For any λ ∈ R, we have

KL(PXY||PX ⊗ PY) ≥ E[λf (X,Y)]− logE[eλf (X,Ȳ)]
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• Let f (s,w) = 1
n

∑n
i=1 ℓ(w, zi).

We have

E[gen(W)] = E[Lµ(W)− LS(W)]

= E[ f (S̄,W)]− E[ f (S,W)].

• If l(w,Z) is σ-subgaussian =⇒ f (S,w) is σ√
n -subgaussian.

Theorem [Xu and Raginsky, 2017]

Suppose that ℓ(w,Z) is σ-subgaussian for µ, under all w ∈ W . We
have

|E[gen(W)]| ≤
√

2σ2

n
I(S;W)

Remark
• The learning algorithm PW|S: channel from S to W.
• supµ I(S;W): channel capacity of the channel, under the

constraint that the input distribution is of a product form.

Capacity Theorem
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• When W is deterministic given S: I(S;W) is infinite.

• Can we tighten our bounds?

• Assume we intend to upper bound E
[
supt∈T Xt

]
.

• (T, d) is a metric space. Xt − Xs ∼ d2(s, t)-subgaussian.

Let Nk be ϵk = 2−k-net of T

Dudley bound: multi-scale approximation of T

E
[
sup
t∈T

Xt

]
≤ 6

∑
k∈Z

2−k
√
logN (T, d, 2−k).

Chaining Mutual Information
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Chaining Mutual Information [Asadi, Abbe & Verdu. 2019]

If {gen(w)}w∈W is a subgaussian process in (W, d):

E[gen(W)] ≤ 3
√

2
∞∑

k=k1(W)

2−k
√

I(πk(W);S).

Chaining Mutual Information
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Bayesian Setting



• Generation Model:

PW,S,Z = PW ⊗
n∏

i=1

PZi|W ⊗ PZ|W

∀ i ∈ [n], PZi|W = PZ|W

• Predicting Modeling Framework: Z = (X,Y), and Zi = (Xi,Yi).

PZ|W = PX ⊗ PY|X,W

• Goal: predict Y based on X and observations S = {Z1, . . . ,Zn}.

Bayesian Learning
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• Generalized Entropy:

Rℓ(Y|X) = inf
ψ:X→Y

E[ℓ(Y, ψ(X)]

⇝ ψ∗
Y|X(x).

• Minimum Excess Risk (MER):

MERn
ℓ = Rℓ(Y|S,X)− Rℓ(Y|W,X)

• MER is algorithm independent.

Theorem [Xu & Raginsky 2020], [Hafez & Moniri, 2021]

The following bound can be derived for MER:

MERn
ℓ ≤

√
b2

2
I(Y;W|S,X).

Minimum Excess Risk
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• Lower bounds were left as an open problem in [Xu & Raginsky 2020].

Remark [Hafez & Moniri 2020]

It is impossible to find a matching lower bound such that

MERn
ℓ ≥ α

√
I(Y;W|S,X).

Minimum Excess Risk: Lower Bounds
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• Define the following distortion function:

d(w, ĥ(.)) = EXY|W=w[ℓ(Y, ĥ(X))− ℓ(Y, ψ∗
Y|XW(w,X))].

• Optimal algorithm: outputs ĥ(.) = ψ∗
Y|SX(s, .).

EWS[d(W, ψ∗
Y|SX(S, .))]

= EWSXY[ℓ(Y, ψ∗
Y|SX(S,X))− ℓ(Y, ψ∗

Y|WX(W,X))]

= Rℓ(Y|S,X)− Rℓ(Y|W,X) = MERn
ℓ .

Minimum Excess Risk: Lower Bounds

15/19 Behrad Information-Theoretic Analysis of Learning Algorithms



• Define the following distortion function:
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• Define the (constrained) rate-distortion optimization:

Dn(R) = inf
Pĥ|S

E[d(W, ĥ)], s.t. I(W; ĥ) ≤ R.

• Note that W → S → ĥ and PS|W is fixed.

Theorem
For a given training set size n, for all rates R ≥ I(W;S), we have

Dn(R) = MERn
ℓ .

Minimum Excess Risk: Lower Bounds
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E[d(W, ĥ)], s.t. I(W; ĥ) ≤ R.
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Assume that W is a d-dimensional subset of Rd.

• Upper Bounds under some regularity conditions on PZ|W :
• MERn

l = O( 1
n ) for bounded loss.

• MERn
2 = O( 1

n ) for quadratic loss.

• Lower Bounds using the R/D view and the Shannon Lower
Bound, in some cases, we prove Ω( 1

n ) rates.
• For example, in Y = W⊤X + σν with

W ∼ N (0, Ip×p)

X ∼ N (0,ΣX)

ν ∼ N (0, Ip×p)

we have MERn
2 = Ω(

p
n ).

Explicit Bounds on MER
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Using information theoretic tools:

• We upper bounded generalization gap in a frequentist setting.
• We upper and lower bounded minimum excess risk in Bayesian

statistics.

Conclusion
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