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Overview of Talk

Goal: Analysis of the performance of learning algorithms using tools
from information theory.
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Overview of Talk

Goal: Analysis of the performance of learning algorithms using tools
from information theory.

® Frequentist Setting.
® Bayesian Setting.
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Frequentist Setting



Problem Formulation

¢ Instance Set: Z
Hypothesis Set: W
Loss Function: /: W x Z — Rt
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Problem Formulation

® Instance Set: Z

Hypothesis Set: W

Loss Function: £ : W x Z — RT
¢ An unknown distribution i on Z.

° Given S = (Zy,...,Zy) ~ u.
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Problem Formulation

Instance Set: Z
Hypothesis Set: W
Loss Function: /: W x Z — Rt

¢ An unknown distribution i on Z.
Given S = (Z4,...,2Z,) ~ p.
¢ For every w € W, define

L,(w) =E,[l(w,Z2)] = [ {(w,z)p(dz)

Ls(w) = + > U(w, Z;)
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Problem Formulation

Instance Set: Z
Hypothesis Set: W
Loss Function: /: W x Z — Rt

An unknown distribution p on Z.
Given S = (Z4,...,7Zy) ~ p.
For every w € W, define

Lu(w) = E,[6(w,2)] = [ t(aw, 2)pu(dz)
Ls(w) = 3 X1y L(w, Z)
Goal: Algorithm picks W € W according to some Py s. Control
Elgen(W)] = E[L.(W) — Ls(W)],

where the expectation is over Ps v = u®”PW‘5.
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¢ Traditional ways of analyzing generalization:

® VC Dimension
¢ Radamacher Complexities

5/19 Behrad Information-Theoretic Analysis of Learning Algorithms



¢ Traditional ways of analyzing generalization:

® VC Dimension
¢ Radamacher Complexities

¢ Uniform Bounds: E[gen(W)] < E[sup,,c)y gen(w)]

5/19 Behrad Information-Theoretic Analysis of Learning Algorithms



¢ Traditional ways of analyzing generalization:

¢ VC Dimension
¢ Radamacher Complexities
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¢ These bounds depend only on the hypothesis set: pessimistic.
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Traditional ways of analyzing generalization:

¢ VC Dimension
¢ Radamacher Complexities

¢ Uniform Bounds: E[gen(W)] < E[sup,,c)y gen(w)]

These bounds depend only on the hypothesis set: pessimistic.
¢ Intuition:
less information usage from S = less overfitting
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Decoupling Estimate

Definition
The random variable X is called o-subgaussian if

VAeR: E[eMX_E[XD] <N,

6/19 Behrad Information-Theoretic Analysis of Learning Algorithms



Decoupling Estimate

Definition

The random variable X is called o-subgaussian if
VAeR: E[eMX_E[XD] <N,
Lemma [Xu and Raginsky, 2017] & [Russo and Zou, 2016]

Let (X,Y) ~ Pxy, and Y ~ Py be independent copy. For any real
valued f : X x ¥ — R, if f(X,Y) is o-subgaussian, then

|E[f(X,Y)] — E[f(X,Y)]| < /202(X;Y)
RRP
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Decoupling Estimate

Proof: Donsker-Varadhan variational representation:

KL(7||p) ZSLFlp{/QFdW—log/Qede}.
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Decoupling Estimate

Proof: Donsker-Varadhan variational representation:

KL(7||p) :Sgp{/QPdﬂ—log/Qede}.

For any A € R, we have
KL(Pxy||Px ® Py) > EM(X, Y)] — log E[e¥ V)]

A2g2

> AE[f(X,Y)] = AE[f(X,Y)] -
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Decoupling Estimate

Proof: Donsker-Varadhan variational representation:

KL(7||p) :Sgp{/QPdﬂ—log/Qede}.

For any A € R, we have
KL(Pxy||Px ® Py) > EM(X, Y)] — log E[e¥ V)]

A2g2

> AE[f(X,Y)] = AE[f(X,Y)] -

Discriminant must be non-positive, which concludes the proof. O
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{?@ Capacity Theorem

o Letf(s,w) = 13" t(w,z).
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R

&

) Capacity Theorem

7

° Letf(s,w) = 13" | (w,z). We have

Elgen(W)] = E[L, (W) ~ Ls(W)
= E[f(S, W)] = E[f(S, W)].
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R

&

) Capacity Theorem

7

° Letf(s,w) = 13" | (w,z). We have

Elgen(W)] = E[L,(W) — Ls(W)]
= E[f(S, W)] = E[f(S, W)].

e Ifl(w, Z) is o-subgaussian = f(S,w) is \/Lﬁ-subgaussian.
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Capacity Theorem

° Letf(s,w) = 13" | (w,z). We have
Elgen(W)] = E[L.(W) — Ls(W)]
= E[f(S,W)] = E[f(S,W)].

e If l(w, Z) is o-subgaussian = f(S,w) is %-subgaussian.

Theorem [xu and Raginsky, 2017]

Suppose that ¢(w, Z) is o-subgaussian for x, under all w € WW. We
have 252
[Elgen(W)]| < \/ =-1(; W)
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Capacity Theorem

° Letf(s,w) = 13" | (w,z). We have
E[gen(W)] = E[LMEW) — Ls(W)]
= E[f(S,W)] = E[f(S,W)].

e If l(w, Z) is o-subgaussian = f(S,w) is %-subgaussian.

Theorem [Xu and Raginsky, 2017]

Suppose that ¢(w, Z) is o-subgaussian for x, under all w € WW. We
have 252
[Elgen(W)]| < \/ =-1(; W)

Remark

¢ The learning algorithm Py s: channel from S to W.

¢ sup, I(S; W): channel capacity of the channel, under the
constraint that the input distribution is of a product form.
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Chaining Mutual Information

® When W is deterministic given S: I(S; W) is infinite.
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¢ Assume we intend to upper bound E {supteT Xt} .

(T,d) is a metric space. X; — X, ~ d*(s, t)-subgaussian.
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Chaining Mutual Information

® When W is deterministic given S: I(S; W) is infinite.
¢ Can we tighten our bounds?

¢ Assume we intend to upper bound E [supteT Xt} .

(T,d) is a metric space. X; — X, ~ d*(s, t)-subgaussian.

Let MV be ¢y = 2 K-netof T

Dudley bound: multi-scale approximation of T

E[stg?Xt} <65 27% [log N (T,d,27).

kE€Z
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Chaining Mutual Information

Chaining Mutual Information [asadi, Abbe & Verdu. 2019]

If {gen(w) }weyy is a subgaussian process in (W, d):

E[gen(W)] < 3v2 Z 27%/I(m(W); S).

k=ki (W)
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Bayesian Setting



Bayesian Learning

® Generation Model:

n
Py sz =Pw® HPZ,-|W ®@ Pziw
i=1
Vie [n], Pziw=Pzw

* Predicting Modeling Framework: Z = (X, Y), and Z; = (X;, Y3).

Pziw = Px ® Pyjx,w
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Bayesian Learning

® Generation Model:

n
Py sz =Pw® HPZ,-|W ®@ Pziw
i=1
Vie [n], Pziw=Pzw

* Predicting Modeling Framework: Z = (X, Y), and Z; = (X;, Y3).

Pziw = Px ® Pyjx,w

® Goal: predict Y based on X and observations S = {Z1,...,2Z,}.
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Minimum Excess Risk

¢ Generalized Entropy:

RA(YIX) = _inf | E[A(Y. 9(X)
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Minimum Excess Risk

¢ Generalized Entropy:

Re(Y[X) = w:i)glinE[ﬂ(Y,w(X)] ~ Py x(x).
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Minimum Excess Risk

¢ Generalized Entropy:

Re(Y[X) = w:gliy]EV(Yﬂ/J(X)] ~ Py x(x).

¢ Minimum Excess Risk (MER):

MER} = Rq(Y]S,X) — Re(Y|W,X)
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Minimum Excess Risk

¢ Generalized Entropy:

Re(Y[X) = w:gliy]EV(Yﬂ/J(X)] ~ Py x(x).

¢ Minimum Excess Risk (MER):
MER} = R,(Y[S, X) — Re(Y|W, X)

* MER is algorithm independent.

13/19 Behrad Information-Theoretic Analysis of Learning Algorithms



Minimum Excess Risk

¢ Generalized Entropy:

Re(Y[X) = w:gliy]EV(Yﬂ/J(X)] ~ Py x(x).

¢ Minimum Excess Risk (MER):
MER} = R,(Y[S, X) — Re(Y|W, X)
* MER is algorithm independent.

Theorem [Xu & Raginsky 2020], [Hafez & Moniri, 2021]
The following bound can be derived for MER:

2
MER! < \/%I(Y; WS, X).
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Minimum Excess Risk: Lower Bounds

¢ Lower bounds were left as an open problem in [Xu & Raginsky 2020].
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Minimum Excess Risk: Lower Bounds

* Lower bounds were left as an open problem in [xu & Raginsky 2020].

Remark [Hafez & Moniri 2020]

It is impossible to find a matching lower bound such that

MER! > a/I(Y; WIS, X).
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Minimum Excess Risk: Lower Bounds

® Define the following distortion function:

d(w, h(.)) = Exyjw=a (Y, (X)) = LY, 65 (w0, X))
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Minimum Excess Risk: Lower Bounds

® Define the following distortion function:

d(w, h(.)) = Exyjw=a (Y, (X)) = LY, 65 (w0, X)))-
¢ Optimal algorithm: outputs h(.) = Ysx (s, -)-
Euwsld(W, 95x(S. )

= Ewsxy[€(Y, ty(sx(S, X)) — £(Y, ¥3wx (W, X))]
— Ry(Y]S, X) — Ry(Y|W, X) = MER".
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Minimum Excess Risk: Lower Bounds

¢ Define the (constrained) rate-distortion optimization:

Du(R) = inf E[d(W, h)], s.t. I(W;h) <R.

pms
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Minimum Excess Risk: Lower Bounds

¢ Define the (constrained) rate-distortion optimization:

Du(R) = inf E[d(W, h)], s.t. I(W;h) <R.

pms
* Note that W — S — h and Py is fixed.

Theorem

For a given training set size n, for all rates R > I(W; S), we have

D,(R) = MER?.

16/19 Behrad Information-Theoretic Analysis of Learning Algorithms



Explicit Bounds on MER

Assume that W is a d-dimensional subset of R?.

¢ Upper Bounds under some regularity conditions on Pzy:
* MER} = O(}) for bounded loss.

* MER; = O(}) for quadratic loss.

17/19 Behrad Information-Theoretic Analysis of Learning Algorithms



Explicit Bounds on MER

Assume that W is a d-dimensional subset of R?.

¢ Upper Bounds under some regularity conditions on Pzy:
* MER]} = O(}) for bounded loss.
* MER; = O(}) for quadratic loss.

¢ Lower Bounds using the R/D view and the Shannon Lower
Bound, in some cases, we prove (1) rates.
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Explicit Bounds on MER

Assume that W is a d-dimensional subset of R?.

¢ Upper Bounds under some regularity conditions on Pzy:
* MER]} = O(}) for bounded loss.
* MER; = O(}) for quadratic loss.

¢ Lower Bounds using the R/D view and the Shannon Lower
Bound, in some cases, we prove (1) rates.

* For example,in Y = W' X + ov with

W~ N(Ovlpxp)
X ~ N(0, Sx)
v~ N0, Lxp)

we have MER) = Q(2).

n
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Conclusion

Using information theoretic tools:

¢ We upper bounded generalization gap in a frequentist setting.

® We upper and lower bounded minimum excess risk in Bayesian
statistics.
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