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Introduction

@ Online learning is the process of answering a sequence of questions
given (maybe partial) knowledge of the correct answers to previous
questions and possibly additional available information.
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Introduction

Introduction

@ Online learning is the process of answering a sequence of questions
given (maybe partial) knowledge of the correct answers to previous
questions and possibly additional available information.

@ Many interesting theoretical properties and practical applications.

Behrad Moniri - Mahdi Sabbaghi Online Learning 4/118



Setting

Online Learning

fort=1,2,...
receive question x; € X
predict ps € D
receive true answer y; € )
suffer loss I(pt,yt)

Online Classification
Online Regression

Learning from Expert Advice

Online Convex Optimization
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Goals and Assumptions

@ The learner's ultimate goal is to minimize the cumulative loss suffered
along its run.
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Introduction

Goals and Assumptions

@ The learner’s ultimate goal is to minimize the cumulative loss suffered
along its run.

@ learning is hopeless if there is no relation between past and present
rounds.

@ i.i.d. in classical statistical learning theory vs. adversarial in online
learning.
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Introduction

@ Naturally, an adversary can make the cumulative loss to our online
learning algorithm arbitrarily large.
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Introduction

@ Naturally, an adversary can make the cumulative loss to our online
learning algorithm arbitrarily large.

@ |t can ask the same question on each round, wait for the answer, and
provide the opposite answer as the correct answer.

@ To make non-trivial statements, we make several natural assumptions.
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Introduction

Two scenarios

There are two main scenarios:

e The Realizable Setting (the simple one):
Answers are generated by some mapping h* : X — ) and h* € H.

e 7 is known by the learner.
e h* € H is chosen by the adversary.
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Introduction

Two scenarios

There are two main scenarios:

e The Realizable Setting (the simple one):
Answers are generated by some mapping h* : X — ) and h* € H.
e 7 is known by the learner.
e h* € H is chosen by the adversary.
o Regret Setting (the more interesting one): No longer assume
answers are generated by h* € H, but require the learner to be
competitive with the best fixed predictor from H:

T T

Regret+(h*) = Z I(pt, ye) — Z ICh* (x¢), yt) (1)
t=1 t=1

Regret +(H) = max Regret (h*) (2)

Low regret algorithm: o T) Regret.
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Section 2

Realizable Setting
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Realizable Setting

@ Analogous to the PAC-Learning Setting

@ With this restriction on the sequence, the learner should make as few
mistakes as possible, i.e:

le(pt, yt) = Y{pt # yi} (3)
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@ With this restriction on the sequence, the learner should make as few
mistakes as possible, i.e:

le(pt, yt) = Y{pt # yi} (3)

@ Suppose we have given a sequence:

S= (Xla h*(}/l))7 ) (XT, h*(yT))

Objective: minimize M 4(#H) := sup Z?’Zl 1{pa, # vt}
Ses
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Realizable Setting

@ Analogous to the PAC-Learning Setting

@ With this restriction on the sequence, the learner should make as few
mistakes as possible, i.e:

le(pt, yt) = Y{pt # yi} (3)

@ Suppose we have given a sequence:

S=0(a,h (), (xm b (y7))
Objective: minimize M 4(#H) := sup Z?’Zl 1{pa, # vt}
Ses

o A bound on M 4(#H) is called a mistake-bound
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Realizable Setting

Learnability

Definition

We say that a hypothesis class H is online learnable if there exists an
algorithm A for which M 4(H) < B < cc.
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Learnability

Definition

We say that a hypothesis class H is online learnable if there exists an
algorithm A for which M 4(H) < B < cc.

@ Let's start with a simplifying assumption: |H| < co

@ basically, we can eliminate each h with false output in every step.

Behrad Moniri - Mahdi Sabbaghi

Online Learning 11/118



Realizable Setting

Learnability

Definition

We say that a hypothesis class H is online learnable if there exists an
algorithm A for which M 4(H) < B < cc.

@ Let's start with a simplifying assumption: |H| < co

@ basically, we can eliminate each h with false output in every step.
— Consistent Algorithm
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Consistent Algorithm

Consistent

input: A finite hypothesis class H
initialize: V| =H
forr=1,2,...
receive x;
choose any h € V;
predict pr = h(x;)
receive true label y, = h*(x;)
update V41 ={h € V; 1 h(X;) = y;}
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Consistent Algorithm

Consistent

input: A finite hypothesis class H
initialize: V| =H
forr=1,2,...
receive x;
choose any h € V;
predict pr = h(x;)
receive true label y, = h*(x;)
update V41 ={h € V; 1 h(X;) = y;}

@ It's easy to see that:

MConsistent(H) < ’/H‘ -1
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Halving

Halving

input: A finite hypothesis class H
initialize: Vi =H
forr=1,2,...
receive x;
predict p, = argmax, . {heV:ih(x)=r}|
(in case of a tie predict p, =1)
receive true label y, = h*(x;)
update Vi1 ={h e V: 1 h(x;) = v}
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Halving

Halving

input: A finite hypothesis class H
initialize: Vi =H
forr=1,2,...
receive x;
predict p, = argmax, . {heV:ih(x)=r}|
(in case of a tie predict p, =1)
receive true label y, = h*(x;)
update Vi1 ={h e V: 1 h(x;) = v}

Theorem

Let H be a finite hypothesis class. The Halving algorithm enjoys the
mistake bound:

MHalVing(H) < |0g2(|H|) (5)
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Halving

Proof.

Whenever the algorithm make a mistake, we will simply have:

\4

2

Therefore, if M is the total number of mistakes, we have:

| Vi1 <

1< |V < [H[27M (6)
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Optimality

@ Learner <= Adversary
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Optimality

@ Learner <= Adversary

@ Suppose that the environment wants to have the learner make
mistake on the all first T rounds of the game.Then, it must output
¥+ =1—p; Vt < T, and the only question is how it should choose
the instances x; in such a way that ensures that for some h € H we

have y; = h(x;) for all t.
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Realizable Setting

Littlestone’'s Dimension

hy hy hy hy

Y vv 0 0 1

v, 0 1 i

/ // A& * EY 1
o
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Realizable Setting

Littlestone’'s Dimension

hy hy hy hy

Y vv 0 0 1

v, 0 1 i

/ // A& * EY 1
o

o A tree of depth T
e with 271 — 1 nodes

o % =
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Realizable Setting

Littlestone’'s Dimension

hy hy hy hy

Y v 0 0 1 1

V) 0 1

/ y vi s ox 01
® o

o A tree of depth T

e with 2™ — 1 nodes

o If the learner predicts p; = 1 (p; = 0), the adversary will declare that
this is a wrong prediction and y; = 0 (y: = 1)! and will traverse to
the left(right) child of the current node.

16 /118
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Realizable Setting

Littlestone’'s Dimension

hy hy hy hy

Y v 0 0 1 1

V) 0 1

/ y vi s ox 01
® o

o A tree of depth T

e with 271 — 1 nodes

o If the learner predicts p; = 1 (p; = 0), the adversary will declare that
this is a wrong prediction and y; = 0 (y: = 1)! and will traverse to
the left(right) child of the current node.
— g1 = 20+ yr = 28 1—|—ZJ 1y12t 1=j

16 /118
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Realizable Setting

Littlestone's Dimension

Definition
A shattered tree of depth d is a sequence of instances vi, ..., Voa_1 in X

such that for every labeling (y1, ..., yq) € {0,1}9 there exists h € H such
that for all t € [d] we have h(v,t) = yt where

i1 = 2ip + yp = 21 1"‘2—1)’1 i

We saw a shattered tree of depth 2 in last slide.
Definition

Littlestone’s Dimension (Ldim): Ldim(H) is the maximal integer T such
that there exists a shattered tree of depth T, which is shattered by H.
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Realizable Setting

Littlestone's Dimension

Theorem

No algorithm can have a mistake bound strictly smaller than Ldim(H).
namely, for every algorithm, A, we have

Ma(H) > Ldim(H) (7)

v

Proof.

Let T = Ldim(H). If the adversary sets x; = v;, and y; = 1 — p; for all

t € [T], then the learner makes T mistakes while the definition of Ldim
implies that there exists a hypothesis h € H such that y; = h(x;) for all

t. L]

v

Clearly, We have Ldim(H) < log,(|H])
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Standard Optimal Algorithm

Standard Optimal Algorithm (SOA)

input: A hypothesis class H
initialize: V| =H
forr=1,2,...
receive x;
forre (0,1} let V") = (h eV, :h(x;)=r)
predict p, = argmax, g 1 Ldim(\/,("))
(in case of a tie predict p; =1)
receive true label y;
update V41 ={h € V; 1 h(X;) = vt}

Theorem
SOA enjoys the mistake bound

Msoa(H) < Ldim(H)

(8)

Behrad Moniri - Mahdi Sabbaghi Online Learning

19/118



Standard Optimal Algorithm

Standard Optimal Algorithm (SOA)

input: A hypothesis class H
initialize: Vi =H
forr=1,2,...
receive x;
for r € {0,1} let V,(/') ={heV,:h(x)=r}
predict p; = argmax, (g 1 Ldim(v,")
(in case of a tie predict p; =1)
receive true label y,
update V,4 1 ={h e V; :h(x;) = v}

Proof.

It suffices to show that Ldim(Viy1) < Ldim(V;) — 1
by contradiction suppose that Ldim(Vi+1) = Ldim(V;), then will have

Ldim(WA") = Ldim(V;) for r= 0,1 which contracts our first
assumption! O
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Realizable Setting

Randomization

@ Now suppose there is no such a target function h* and adversary can
set loss function whatever it wants, by this we also mean it can
change target function in every step!

@ If the learner was using a deterministic algorithm, it would be pretty
unfair because the adversary knew the output every time. So we may
want to assume a randomized setting.
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Realizable Setting

Randomization

@ Now suppose there is no such a target function h* and adversary can
set loss function whatever it wants, by this we also mean it can
change target function in every step!

@ If the learner was using a deterministic algorithm, it would be pretty
unfair because the adversary knew the output every time. So we may
want to assume a randomized setting. take this problem for example:

le(pt, ye) = W{pt # ye}, pey: € {0,1}

obviously enough, adversary sets y; = p; and loss is 1 all the time!
however if we set p; = 0 with probability a and p; = 1 otherwise, we

have:
Ell] = o = y¢l (9)
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Realizable Setting

Randomization

Another important example of randomization that will get back to it:

Weighted Majority

parameter: 1 € (0,1)
initialize: wy = (1/d,...,1/d)
fort=1,2,...
choose i ~ w; and predict according to the advice of the i’th
expert receive costs of all experts z; € [0,1]¢
wy[iJe= 17l

update rule VL‘ U’H—l[ﬂ = W

Behrad Moniri - Mahdi Sabbaghi Online Learning 22/118



Online Convex Optimization (OCO)

Online Convex Optimization

Online Convex Optimization (0CO)

input: A convex set S
fort=1,2,...
predict a vector w; € S
receive a convex loss function f; : § — R

suffer loss f(wy)

The regret of the algorithm is defined as

T T
Regretr(u) = Y fi(we) — > fi(u). (10)
t=1 t=1
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Online Convex Optimization (OCO)

Examples

o Convex Optimization: The adversary plays a fixed f:

T T - )
f(;;m) ~flw) < 172 flwe) - ;z fw) < Nesretrl)

@ Online Linear Regression: This problem is just an example of OCO.

Learner receives Xx;.
Learner decides w;.
Adversary plays y;.
Learner pays the loss | = [(w, x;) — |
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Examples

o Convex Optimization: The adversary plays a fixed f:

T T - )
"<1T;Wt> ~flw) < 172 flwe) - ;z fw) < Nesretrl)

@ Online Linear Regression: This problem is just an example of OCO.

Learner receives Xx;.
Learner decides w;.
Adversary plays y;.
Learner pays the loss | = [(w, x;) — |

@ Other online prediction problems do not fit into the online convex
optimization framework.
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Online Convex Optimization (OCO)

Examples

o Convex Optimization: The adversary plays a fixed f:

T T - )
"<1T;Wt> ~flw) < 172 flwe) - ;z fw) < Nesretrl)

@ Online Linear Regression: This problem is just an example of OCO.

Learner receives Xx;.
Learner decides w;.
Adversary plays y;.
Learner pays the loss | = [(w, x;) — |

@ Other online prediction problems do not fit into the online convex
optimization framework.

@ We will use convexification tricks.
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Online Convex Optimization (OCO)

Convexification: Randomization

@ Randomization: On each round, choose from the advice of d given
experts.
o At round t, the learner chooses w; € S
o An expert p; is chosen at random according to wy.
e The cost vector y; is revealed.
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Online Convex Optimization (OCO)

Convexification: Randomization

@ Randomization: On each round, choose from the advice of d given
experts.

At round t, the learner chooses w; € S

o An expert p; is chosen at random according to wy.
e The cost vector y; is revealed.

o Expected loss:

d

E[Yt[Pt]] = ZP[Pt = i]}’t[i] = <Wt’ Yt>-

Note that the adversary does not know the outcome py; it is random.
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Online Convex Optimization (OCO)

Convexification: Randomization

@ Randomization: On each round, choose from the advice of d given
experts.

At round t, the learner chooses w; € S

o An expert p; is chosen at random according to wy.
e The cost vector y; is revealed.

o Expected loss:

d

E[Yt[Pt]] = ZP[Pt = i]}’t[i] = <Wt’ Yt>-

Note that the adversary does not know the outcome py; it is random.
The regret:

-
Regret(u) = Z(wt, yi) — (We, u)

t=1
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Follow The Leader

Section 4

Follow The Leader
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Follow The Leader

Follow the Leader

The most natural algorithm is Follow-The-Leader (FTL):

t—1
Vt, wge = argmin Z fi(w)
wes T
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Follow The Leader

Follow the Leader

The most natural algorithm is Follow-The-Leader (FTL):

t—1
Vt, wt—argmanf
wes T

To analyze FTL, we first prove the following lemma:

Difference Lemma

Let wi,wo, ... be the sequence of vectors produced by FTL. Then, for all
u € S, we have:
T T
Regret 1( Z (f(we) — f(u)) < Z (f(we) — fe(wet1)).
t=1 t=1
Equivalently, T T
S fwe) < 3 A(u). (11)
t=1 =1 |
Online Learning
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Follow The Leader

Follow the Leader

Proof

We prove (11) by induction. The base for T = 1 follows from the definition
of wyy1. Assume the inequality hold for T — 1, then for all u € S we have

T-1 T-1
D fweia) <Y filu), (12)
=1 =1

v
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Follow The Leader

Follow the Leader

Proof

We prove (11) by induction. The base for T = 1 follows from the definition
of wyy1. Assume the inequality hold for T — 1, then for all u € S we have

T-1 T-1
D fiweia) <Y filu), (12)
=1 =1

Adding fr(wry1) to both sides, we get

> f(wepa) < fr(wrp) + z_: fe(u). (13)

v
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Follow The Leader

Follow the Leader

Proof

We prove (11) by induction. The base for T = 1 follows from the definition
of wyy1. Assume the inequality hold for T — 1, then for all u € S we have

T-1 T-1
S fwern) < 3 w) (12)
t=1 t=1
Adding fr(wry1) to both sides, we get
T T-1
S wers) < Friwren) + 3 filu) (13)
t=1 t=1

The above holds for all u and in particular for u = wry;. Thus,

T T T
> f(wepn) < ft(WTH):meigE fe(u). (14)
t=1 t=1 " t=1 )
it (i
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Online Quadratic Optimization

Here we prove a regret bound for a subset of OCO in which S =R at
each round t, we have fy(w) = ||w — z¢||3 for some z;.
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Online Quadratic Optimization

Here we prove a regret bound for a subset of OCO in which S =R at
each round t, we have fy(w) = ||w — z¢||3 for some z;.

e Vt, w;=argmin,cs Z,t;ll filw) = w;= ?11 Z,t;11 z;.

Note that we can rewrite

1
Wil = (ze + (t—1)wy),
which yields
1
Wi — 2y = (1 — ?)(Wt — Zt).
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Online Quadratic Optimization

Here we prove a regret bound for a subset of OCO in which S =R at
each round t, we have fy(w) = ||w — z¢||3 for some z;.

e Vt, w;=argmin,cs Z,t;ll filw) = w;= ?11 Z,t;11 z;.

Note that we can rewrite

1
Wil = (ze + (t—1)wy),
which yields
1
Wi — 2y = (1 — ?)(Wt — Zt).

@ Therefore,

1 1
fe(we) — fr(wep1) = §||Wt - Zt||2 - §||Wt+1 - Zf:||2

Behrad Moniri - Mahdi Sabbaghi Online Learning
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Follow The Leader

For the quadratic OCO, we have

1
fe(we) = fe(weyr) < S jwe — 2]
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Follow The Leader

For the quadratic OCO, we have
1 2
f(we) — fe(wep1) < ;||Wt —z¢|".
Let L = max¢||z¢||. Since w; is the average of z;, it also holds that

w; < L. By the triangle inequality ||w; — z¢|| < 2L. Hence,

T T

D (f(we) — f)(wes1)) < (2L)% )

t=1 t=1

~ | =

Behrad Moniri - Mahdi Sabbaghi Online Learning
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Follow The Leader

For the quadratic OCO, we have

fe(we) — f(wep1) < *||Wt - Zt||2

Let L = max¢||z¢||. Since w; is the average of z;, it also holds that
w; < L. By the triangle inequality ||w; — z¢|| < 2L. Hence,

T T

D (f(we) — f)(wes1)) < (2L)7 ) = < (2L)* (1 + log(T)).

t=1 t=1

~+ | =

Using Lemma 1, we have

T

T
Regretr(u) = Z (f(we) — f(u)) < Z (fr(we) — fe(Wer1))
t=

t=1

< (2L) (1+ log(T)).
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Follow The Leader

Follow the Leader

@ One might wonder if the algorithm always works!
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Follow The Leader

Follow the Leader

@ One might wonder if the algorithm always works! The answer is
negative. Consider a 1D online linear optimization: f(w) = zw.
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Follow The Leader

Follow the Leader

@ One might wonder if the algorithm always works! The answer is
negative. Consider a 1D online linear optimization: f(w) = zw.

o Let S=[-1,1] and

z1=—0.5
Zt:17 t:2,4,
Zt:*]., t:3,5,

@ The prediction of FTL will be set to w; = 1 for t odd and w; = —1
for t even.
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Follow the Leader

@ One might wonder if the algorithm always works! The answer is
negative. Consider a 1D online linear optimization: f(w) = zw.

o Let S=[-1,1] and

z1=—0.5
Zy — ].7 t:2,4,
Zt:*]., t:3,5,
@ The prediction of FTL will be set to w; = 1 for t odd and w; = —1

for t even.

o The cumulative loss of FTL: T.
o The cumulative loss of the fixed solution u=0¢& Sis 0.
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Follow The Leader

Follow the Leader

@ One might wonder if the algorithm always works! The answer is
negative. Consider a 1D online linear optimization: f(w) = zw.

o Let S=[-1,1] and

z1=—0.5
Zt:17 t:2,4,
Zt:*]., t:3,5,

@ The prediction of FTL will be set to w; = 1 for t odd and w; = —1
for t even.
e The cumulative loss of FTL: T.
o The cumulative loss of the fixed solution u=0¢& Sis 0.

@ Hence, the regret is O(T)!
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Follow The Leader

Follow the Leader

@ One might wonder if the algorithm always works! The answer is
negative. Consider a 1D online linear optimization: f(w) = zw.

o Let S=[-1,1] and

z1=—0.5
Zt:17 t:2,4,
Zt:*]., t:3,5,

@ The prediction of FTL will be set to w; = 1 for t odd and w; = —1
for t even.
o The cumulative loss of FTL: T.
o The cumulative loss of the fixed solution u=0¢& Sis 0.
@ Hence, the regret is O(T)!
@ Intuitively, FTL fails in the above example because its predictions are
not stable.
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Follow the Regularized Leader

Section 5

Follow the Regularized Leader
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Follow the Regularized Leader

Follow the Regularized Leader

Follow-the-Regularized-Leader is a natural modification of the basic FTL
algorithm.

t—1
Vt, we = argmin Z fi(w) + R(w)
wes T

@ We now study the regret under strongly convex regularizes.
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Follow the Regularized Leader

We will now analyze the regret:

Regretr(u) = ETj (Flwe) = i)

Running FTRL on f1,..., f; is equivalent to running FTL on f, ...

where fy = R. Hence from the Difference Lemma, we have

T T
S (lwe) — W) <3 (Flwe) ~ lwes))

t=0 t=0
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Follow the Regularized Leader

We will now analyze the regret:

Regretr(u) = ETj (Flwe) = i)

Running FTRL on f,..., f; is equivalent to running FTL on fy, ..., f1
where fy = R. Hence from the Difference Lemma, we have

T T

Z <ft (we) — f U)) Z (ft (We) — fr wt+1))

t=0 t=0

Rearranging terms, we arrive at:

i (ft(wt) - ft(u)) < R(u) — R(wz) + zT: (ft w;) Wt+1))
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Follow the Regularized Leader

Strongly Convex Regularizers

We will now analyze FTRL with strongly convex regularizers.

)
Regret 7(u) < R(u) = R(ws) + > (flwe) — f(we))

t=1
T

< R(u) = R(wy) + > Ll[we — weypa]|

t=1

So we need to ensure ||w; — wey1]| is small.
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Follow the Regularized Leader

Let F; = 3.1 fi(w) + R(w) and note that w; = argmin,,cg Fi(w).
Since wy is the minimizer, by the strong convexity property we have

(o2
Fe(wer1) > Fe(we) + §||Wt — e[

Reteating the same argument for Fyr1 and minimizer weiq:

(o2
Feri(we) > Frra(wepn) + §||Wt — weyt]?
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Follow the Regularized Leader

Let F; = 3.1 fi(w) + R(w) and note that w; = argmin,,cg Fi(w).
Since wy is the minimizer, by the strong convexity property we have

(o2
Fe(wer1) > Fe(we) + §||Wt — e[

Reteating the same argument for Fyr1 and minimizer weiq:

(o2
Feri(we) > Frra(wepn) + §||Wt — weyt]?

Summing the above inequalities and using Lipschitzness of f;:

a|lwe = wesa||? < f(we) = fi(Wesr) < Lf|lwe — wepa|
This implies

L
||Wt—Wt+1H2 < -
ag
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Follow the Regularized Leader

i
Regret7(u) < R(u) = R(wr) + > (fi(we) — fwesr) )
t=1

N
< R(u) = R(w1) + > Lfjw; — wep]|

t=1

< R(u) —minR+ TL?/o
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Follow the Regularized Leader

Euclidean Regularization

Corollary

Let f1,...,fr be a sequence of convex and L-Lipschitz functions with
respect to ||.||2. FTRL is run on the sequence with R(w) = %Hwﬂg

1
Vu: Regret(u) < %HUH% +nTL2

In particular, if U= {u:|Jull2 < B} and = L—fﬁ, then

Regret+(U) < BLV2T.
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Expert Advise

Corollary

Assume that the conditions of the previous corollary hold. Let S be a
convex set. Define

1 2
00 w¢S
Then Vu € S: Regret(u) < iﬁHuH% + 77TL2

In particular, if B> maxyecs||u|l2 and n = then

Lﬁ
Regret+(S) < BLV2T.
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Expert Advise

Corollary

Assume that the conditions of the previous corollary hold. Let S be a
convex set. Define

1wl
R(w) = {277Hw|2 wesS
o0

w¢S
Then Vu € S: Regret(u) < iﬁHuH% + 77TL2
In particular, if B> maxyecs||u|l2 and n = ﬁ then

Regret+(S) < BLV2T.

In the expert advice setting, S is the probability simplex and x; € [0, 1]¢.
We can set L = v/d and B = 1 which leads to a regret bound v2dT.
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Expert Advise

Corollary

Assume that the conditions of the previous corollary hold. Let S be a
convex set. Define

1 2

00 w¢S
Then Vu € S: Regret(u) < iﬁHuH% + 77TL2
In particular, if B> maxyecs||ull2 and n = —%, then

Lﬁ
Regret+(S) < BLV2T.

In the expert advice setting, S is the probability simplex and x; € [0, 1]¢.
We can set L = v/d and B = 1 which leads to a regret bound v2dT.
The Entropic Regularization leads to /2 log(d) T
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Online Mirror Descent

Section 6

Online Mirror Descent
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Online Mirror Descent

Online Mirror Descent

@ FTRL involves solving an optimization in each round.

@ We will show that Online Mirror Descent achieves the same regret
bound as FTRL

@ |t is capable of introducing a variety of new algorithms

o Notation: z;.+ = 2721 Zj.
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General OMD settings

Online Mirror Descent (OMD)

parameter: a link function g : R? — §
initialize: 61 =0
fort=1,2,...

predict w; = g(6)

update 0y11 = 0; — z; where z; € 9 f(wy)

@ Choosing different g's leads to differnet algorithms
e For instance, taking g(x) = x results in OGD.

o 0 is updated by subtracting the gradient out of it, but the actual
prediction is “mirrored” or “linked” to the set S via the function g.
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General OMD settings

Online Mirror Descent (OMD)

parameter: a link function g : R? — §
initialize: 61 =0
fort=1,2,...

predict w; = g(6)

update 0y11 = 0; — z; where z; € 9 f(wy)

@ Choosing different g's leads to differnet algorithms
e For instance, taking g(x) = x results in OGD.

o 0 is updated by subtracting the gradient out of it, but the actual
prediction is “mirrored” or “linked” to the set S via the function g.

@ We will show that it is equivalent to FTRL for some specific
regularization.
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Online Mirror Descent

If f; are convex nonlinear functions, we have

T T
D f(we) = fi(u) <D (we —u,z,)
t=1 t=1

So from now, we will consider the OLO problem.
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Online Mirror Descent

If f; are convex nonlinear functions, we have

T T
D f(we) = fi(u) <D (we —u,z,)
t=1 t=1

So from now, we will consider the OLO problem.
Consider the FTRL update:

Wep1 = argmin R(w) + Z w, z;)

= argmin R(w) + <W, zy.4)
= argmax —R(w) + (w, —z;.¢)
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Online Mirror Descent

If f; are convex nonlinear functions, we have

T T
D f(we) = fi(u) <D (we —u,z,)
t=1 t=1

So from now, we will consider the OLO problem.
Consider the FTRL update:

Wep1 = argmin R(w) + Z w, z;)
= argmin R(w) + <w, Z1.4)

= argmax —R(w) + (w, —z;.¢)

Let g(0) = argmax,, (w, 0) — R(w), we can write FTRL as the following
recursive rule:

w; = g(0:)
Ory1=0:—z
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Online Mirror Descent Regret Analysis

Preliminaries

Reminder
o Conjugate function:

f(0) = max(u, 0) — f{u).
u
@ Fenchel-Young's Inequality:

Vu, f(0)+ fu) > (u,d)

@ Bregman’s Divergence: A differentiable convex function R defines a
Bregman divergence between two vectors as follows:

Dr(w||u) = R(w) — (R(u) + (VR(u),w —u)) >0

For example R(w) = %||W||% gives Dgr(w||u) = ||w — U||§ and
R(w) = ", wli] log(w[i]) gives KL-divergence.

v
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Online Mirror Descent Regret Analysis

Preliminaries
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Online Mirror Descent Regret Analysis

Preliminaries

o Strong-Convexity:

g
Dr(wilu) > | jw - ul
@ Strong-Smoothness:

o
Dr(wl|u) < 7 [lw — ul|*.
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Online Mirror Descent Regret Analysis

Preliminaries

o Strong-Convexity:

(o
Dr(wllu) = Ziw — ul|>.

@ Strong-Smoothness:

o
Dr(wl|u) < 7 [lw — ul|*.

Lemma

(Strong/Smooth Duality) Assume that R is a closed and convex function.
Then R is B-strongly convex with respect to a norm ||.|| if and only if R* is
1

5-strongly smooth with respect to the dual norm [].]]
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Online Mirror Descent Regret Analysis

Preliminaries

Lemma

It is possible to show that equality in Fenchel-Young Inequality holds if u is
a sub-gradient of f* at 0 and in particular, if f* is differentiable, equality
holds when u = V£ (6). In the same way, 6 = Vfu)
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Online Mirror Descent Regret Analysis

Preliminaries

Lemma

It is possible to show that equality in Fenchel-Young Inequality holds if u is
a sub-gradient of f* at 0 and in particular, if f* is differentiable, equality
holds when u = V£ (6). In the same way, 6 = Vfu)

Recall that g(f) = argmax,, (w, #) — R(w). then:

g(0) = VR'(0) (15)
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el es
Analysis of OMD

Lemma

Suppose that OMD is run with a link function g(6) = VR*(0) Then, its
regret is upper bounded by:

T T
Z<Wf —u,z;) < R(u) — R(wq) + Z Dp+(—z1:4|| — z1:t-1). (16)
t=1 t=1

v
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el es
Analysis of OMD

Proof.
Using Fenchel-Young inequality we have:

.
R(u)+ > (u,z:) = R(u) — (u,—z1.7) > —R*(—z1.7)

t=1
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Online Mirror Descent Regret Analysis

Analysis of OMD

Proof.

Using Fenchel-Young inequality we have:

.
R(u)+ > (u,z:) = R(u) — (u,—z1.7) > —R*(—z1.7)

t=1

if we rewrite the RHS as:

.
—R*(=z10) = —R*(0) = > _(R*(~z1.t) = R*(~21:6-1))
t=1

Behrad Moniri - Mahdi Sabbaghi
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Regret Analysis
Analysis of OMD

Proof.
Using Fenchel-Young inequality we have:

.
R(u)+ > (u,z:) = R(u) — (u,—z1.7) > —R*(—z1.7)
t=1

if we rewrite the RHS as:
—R*(—z11) = —R*(0 Z(R —z14) — R (—21:6-1))

knowing that w; = VR*(—2z1.¢—1):
T

= —R*(0) + > _({we, zt) — Dge (—21.el| — 2z1:0-1))

Note that R*(0) = max,,{(0,w) — R(w)} = —min,{R(w)} = —R(w1)

Combining all the above concludes the proof.
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el es
Analysis of OMD

Corollary

Let R be a L-strongly convex with respect to a norm |[.|| and suppose the
OMD algorithm is run with the link function g = VR*, Then:

T T
3w, 20) < Rlu) = R(wn) + Z; &

That is what we had for OGD, which is reassuring
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Normalized Exponentiated Gradient
Derived Algorithms

Normalized Exponentiated Gradient

Let S be the probability simplex and g: R? — R9 be a vector valued
function whose i'th component is

i(0) = —exp(nﬁ[i]) w) = E wl i w|i|) on
60 = S ogay < R = S wlillog(ul D on s
The update of OMD with this function is
wi[ i] exp(—nz:[i])
5, wiljlexp(—nzL])

wepr[i] =
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Normalized Exponentiated Gradient
Derived Algorithms

Normalized Exponentiated Gradient

Let S be the probability simplex and g: R? — R9 be a vector valued
function whose i'th component is

(0) = exip(nﬂ[i]) w :E w| i wli]) on
80) = S apuayy < W) = 5 2 wlillog(uli) on S

The update of OMD with this function is
we| i] exp(—nz[ i])
Zj we j] exp(—nz j])

wepr[i] =

Theorem

Assume that the normalized EG algorithm is run on a sequence of linear
loss functions such that for all t,i we have nz:[i] > —1. Then:

T

S twe- w2 < 28D 0SS e (17)
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Online Mirror Descent Normalized Exponentiated Gradient

proof.

it suffices to show that:

DR*(_Zl:tH - zl:t—l) < n Z Wf-‘[i]zf[i]2
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Online Mirror Descent Normalized Exponentiated Gradient

proof.

it suffices to show that:
Dre(—z14l| = 21:6-1) < 0 > weli]ze[ 1

the conjugate function of R(w) = 1 ZW[ i1log(w[i]) is:

R*(0) = Iog(z el

Behrad Moniri - Mahdi Sabbaghi Online Learning

52/118



Online Mirror Descent Normalized Exponentiated Gradient

proof.

it suffices to show that:

Dre(—z14l| = 21:6-1) < 0 > weli]ze[ 1
the conjugate function of R(w) = 1 ZW[ i1 log(w] i]) is:

R*(0) = Iog(z el

then:

Dre(—z1:t|| — z1:4-1) = =R (—2z1:t) — R (—2z1:0-1) + (We, 2¢)

1 Z e_nzl't[’]

= el )+ (w20
1

= Tog (> wille M) + (w20

i
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Online Mirror Descent Normalized Exponentiated Gradient

proof.

Using numeric inequality: e <1 — a+ a®a > —1, we obtain:

Dr- (=214l = 21:6-1) < |0g(Z well(1 = nzel] + 7°2[1%)) + (w, z.)
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Online Mirror Descent Normalized Exponentiated Gradient

proof.

Using numeric inequality: e <1 — a+ a®a > —1, we obtain:
Dre (=214l = z1:0-1) < —~ |0g(z wel (1 — nzel] + 0P 2[1%)) + (we z2)
and the inequality log(1 — a) < —a,

Dre(=2z1:4|| = z1:0-1) < 7172 we[(—nzelil + n°ze[1%) + (we, z:)

=1 Z welze[ 12
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Lp Algoithm
Derived Algorithms

L, Algorithm
Let g: RY — RY be a vector valued function with

sign(o[D]ot "

gi(f) =n -
llol[5~2

g(0) is the update corresponding to R(w) = m“w“% where l%—i— % =1

and R is 1-strongly convex with respect to lg norm.
n

Corollary
Let fi,..., fr be a sequence of convex and L-Lipschitz function over RY
with respect to ||.||q. Then for all u for the L, algorithm we have
1
Regret +(u) < ——||w 2—|—77TL2
1) < 5wl
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Online Mirror Descent Lp Algorithm

Derived Algorithms
L, Algorithm

Let g: RY — RY be a vector valued function with

sign(o[D]ot "

gi(f) =n -
llol[5~2

g(0) is the update corresponding to R(w) = m“w“% where l%—i— % =1

and R is 1-strongly convex with respect to lg norm.
n
Corollary

Let fi,..., fr be a sequence of convex and L-Lipschitz function over RY
with respect to ||.||q. Then for all u for the L, algorithm we have

Regretr(u) < 5 [|wl[5 +nTL

v
n(g—1)

If [lul|g < Band n = ?'j(q_l) then Regret (U) < BL ;TTl.
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Section 7

Bandits
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In this section:
Q Review
@ Multi-Armed Bandits (Adversarial)
@ Multi-Armed Bandits Algorithm
© Multi-Armed Bandits (Stochastic)

@ Explore-Then-Commit
@ Upper Confidence Bound
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Bandits: Introduction

What we have done so far:
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Bandits: Introduction

What we have done so far:

@ Online Convex Optimization

Online Convex Optimization (0CO)

input: A convex set S

fort=1,2,...
predict a vector wy € S
receive a convex loss function f; : S — R
suffer loss fi(wy)
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Limited Feedback (Bandits)

@ Recall the OMD algorithm we described in last section.

Online Mirror Descent (OMD)

parameter: a link function g : R? — S
initialize: 8, =0
fort=1,2,...

predict w; = g(6;)

update 6,41 = 0, — z; where z; € Jf;(wy)

@ What if we won't be given z; after each step?
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Limited Feedback (Bandits)

@ Recall the OMD algorithm we described in last section.

Online Mirror Descent (OMD)

parameter: a link function g : R? — S
initialize: 8, =0
fort=1,2,...

predict w; = g(6;)

update 6,41 = 0, — z; where z; € Jf;(wy)

@ What if we won't be given z; after each step?
Remember z; was, For instance, in case of linear loss, vector
constructed by expert's losses!
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Limited Feedback (Bandits)

@ Recall the OMD algorithm we described in last section.

Online Mirror Descent (OMD)

parameter: a link function g : R? — S
initialize: 8, =0
fort=1,2,...

predict w; = g(6;)

update 6,41 = 0, — z; where z; € Jf;(wy)

@ What if we won't be given z; after each step?
Remember z; was, For instance, in case of linear loss, vector

constructed by expert's losses!
@ Therefor, It's natural to assume that we are just given z.[i] with
probability w[i].
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Bandit = Limited Feedback
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Bandit = Limited Feedback

The learner knows f;(w;) but not the function f; or its drrivative
z; € Of(wy).
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Limited Feedback (Bandits)

@ An unbiased estimator of z; might suffices.
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Limited Feedback (Bandits)

@ An unbiased estimator of z; might suffices.

Online Mirror Descent with Estimated
Gradients

parameter: a link function ¢ : R* — §

initialize: 6, =0

fort=1,2....
predict w; = g(6;)
pick z; at random such that E[z|z,_1,....21] € Ofi(w¢)
update O;11 =0y — 7,
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Limited Feedback (Bandits)

Theorem

Suppose that the estimated sub-gradients are chosen such that with
probability 1 we have:

T

.
D (we—u,ze) < Bu)+ ) |lzd|?
i=1

i=1

where B is some function, and for all round t the norm ||.||: may depend
on w;. Then:

T
E[)  fwy) — f(u)] < B(u) + ZE[HthQ]
i=1

Where the expectation is with respect to the randomness in choosing
Zy,...,ZT.

v
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Limited Feedback (Bandits)

Proof.

Taking expectation of both sides with respect to the randomness in
choosing z;:

T T
E[Z(wt — u,zt>} < B(u) + ZE[HZtHﬂ

By the law of total probability (vt = E[z¢|z¢—1,...,21] € 8ft(wt)):

T T
E[Z<Wt - U72t>] = E[Z<Wf — u,vt>]
i=1 i=1
Online Learning
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Limited Feedback (Bandits)

Proof.

Taking expectation of both sides with respect to the randomness in
choosing z;:

T T
E[Z(wt — u,zt>} < B(u) + ZE[HZtHﬂ

By the law of total probability (vt = E[z¢|z¢—1,...,21] € 8ft(wt)):

T T
E[Z<Wt - uazt>:| = E[Z(Wt — u,vt>]
i=1 i=1

Due to the convexity we also know that:

(We —u,ve) > fi(wy) — fi(u)
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Subsection 1

Multi-Armed Bandits J
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Mult-Armed Bandits
Multi-Armed Bandits (MAB)

A natural bandit version of Learning from Expert Advice (LEA):
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Mult-Armed Bandits
Multi-Armed Bandits (MAB)

A natural bandit version of Learning from Expert Advice (LEA):

Exploration vs. Exploitation
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Multi-Armed Bandits
Multi-Armed Bandit

o The vector y; € [0,1]9 associates a cost for each of the arms, but the
learner only gets to see the cost of the arm it pulls.
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Multi-Armed Bandits
Multi-Armed Bandit

o The vector y; € [0,1]9 associates a cost for each of the arms, but the
learner only gets to see the cost of the arm it pulls.

@ The goal is to have low regret:

T T
E [ Z Yt[pt]} - ml_in Z vl
t=1 t=1
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Multi-Armed Bandits
Multi-Armed Bandit

@ Let S be the probability simplex.

@ The learner picks an arm according to P[p; = /] = wy[/] and therefore
fr(w) = (w,y;) is the expected cost of the chosen arm.

@ To estimate the gradient:

yedl 5
. T J=p
z:{j] = {th I=p

0 else

Yt[j.]

W [j] = yiJj]

d
E[zP[jllze1,.... 2] = Y Plpe = i147[j] = wel ]
=1
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Multi-Armed Bandits
Multi-Armed Bandit

if we update w; using the update rule of the normalized EG algorithm we
saw before:

Multi-Armed Bandit Algorithm

parameter: 1 € (0,1)
initialize: wy = (1/d,...,1/d)
fort=1,2,...
choose py ~ w; and pull the p;'th arm
receive cost of the arm y[p;] € [0,1]
update
1] = wilple=melpl /ol
for i # py, w[i] = wy[i]

wli]

Vi, wenli] = s
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Multi-Armed Bandits
Multi-armed bandit

For the exponentiated gradient, we proved that:
T

D (wr—u,z) < © gn ZZwt[l]zt[/]

t=1
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Multi-Armed Bandits
Multi-armed bandit

For the exponentiated gradient, we proved that:

g log(d) : o
Z(Wt —u,z) < T +n Z Z we[i]z¢[i]
Thus, = =
-
E [ Z fe(we) — fi(u )] Iog + n Z Z E[w[]z:[]?]
i=1 -
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Multi-Armed Bandits
Multi-armed bandit

For the exponentiated gradient, we proved that:

. log(d) : o
Z(Wt —u,z) < T +n Z Z wt[l]zt[/]
t=1 t=1

Thus,

T log(d) T 2 a2
B[ D flwe) )| < ZE5 40 3 Elwlledd ]
i=1 t=1

i

The last term can be bounded as:
B[S wlilz[1Plze1, 21| = Y Bloe= 1> wil il20[1)
i j i
. wal il i ye[j] )2
=2 wdli (i)
= ZYt[j]2 <d
J
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Multi-Armed Bandits
Multi-armed bandit

Corollary

The multi-armed bandit algorithm enjoys the bound

- N los(d)
E[Z)&[Pt]] < ml,mZYt[’] + 0 +ndT.

t=1 t=1

In particular, n = 4/ |o§(751) gives the regret bound 2,/dlog(d)T.
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Multi-Armed Bandits
Multi-armed bandit

Corollary

The multi-armed bandit algorithm enjoys the bound

- N los(d)
E[Z)&[Pt]] < ml,mZYt[’] + 0 +ndT.

In particular, n = 4/ |05(751) gives the regret bound 2,/dlog(d)T.

There exists a matching lower bound and \/dlog(d) is tight.
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Subsection 2

Stochastic Bandits J
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Stochastic Bandits
Stochastic Bandits

e Each arm i€ {1,2,...,d} is a probability distribution D;.
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e Each arm i€ {1,2,...,d} is a probability distribution D;.

o At time t, we select arm A; and receive g; a, ~ Da,.
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Stochastic Bandits
Stochastic Bandits

e Each arm i€ {1,2,...,d} is a probability distribution D;.
o At time t, we select arm A; and receive g; a, ~ Da,.

@ The Pseudo-Regret is defined as follows:

T T
Regret+ =E [ Z gt,At:| - miin E [ Z gt,i]
t=1 t=1
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St
Explore-Then-Commit Algorithm

The most basic algorithm:

Algorithm 10.4 Explore-Then-Commit Algorithm

Require: T,meN,1<m<%
1: SQ_I'=O,'EL|J,I'=0._ i=1,...,d
2: fort =1toT do

3:  Choose A; =

(t modd)+1, t<dm
argmin; figm,i, t>dm

4:  Observe g¢ 4, and pay it

5 St,i, = St—l,z' + 1[At = i]

6 fiti = 5 2y G, HA; = i=1,...d
7: end for
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St
ETC: Analysis

o Si=>0 1A =1

*

o Aj=pj—p*.
Lemma

For any policy of selection of the arms,

d

Regret = ZE[STJ].A,- .
=1

Behrad Moniri - Mahdi Sabbaghi Online Learning 73/118



St
ETC: Analysis

Proof.

T T
Regretr = E lz gt,A;| — T =E lZ(gt,At - u*)]
d ti'l% _ - d T
=" D E[1A = e~ )] = X0 D E[E[1A = (g — n*)|Ad]

I
M=
Pg*{

:l[At = |E[g,i — u*IAt]]

I:dl tj—l ; ;
:ZZE 1[A: = (pa, — } ZZE l[At_’] U)
i=1 t=1 i=1 t=1
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ETC: Analysis
Proof.
Regret = E l

I
.MQ

Il
N

|
.MQ

Il
iR

I
.MQ

Il
—

E

Mﬂ EM“

o+
Il
—

Pg*{

....
Il
iR

tgﬂ

,...
Il
N

-
gt,At] — Tu*=E [Z(gt,At - u*)]
t=1

d

1A= A(ger— 1] = X0 D E[E[L[A = (ges — 1) Al

T

0

v

In order to have a small regret we have to select the suboptimal arms less
often then the best one.
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St
ETC: Analysis

Theorem

Assume that the losses of the arms minus their expectations are
1-subgaussian and 1 < m < T/d. Then, ETC guarantees a regret of

d d
A?
Regret+ < mZA;—i— (T— md)ZA,-exp <— m4 : )

i=1 i=1
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Stochastic Bandits
ETC: Proof

Proof.

Let's assume without loss of generality that the optimal arm is the first
one. So, for i # 1, we have

;
S E[A[A=1] =m+ (T = mdP |fimg; < min fimg;
—1 J#i
<m+(T—md)P [fimd,i < fimd,1]
=m+ (T —md)P [fimag1 — p1 — (fimd,i — pi) > Aj] -




Stochastic Bandits
ETC: Proof

Proof.

Let's assume without loss of generality that the optimal arm is the first
one. So, for i # 1, we have

.
S E[A[A=1] =m+ (T — mdP | fima,; < r;r_;g) fimd,j
t=1

<m+(T—md)P[fimd;i < fimd1]

=m+ (T —md)P [fimag1 — p1 — (fimd,i — pi) > Aj] -

We also know that fimg1 — p1 — (fima,i — i) is \/2/m—subgaussian.
Hence,

mA?
Pliimd1 — p1 — (fimd,i — (i) > Aj] < exp <— 2 : > :
Online Learning
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Stochastic Bandits
ETC: Discussion

@ The main drawback of this algorithm is that its optimal tuning
depends on the gaps.
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of the gaps to tune the exploration phase.
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Stochastic Bandits
ETC: Discussion

@ The main drawback of this algorithm is that its optimal tuning
depends on the gaps.

@ The ETC algorithm has the disadvantage of requiring the knowledge
of the gaps to tune the exploration phase.

© It solves the exploration vs. exploitation trade-off in a bad way!

Behrad Moniri - Mahdi Sabbaghi Online Learning 77/118



Stochastic Bandits
ETC: Discussion

@ The main drawback of this algorithm is that its optimal tuning
depends on the gaps.

@ The ETC algorithm has the disadvantage of requiring the knowledge
of the gaps to tune the exploration phase.

© It solves the exploration vs. exploitation trade-off in a bad way!

@ It would be better to have an algorithm that smoothly transition from
one phase into the other in a data-dependent way.
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Szt B
Upper Confidence Bound (UCB)

Algorithm 10.5 Upper Confidence Bound Algorithm
Require: o > 2,7 € N

1: S()ﬂ; :07[1«0,1' =0,i1=1,...,d

2: fort =1to T do

2alnt
Ht—1,i — S(:flli> if Sg—1,: #0

3:  Choose A; = argmin,_; 4
—00, otherwise

4:  Observe gy 4, and pay it

5: St7¢ = Stfl,i + I[At = Z]

6 fui=g— Y gna A =i, i=1,....d
7: end for
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Stochastic Bandit
Upper Confidence Bound (UCB)

Algorithm 10.5 Upper Confidence Bound Algorithm
Require: o > 2,7 € N

1: Soﬂ; :07,&0,1' =0,i1=1,...,d

2: fort =1to T do

2alnt
Ht—1,i — S(:fllﬂ if Sg—1,: #0

3:  Choose A; = argmin,_; 4
—00, otherwise

4:  Observe gy 4, and pay it

5: St,i = Stfl,i + I[At = Z]

6 fui=g— Y gna A =i, i=1,....d
7: end for

UCB works keeping an estimate of the expected loss of each arm and also
a confidence interval at a certain probability.
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St
UCB: Analysis

Theorem

Assume that the rewards of the arms are 1-subgaussian and let o > 2.
Then, UCB guarantees a regret of

d
« 8ainT
tr < —— E AN g .
RegreT_a_2. ,—i-' A,
i=1 iA;>0
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Stochastic Bandits
UCB Regret Proof

@ Let i=1 be the optimal arm.
o Note that Regret = Z:'j:1 AE[ST].

@ For arm non optimal arm i, we want to prove that

8ainT Qo
E[ST)] <
57 = A? ta2

@ The proof is based on the fact that once | have sampled an arm
enough times, the probability to take a suboptimal arm is small.

o Let t* the biggest time index such that Sp_1; < SO‘A"; T Fort> t*,

we have

8alnT

A7 (18)

St—1,i>
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Stochastic Bandits
UCB Regret Proof

o Consider t > t* and such that A; = i # 1, then we claim that at least
one of the two following equations must be true:

R 2aIn t
fie-11 =4[5 > p, (19)
t-1,1

< Wi . (20)

Behrad Moniri - Mahdi Sabbaghi Online Learning 81/118



BELGOSM Stochastic Bandits

UCB Regret Proof

Let's prove the claim: if both the inequalities above are false, t > t*, and

A; = I, we have

fle—11 — < < 1 ((19) false)
t-1,1
= pj— A
2a0in T
< pi—2, ]2 (for (18))
St—1i

2aIn t
Sheri—y[5  ((20) false),

that, by the selection strategy of the algorithm, would imply A; # i.
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Stochastic Bandits
UCB Regret Proof

Note that Sp ; < 80"“ T + 1. Hence, we have

.
E[Sti]=E[Se ]+ Y E[1[A: =1, (19) or (20) true]]
t=t*+1 .
+1+ Z E[1[(19) or (20) true]]
t=t*+1

8aln T
< —

8aln T
A2

N
> (Pr[(19) true] + Pr[(20) true]) .

t=t*+1

IN
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BELGOSM Stochastic Bandits

UCB Regret Proof

Now, we upper bound the probabilities in the sum. First, note that, given
that the losses on the arms are i.i.d., we have

R 20In t S c ) Z 2aIn t S
11— m X — 4/
He—1,1 Se11 - 251 X 1S 8j1 = M1
el 2aIn t
= U E 8j1 — 2> 1
s=1

Behrad Moniri - Mahdi Sabbaghi Online Learning 84 /118



Hence, we have

t—1
2aldnt
Pr[(19) true] < Z Pr Zng —1/ an > 1y (union bound)

s=1

<Zt (t—1)t
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Given that the same bound holds for Pr[(20) true|, we have

8aln T
E[ST] < —5— A2 +1+Zz(t—1

8a|nT 1_
— A2 +1+22t “
8alnT
< +1+42 xi—e
<> /1
8aInT+ «
AI? a—2"

Using the decomposition of the regret we proved last time,
d
Regret+ = Z AE[ST ],
i=1

we have the stated bound.
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Section 8

New Trends
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Subsection 1

Bandits J
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New Trends

Exploration

@ Now suppose this problem:

@ Strategy chooses a; € A C R€.
@ Adversary chooses linear loss I, € £ C [-1, 1]“4
© Strategy sees loss /,(a;) = /] a;

We aim to minimize pseudo-regret:

T T
Ra=E h(a;) - géiﬂz Ii(a) (21)
t=1 t=1
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New Trends

Exploration

@ Now suppose this problem:

@ Strategy chooses a; € A C R€.
@ Adversary chooses linear loss I, € £ C [-1, 1]“4
© Strategy sees loss /,(a;) = /] a;

We aim to minimize pseudo-regret:

T T
Ra=E h(a;) - géiﬂz Ii(a) (21)
t=1 t=1

problem falls to how to choose a;'s. And how to estimate ItTa
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New Trends

Exploration

Given A4, distribution 1 on A, mixing coefficient vy > 0, learning
rate n > 0,
set ¢1 uniform on A.
fort=1,2,...,n,
Lpe=0 =Yg +p
. choose a; ~ p;

2
3. observe (] a;
4

- update gi11(a)  gi(a) exp(—nila)),

where Uy = Z{lata?ét,

¥ = EuwpfaaT.
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New trends

Exploration

o Strategy observes a//; and a;, so it can compute:
It = Zt at(at /t)
e I is unbiased:

E[lf| Fe-1] = (Eanpaa’) H(Eanpaa’ )y = Is.
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New trends

Exploration

o Strategy observes a//; and a;, so it can compute:
It = Zt at(at /t)

e I is unbiased:

E[lf| Fe-1] = (Eanpaa’) H(Eanpaa’ )y = Is.

@ Therefore: T
E[/]a] = E[l; a] Va
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New trends

Exploration

o Strategy observes a//; and a;, so it can compute:
=¥ a/a] 1)
e I is unbiased:
Elle|Fr-1] = (Banpaa’) H(Eoupaa’ )l = b

@ Therefore: T
E[/]a] = E[l; a] Va

@ and:

E[7 2] = B[ pe(2)E[k|Fe1]7a] = E[> pe(a)le 2]
acA acA
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New Trends

Exploration

@ So we can write the strategy’s expected cumulative loss as:

EZ/Tat_EZZpt Ta.

t=1 ac A
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New Trends

Exploration

@ So we can write the strategy’s expected cumulative loss as:

EZ/Tat EZZpt Ta.

t=1 ac A

@ Which can be written as:

Zzpt )le a—zz (T =)ge(a) +yu(a ))/NTa

t=1 ac A t=1 ac A

)(Z Z Qt(a)/NtTa) + ’Y(Z Z u(a)/NtTa

t=1 ac A t=1 ac A
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New Trends

Exploration

@ Note that the ditrbution changes as well:
E Z(/(é'h Zt) a Zt E Z at, Zt at, Zt) —+ I(at, Zt) — /(a, Zt))
t=1

< GEZ las— &l + B> Viar, z)"(a; — a)

t=1 t=1

n _ n ~T
=GEY |lar—&|+E> I (ar—a)

t=1 t=1

@ In our case, if we assume ||/ < 1:

t=1

EY ((02) — (a,2)) < 2yn+ES &' (ac — a)
t=1
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Bandits
New Trends

Exploration

@ Recall this theorem:

Theorem

Assume that the normalized EG algorithm is run on a sequence of linear
loss functions such that for all t,i we have nz:i] > —1. Then:

. log(d) -
Z<Wt —u,z) < +n Z Z we[l|ze[?
t=1 " =1 i
v
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94/118




Bandits
New Trends

Exploration

@ Recall this theorem:

Theorem

Assume that the normalized EG algorithm is run on a sequence of linear
loss functions such that for all t,i we have nz:i] > —1. Then:

.
log(
S (e u,z < D nz S wililz{iP
t=1 i
(]
Ro < 27n 4 (1— )28 | EZZ% 2)?)
t=1 acA
<2+ 035 g
t=1 aE.A
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New Trends

Exploration

> pe(a)(l:

acA

2= pua) i (22T

acA
= <It7 zt/t>
= <at, It>2<zt_1at, tht_lat>

where in last equality, we've used: I, = Zt_lat<at, le)

Behrad Moniri - Mahdi Sabbaghi
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New Trends

Exploration

> pa)la)? = pa) (. (aa")le)

acA acA
= </t, zt/t>
= <at, It>2<zt_1at, tht_lat>

where in last equality, we've used: I, = Zt_lat<at, le)

o if we assume ||al| < 1, we will have:

S <Z;lat7 at>
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New Trends

Exploration

> pa)la)? = pa) (. (aa")le)

acA acA
= </t, zt/t>
= <at, It>2<zt_1at, tht_lat>

where in last equality, we've used: I, = Zt_lat<at, le)

o if we assume ||al| < 1, we will have:

S <Z;lat7 at>

E(Z; ta;, a;) = d
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New Trends

Exploration

o We now turn to (a, ) (Why?)

(a, ) = (ar, Ie) (ae, T; M ar)
= <ata Zt_lal“>
1
T omim<i<dAi
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New Trends

Exploration

o We now turn to (a, ) (Why?)

(a,lr) = (ae, ) (ae, Ty L ay)
= <ata Zt_lal“>

1
T omim<i<dAi
@ We must have:
nzi] = -1

to guarantee normalized EG algorithm.
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New Trends

Exploration

Theorem

Assume that L C [~1,1]4, if:

C
a'y < =

a,bc A Y
setting v = cqn,n = ,:FfJ(rIXZ), wo will have:

Rn < 2v/n(cq + d) log(N) (22)
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Bandits
New Trends

Exploration

Theorem
Assume that L C [~1,1]4, if:
atylp <
a,bc A Y

setting v = cqn,n = ,:E)i(rg), wo will have:

Rn < 2v/n(cq + d) log(N) (22)

Getting back to exploration term, what should we set for y(a) to
guarantee above bound?
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New Trends

Exploration

(Dani, Hayes, Kakade, 2008):
For p4 uniform over barycentric spanner,

R,=0 (dW) =0 <d3/2\/5>.

(Cesa-Bianchi and Lugosi, 2009):
For several combinatorial problems, A C {0,1}%, ;1 uniform over .A
gives

suDye 4 [lall3
=0(d),
Amin (an,u [aaT]) ( )
SO

R = O (Vdnlog[AT) = O (av/n).

(Bubeck, Cesa-Bianchi and Kakade, 2009): John's Theorem:
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New Trends

barycentric spanner

@ Suppose that A C RY spans R?, a barycentric spanner of A is a set

b1, ..., bg that spans RY and satisfies:
for all a € A there is an o € [—1,1]9 such that a = Ba, where
B=(by,...,bq).

it can be shown that:
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Bandits
New Trends

barycentric spanner

@ Suppose that A C RY spans R?, a barycentric spanner of A is a set

b1, ..., bg that spans RY and satisfies:
for all a € A there is an o € [—1,1]9 such that a = Ba, where
B=(by,...,bq).

it can be shown that:
Every compact A has a barycentric spanner.
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New Trends

barycentric spanner

@ Suppose that A C RY spans R?, a barycentric spanner of A is a set

b1, ..., bg that spans RY and satisfies:
for all a € A there is an o € [—1,1]9 such that a = Ba, where
B=(by,...,bq).

it can be shown that:

Every compact A has a barycentric spanner.

If linear functions can be efficiently optimized over A, then there is an
efficient algorithm for finding an approximate barycentric spanner.
That is: |aj| < 1+ 6 then it needs O(d? log(d)/d)
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New Trends

barycentric spanner

Lemma
If bi,..., by C A maximizes det(B), then it is a barycentric spanner. }
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New Trends

barycentric spanner

Lemma

If bi,..., by C A maximizes det(B), then it is a barycentric spanner.

Proof.
For a = Ba:

\det(B)| > |det(a, by, . .., by)|
= | Za,-det(b,-, bz, e bd)|

= |en||det(B)]

O

v
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New Trends

barycentric spanner

Theorem: For A C [—1,1] and y uniform on a barycentric

spanner of A,
P 42
sup a’ PN < =
a,bc A Y

(that is, ¢y < d?). Hence,

R, < 2d+/2nlog |A].
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Subsection 2

Parameter-Free Online Learning
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New Trends

Parameter-Free Online Learning

@ Using OGD with 1-Lipschitz losses and learning rate n = ¢, we arrive
at the following Regret bound:

Regret (u) < Hqu \FT<H H2 ) (23)
2n 2
@ To get the best bound, we need to set a = ||ull2.
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Parameter-Free Online Learning
New Trends

Parameter-Free Online Learning

@ Using OGD with 1-Lipschitz losses and learning rate n = ¢, we arrive
at the following Regret bound:

RegretT(u) < |;’7’7‘2 2 ﬁ(”u‘b ) (23)

@ To get the best bound, we need to set a = ||ull2.
@ Goal: Design OCO algorithms that will enjoy the optimal regret and
will not require any parameter.

e Doubling Trick — Sub-optimal.
o Coin-Betting
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New Trends

Parameter-Free Online Learning: Coin Betting

Imagine the following repeated game to maximize Wealthr:

@ Set initial weight to e: Wealthg = e.

@ Ineachround t=1,..., T:
o You bet x; = ﬁtWealtht where |3;| < 1 on side on coin sign(f;).
o The adversary reveals coin ¢; € {—1,1}.
o Wealth; = Wealth,_; + ¢;x; = (1 + Brc:)Wealth;_q

@ This is a special instance of OCO, and we can have algorithms

guaranteeing high WealthT

CI

o KT Betting: 3, = =19
o Guarantee:

T .T c)2 1
In(Wealthr) > > ?t — 5 log(T)
t=1

Behrad Moniri - Mahdi Sabbaghi Online Learning 104 /118



Parameter-Free Online Learning
New Trends

Parameter-Free Online Learning: Coin Betting

Theorem

Let ¢ be a proper closed convex function and let ¢* be its Fenchel

conjugate. If an algorithm that generates x1, X2, ..., X, € R? can
guarantee
T T
d.
Vglag27"'7gTeR . €_Z<Xtagt = Z¢ Z )7
t=1 t=1 t=1

Then it guarantees

T
Yu € R, Z<gt,xt —u) < ¢*(u) +¢

t=1
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New Trends

Parameter-Free Online Learning: Coin Betting

@ Assumption:
T T T
Vglvgz) ...,8T € Rd . €— Zt:1<xtagt> >€— Zt:l ¢( - Zt:l gt)
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New Trends

Parameter-Free Online Learning: Coin Betting

@ Assumption:
T T T
Vg17g27 ...,8T € Rd . €— Zt:1<xtagt> >€— Zt:l ¢( - Zt:l gt)

@ The Regret can be bounded as follows:

T T T
D (gexe—u) < =3 (gen) — o~ 38 e
t=1 —1

= 5”P< u) — $(0) + €= ¢"(u) +e
OcRd
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New Trends

Parameter-Free Online Learning: Coin Betting

@ The regret guarantee of KT used a 1d OLO algorithm is upper
bounded by

2|ulKT
Regret +( Zétxt Z€ ) < |ul,|4TIn <\[|g|+1>+e, Yu e R,

@ To better appreciate this regret, compare this bound to the one of OMD
with learning rate n = %T:

T 2

1
Regret +( Zétxt Z (u)§2<2+a> VT, VueR.

=1
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New Trends

Parameter-Free Online Learning: Coin Betting

@ The regret guarantee of KT used a 1d OLO algorithm is upper
bounded by

2|ulKT
Regret +( Zétxt Zﬂ ) < |ul,|4TIn <\[Ig+1>+e, Yu e R,

@ To better appreciate this regret, compare this bound to the one of OMD

with learning rate n = %T:

2
Regret +( Zétxt Z (u)§;<2+a> VT, VueR.
—1

@ How to generalize to the general setting? Magnitude and Direction
Decomposition
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New Trends

Parameter-free in Any Norm

How should we convert the 1D algorithm to the general case?
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New Trends

Parameter-free in Any Norm

How should we convert the 1D algorithm to the general case?

Algorithm 9.4 Learning Magnitude and Direction Separately

Require: 1d Online learning algorithm A;4, Online learning algorithm Az with feasible set equal to the unit ball

BcRYwrt. || -

1: fort =1to T do

2:  Getpoint z; € R from A4

3:  Getpoint Z; € B from Ap

4 Playx, = @, € R4

5 Receive 4 : R? — (—o00, +00] and pay 4 (z+)

6. Setg, € 9l(xy)

7. Setsy = (g, &)

8 Send £, (x) = syx as the ¢-th linear loss to Ajq

9:  Send £*# (x) = (g,,x) as the t-th linear loss to Ap
10: end for
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New Trends

Parameter-free in Any Norm

Theorem

)
Resret () < 3~ (g ke — ) = Regret(Jul) + JulRegret (2 )

t=1

Further, the subgradients s; sent to Ajq4 satisfy |s¢| < ||g¢||x-
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T T
Regret r(u) < Z(gt,xt —u) = Z<gt,2rit> — (g, u)
t=1 t=1
T T
= ((&e %)z — (ge. % ul) + Y ((8e %) [ull — (ge u))
t=1 P t=1
linear regret of A4 at ||u||€R
T
= Regret7([lull) + Y ({ge %) u]| — (g, v))
t=1

= Regret (|lu]) + [ u] é CRIR )

A 7 -
= Regret7"([Juf]) + [|lu]Regret7® (HUH> ‘
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New Trends
Related Papers
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Subsection 3

Combining Online Learning Guarantees
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New Trends

Combining Online Learning Guarantees

Theorem

Let A; and A; two OLO algorithms that produces the predictions x;1 and x;> respectively.
Then, predicting with x; = Xt 1 + X2, guarantees:

T T
Z(gt, Xe) — Z(gt, u) = u:rl?liJr:u2 Regretf,‘-‘1 (u1) + Regret"-;}Q(UQ) .
=1 =1

Proof.
Set u; +us; = u. Then,

T T T T
Z(gt,xt D (geu) = Z(gt,xt D)= (gnu) + Y (gnxe2) — > (8 u2) - O
=1 =1 =1 =1 =1

@ Cutkosky; Combining Online Learning Guarantees, COLT 2020.
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Subsection 4

Predictable Sequences (a.k.a. Hints)
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New Trends
Predictable Sequences (a.k.a. Hints)

@ Regret guarantees can be loose if the sequence being encountered is
not “worst-case”.

@ We have a hint or predict of what the adversary is going to play next.
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New Trends
Predictable Sequences (a.k.a. Hints)

@ Regret guarantees can be loose if the sequence being encountered is
not “worst-case”.

@ We have a hint or predict of what the adversary is going to play next.

@ Online Learning with Predictable Gradient Sequences:

fr € argmin n(f, M) + Dg(f, gt—1)
feF

g+ € argminn(g, V) + Dr(g, gt-1)
geF

o Regret(u) <n 1R+ 350, [Vl — M2
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New Trends
Predictable Sequences (a.k.a. Hints)

o At time t, adversary can play in
B:.

@ Regret bounds available for ﬂ
B: = {w: Z(w,M,) < o} W
@ What about a more general

case?
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New Trends
Predictable Sequences (a.k.a. Hints)

o At time t, adversary can play in
B:.

@ Regret bounds available for

B = {w: Z(w,M;) < a} g

@ What about a more general
case?
@ Some Papers:

@ Rakhlin, Sridharan; Optimization, Learning and Games with Predictable Sequences,
NIPS 2013.

@ Rakhlin, Sridharan; Online Learning with Predictable Sequences, COLT 2013.

@ Dekel, Flajolet, Haghtalab, Jaillet; Online Learning with a Hint, NIPS 2017.

@ Bhaskara, Cutkosky, Kumar and Purohit; Online Learning with Imperfect Hints,

ICML 2020.
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