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Introduction

The most widely accepted view interprets probabilities: long run
averages. This is based on the fact that averages should settle down
to expectations over a long sequence of independent trials.

de Finetti theorem provides an alternative view that does not depend
on a preliminary concept of independence, and which concentrates
attention on the linearity properties of expectations.
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Let Ω be your sample space and X : Ω→ R be a bounded function
(random variable).

Forget about probability measures on Ω. Suppose you consider p(X )
to be the fair price to pay now in order to receive X at some later
time.

By fair I mean that you should be prepared to accept a payment p(X )
from me now in return for giving me an amount X later.

Your return: X ′(ω) = X (ω)− p(X ). We call this fair return.
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Properties of fair bets!

Unless you start worrying about utilities, you should find the following
properties reasonable:

fair + fair = fair. That is, if you consider p(X ) fair for X and p(Y )
fair for Y , then you should be prepared to make both bets, paying
p(X ) + p(Y ) to receive X + Y .

constant × fair = fair. You shouldn’t object if I suggest you pay
cp(X ) to receive cX for constant c.

These two conditions imply that imply that the collection of all fair returns
is a vector space over field R.
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Properties of fair bets!

There is a third reasonable property that goes by several names: coherency
or nonexistence of a Dutch book, the no-arbitrage requirement, or the
no-free-lunch principle:

There is no fair return X ′ for which X ′(ω) < 0 for all ω ∈ Ω, with
strict inequality for at least one ω.
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Properties of fair bets!

Lemma

The previous properties imply that p(.) is a linear, increasing functional on
random variables.

Proof.

For constants α and β and random variables X and Y with fair prices
p(X ) and p(Y ), consider the combined effect of the following fair bets:

You pay me αp(X ) to receive αX .

You pay me βp(Y ) to receive βY .

I pay you p(αX + βY ) to receive αX + βY .

Your net return is c = p(αX + βY )− αp(X )− βp(Y ).
If c > 0, (iii) is violated. If c < 0, consider the other side bet to violate
(iii). This proves linearity.
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Proof.

To prove that p(.) is increasing, suppose ∀ω ∈ Ω : X (ω) ≥ Y (ω).
If you claim that p(X ) < p(Y ) then I would be happy for you to accept the
bet that delivers (Y − p(Y ))− (X − p(X )) = −(X −Y )− (p(Y )− p(X )),
which is always < 0.

Note

If both X and X − p(X ) are fair, so is X −
(
X − p(X )

)
with constant

return. This imples that p(X ) = 0.
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de Finettin Theorem

Theorem

p(FX ∪ FY ) = p(FX ) + p(FY ) for disjoint FX ,FY ⊆ Ω. Here we have used
the de Finetti notation p(A) = p(1A) for A ⊆ Ω.

Proof.

As a special case, consider the bet that returns 1 if an event F occurs, and
0 otherwise. The previous theorem implies

p(FX ∪ FY ) = p(FX ) + p(FY )

for disjoint FX and FY .

We can similiary show that p(Ω) = 1 and p(∅) = 0.
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Conditional Probability and Contingent Bets

Things become much more interesting if you are prepared to make a bet
to receive an amount X but only when some event F occurs.

Typically, knowledge of the occurrence of F should change the fair
price, which we could denote by p(X |F ).

The bet that returns
(
X − p(X |F )

)
F is fair.

The indicator function F ensures that money changes hands only
when F occurs.
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Theorem

If Ω is partitioned into disjoint events F1, . . . ,Fk . and X is a random
variable, then p(X ) =

∑k
i=1 p(Fi) p(X |Fi ).

Proof.

For a single Fi , argue by linearity that

0 = p(XFi − p(X |Fi )Fi ) = p(XFi )− p(X |Fi ) p(Fi).

Sum over i , using linearity again, together with the fact that X =
∑

i XFi ,
to deduce that p(X ) =

∑
i p(XFi ) =

∑
i p(Fi )p(X |Fi ), as asserted.
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Why should we restrict the Lemma to finite partitions?

If we allowed countable partitions we would get the countable
additivity property-the key requirement in the theory of measures.

If we accept that assumption, then why not accept that arbitrary
combinations of fair events are fair?

For uncountably infinite collections we would run into awkward
contradictions.

For example, suppose ω is generated from a uniform distribution on
[0, 1). Let Xt = 1ω=t . By symmetry one might expect p(Xt) = c for
some constant c that doesn’t depend on t. However

1 = p(1) = p(
∑

0≤t≤1

Xt)
?
=
∑

0≤t≤1

p(Xt) =

{
0 c = 0

∞ else
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