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Abstract

We review the current state of knowledge of phase separation and phase equilibria in porous
materials. Our emphasis is on fundamental studies of simple fluids (composed of small, neutral
molecules) and well-characterized materials. While theoretical and molecular simulation
studies are stressed, we also survey experimental investigations that are fundamental in nature.
Following a brief survey of the most useful theoretical and simulation methods, we describe
the nature of gas–liquid (capillary condensation), layering, liquid–liquid and freezing/melting
transitions. In each case studies for simple pore geometries, and also more complex ones
where available, are discussed. While a reasonably good understanding is available for phase
equilibria of pure adsorbates in simple pore geometries, there is a need to extend the models to
more complex pore geometries that include effects of chemical and geometrical heterogeneity
and connectivity. In addition, with the exception of liquid–liquid equilibria, little work has
been done so far on phase separation for mixtures in porous media.
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1. Introduction

Molecules confined within narrow pores, with pore widths of a few molecular diameters, can
exhibit a wide range of physical behaviour. The introduction of wall forces, and the competition
between fluid–wall and fluid–fluid forces, can lead to interesting surface-driven phase changes.
These include new kinds of phase transitions not found in the bulk phase, e.g. layering, wetting
and commensurate–incommensurate transitions, as well as shifts in transitions (e.g. freezing,
gas–liquid, liquid–liquid) that are familiar from bulk behaviour. In such confined systems the
confined phase is usually termed theadsorbate, and the porous material theadsorbent.

The fundamental scientific interest in these phase changes is to understand the new physics
that results from finite-size effects, varying dimensionality, and surface forces. When the pore
width is of the order of the range of the intermolecular forces, a large fraction of the confined
molecules will experience a reduction in the number of nearest-neighbour molecules, and we
might expect this to lead to large shifts in phase coexistence curves and a lowering of any critical
points. These expectations are confirmed by experiment. For a slit-shaped pore (as in some car-
bons or in the surface force apparatus), reduction of the pore width will cause the behaviour of
the confined system to change from nearly three-dimensional to two-dimensional. For a cylin-
drical pore (as in some zeolites and in carbon buckytubes), reduction in pore diameter will lead
to one-dimensional behaviour. Thus, investigations of such confined fluids provide a way to
study both finite-size effects and varying dimensionality. A fundamental question is how such
transitions (and any associated critical points) are affected by state conditions and pore variables
(pore geometry and size, molecular structure of the pore surface, pore connectivity, etc).

In addition to scientific interest, a fundamental understanding of these phenomena is
necessary for many industrial and geophysical operations. Micro- and meso-porous (pore
widths of under 2 nm and 2–50 nm, respectively) materials are widely used in the chemical,
oil and gas, food and pharmaceutical industries for pollution control, mixture separation, and
as catalysts and catalyst supports for chemical reactions. The design of such processes is
largely empirical at the present time, with little scientific basis. Improved understanding
of the effects of confinement on the equilibrium composition of reacting mixtures, and on
adsorption and diffusion rates, could lead to significant improvements in these industrial
processes. Confinement effects are also important for many applications in lubrication and
adhesion, and in geology and geophysics. Many rock and soil formations are porous, and the
flow, diffusion and selective adsorption of water, aqueous solutions, pollutants, oil and gas in
soils and rocks is important in such fields as tertiary oil recovery, gas field technology, removal
of pollutants from ground water and soils, and in frost heaving. Materials with very regular
pores are finding application in the fabrication of nanomaterials (conducting polymers, opto-
electronic devices, metal wires, etc). In these applications the nanopores are used as templates
for the material fabrication, which often involvesin situ chemical reaction and/or fluid–solid
or solid–solid phase changes.

Some examples of nanoporous materials are given in table 1, together with approximate
pore shapes and sizes. It is convenient to divide these into those with crystalline or
regular structures, and those that are amorphous. For crystalline (e.g. aluminosilicates,
aluminophosphates) or regular (e.g. carbon buckytubes) materials, x-ray or neutron diffraction
can be employed to determine the atomic structures, and hence the pore geometry and
dimensions. Such information provides the coordinates of the solid atoms, and this structural
information greatly facilitates the interpretation of experiments carried out on these materials.
In addition, modelling of confinement effects in such materials is greatly simplified. Even in
these materials some structural uncertainties usually remain. The location of water molecules
and ions in the framework structure may be unknown.Ab initio calculations, and in some
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Table 1. Nanoporous materials. Data taken, in part, from [167].

Pore width
Material Surface Pore shape (nm)

A. Crystalline, regular
Aluminosilicates O, Al, Si Cylinder, cage 0.3–1.0
Aluminophosphate O, Al, P Cylinder 0.8–1.3
MCM-41 O, Al, Si Cylinder 1.5–10
Carbon nanotube C Cylinder 2–10

B. Amorphous
Porous glass O, Si Cylinder 4–1× 104

Silicas, oxides O, Si, etc Cylinder 1.0 up
Silica aerogel O, Si Void 5–50
Pillared clay O, Si, Al Slit + pillars >0.5
Microporous BN B, N, H Slit <1
Activated C fibre C Slit 0.6–1.3
Activated C aerogel C Slit + void 1.5–30

cases classical simulations, can help in determining the likely location of such molecules.
In addition, defects in the lattice or pore structure can sometimes lead to large effects on
adsorption, particularly if the pore structure consists of straight cylindrical pores that are not
interconnected (as in some aluminosilicates and many aluminophosphates). In such cases, a
very small percentage of lattice defects can block large amounts of pore volume. At the present
time the small pore zeolites, conventional aluminosilicates and aluminophosphates [237], can
be prepared in a highly crystalline form. The larger pore materials, MCM-41 [19] and carbon
nanotubes [71] are difficult to prepare in a pure and completely uniform state. MCM-41
(Mobil Catalyst Material 41; figure 1) is a large pore aluminosilicate prepared by a liquid
crystal templating process; the pore size can be controlled by varying the chain length of the
liquid crystal molecules. A problem with MCM-41 is that ordered pore domains are usually
very small. This situation is improved upon in a second generation of ordered mesoporous
materials, prepared by a sol–gel synthesis of silicates in lyotropic liquid crystal media [7].
Such mesoporous silicas have large domains and can be extended using amphiphilic block
copolymers as templates [117,383].

Amorphous nanoporous materials vary considerably in their micro-structure and degree
of regularity, and are in general very difficult to characterize completely. For example,
controlled pore glass (CPG) and the related Vycor glasses [128] have pore cross sections
that are approximately circular, and are thought of as having roughly cylindrical pores. They
are prepared by a spinodal decomposition process that involves quenching a liquid mixture
of oxides into the two-liquid-phase region; the pore size is determined by the time at which
the quenched mixture is kept at an intermediate temperature, before the final quench to room
temperature. Such glasses have a narrow distribution of pore sizes, and have been widely
used in experimental studies. The interpretation of such experimental results has often relied
on models in which the pore structure is represented by a collection of straight, cylindrical,
non-connected pores having a range of diameters. However, electron micrographs of these
glasses show a networked structure with winding pores (figure 2), and simple straight cylinder
models of these materials do not capture some important confinement effects (see sections 3
and 5).

Silica and many porous oxides are made by sol–gel processes [155]. Silica gel is usually
formed in an aqueous medium, and the solvent is subsequently removed. In the case ofxerogels,
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Figure 1. Transmission electron micrograph (TEM) of
MCM-41, showing uniform pores of hexagonal cross
section. From [149].

Figure 2. Scanning electron micrograph of a CPG of
300 nm mean pore diameter. From [128].

Figure 3. TEM of a carbon aerogel, magnification
2200 000. From [132].

Figure 4. TEM of a pitch-based activated carbon fibre.
White areas are pores, grey areas are pore walls, dark
areas are thicker pore walls [271].

the structure is compressed and the porosity reduced by the surface tension forces as the liquid
medium is removed.Aerogelsare gels in which the liquid phase has been replaced by a gas in
such a way as to avoid the shrinkage that would normally occur if the gel were directly dried;
thus, they are characterized by very high porosity. Carbon aerogels are prepared by supercritical
drying, followed by pyrolysis, of an organic gel such as resorcinol-formaldehyde gel [286,287].
They are mesoporous and may contain some micropores [131, 133]. An example is shown
in figure 3. Silica aerogels [155] can be prepared by replacing the water by alcohol, heating
the gel to a temperature above the critical temperature of the alcohol (to avoid the tension
associated with a gas–liquid meniscus, and consequent compression of the gel), followed by
removal of the alcohol vapour. Porous materials fabricated by sol–gel processes generally
consist of roughly spherical solid particles separated by void space. Models consisting of a
random array of spheres to represent the solid have been used to study such materials.

Activated carbons [15, 156, 233, 236, 285] can take a variety of forms (figures 4 and 5).



1578 L D Gelb et al

Figure 5. High-resolution TEM image before (a) and after (b) image analysis of a graphitized
anthracene soot sample. From [277].

Figure 6. High-resolution TEM images of carbon nanotubes with
increasing numbers of concentric tubes, one to five layers in (a)–(e).
From [2].

They are usually prepared by heating organic material (e.g. wood, coal, polymers, vegetable
matter) to a high temperature in the presence of an oxidizing agent (often steam). Such carbons
have been modelled using a collection of slit-shaped pores of varying widths, with the pore
surfaces modelled as graphite basal planes. Variations on this include wedge-shaped pores,
and blocks of graphite with sections randomly removed [27,28]. Carbon nanotubes (figure 6)
can be prepared as regular straight carbon tubes; the diameter and number of graphite sheets
in the walls can be controlled in the manufacturing process.

In a bulk system we can think of a first-order phase transition as being accompanied by an
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infinitely sharp change in a suitable order parameter, usually the density or composition. At
the equilibrium transition point the two phases have equal free energies or chemical potentials.
Correlation lengths grow to infinite size as the system approaches a critical point. In a confined
system, care must be used to define what is meant by a phase change. For a slit-shaped pore,
true phase transitions are known to occur. The correlation length can grow to infinity in the
two dimensions parallel to the pore walls, but in the third dimension, normal to the walls, it can
only grow to the pore widthH . Critical points will be associated with gas–liquid and liquid–
liquid equilibria in such systems. For cylindrical pores the situation is more complicated.
The confined system can separate into two or more phases having equal grand free energies.
However, the correlation length can only grow to infinity in one dimension, that along the axis
of the cylinder. Such a one-dimensional system cannot exhibit a true phase transition. Phase
separation consists of the formation of small micro-domains of each phase. The average length
of these micro-domains depends on the diameter of the pore and the temperature, being larger
for larger pores and lower temperatures (see figure 43). As the temperature approaches a pore
pseudo-critical temperature the average domain length decreases. However, away from this
critical region the average domain length can be macroscopic, running to many micrometres
or millimetres. In such cases it is convenient to refer to the system as phase separated, and to
refer to the point at which such phase separation no longer occurs as a critical point. This is
discussed further in sections 3 and 5.

Both experimental and theoretical work in this field are beset with significant difficulties.
On the experimental side, it is difficult to describe the adsorbed material, and one must attempt
to infer its molecular structure from a range of experimental techniques. With the exception of
the crystalline materials, one of the greatest difficulties is in determining the morphology of the
material. Often the distribution of pore sizes and shapes is poorly known, and little is known of
connectivity and surface chemistry. In such situations any interpretation of experimental results
is speculative. In equilibrium experiments it is often difficult to know if true thermodynamic
equilibrium has been achieved. Metastable states are a considerably greater problem in these
systems than in bulk materials. In some cases, such as freezing and liquid–liquid separation
in amorphous materials, it is likely that equilibrium is never attained in any reasonable time.
Other common difficulties in the experiments include: (a) the possibility that the surfaces and
pore structure may change with temperature or pressure; and (b) trace amounts of impurities
in the adsorbate may preferentially adsorb on the pore walls, leading to spurious results.

In theoretical and simulation work the problems are somewhat different. In contrast to the
experiments, the molecular structure of the adsorbate is completely known. However, in trying
to simulate amorphous systems, the lack of knowledge of the morphology of the porous material
is often the greatest problem. Two possible approaches to this problem are: (i) attempt to build
a model that looks as much as possible like the real material by studying electron micrographs
and other laboratory measures; (ii) try to mimic by simulation the manufacturing process used
to make the real material. Other complications that arise in modelling are: (a) metastable states
arise frequently, as in the experiments. However, in theory and simulation we can calculate
free energies, and thus determine which of several different states of the system is the true
equilibrium one, and the point at which true phase equilibrium exists. (b) Usually the pore
walls are assumed to be rigid and do not change with the state conditions of the bulk fluid. This
requirement can be relaxed, as in clay swelling, for example: (c) vibration of solid atoms is
usually neglected, but will be important for some properties. (d) The intermolecular potentials
(fluid–fluid and fluid–solid) are uncertain. The fluid–fluid potentials are often assumed to be
the same as those for the bulk fluid, i.e., the external field from the walls is assumed to have
a negligible influence on these. In the case of the fluid–solid interactions, the importance of
electrostatic, induction, and three-body and higher-body interactions is often unknown.
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In addition to its use to model real systems, simulation and theory can also be used to study
the behaviour of adsorbates confined in hypothetical porous materials that do not necessarily
correspond to real materials. Such simulations offer the possibility of systematic investigations
not possible in the laboratory, since the simulator can vary the pore geometry, connectivity and
surface chemistry at will.

Earlier reviews of adsorption have addressed some aspects of phase separation in porous
media [55, 78, 79, 126, 127, 325], but have not been comprehensive. In what follows we
review the current state of knowledge of phase separation and phase transitions in porous
materials. Our emphasis is on simple fluids (composed of small, neutral molecules) and well-
characterized materials. Although we emphasize theoretical and simulation studies, we also
discuss examples of experimental investigations. The most useful theoretical and simulation
methods for this work are described in section 2. Subsequent sections describe various kinds of
phase separations (condensation, layering transitions, liquid–liquid equilibria, and freezing).
We do not cover wetting in detail, which has been reviewed separately [96, 344], nor do
we discuss solid–solid transitions. Also, complex fluids, such as ionic fluids [200, 204],
polymers [17,76,392], colloidal suspensions [177,373] and amphiphiles, are not covered.

2. Simulation and theoretical methods

A variety of molecular simulation schemes have been used to study phase transitions in
confined systems. The principal methods that have been used are grand canonical Monte
Carlo (GCMC) simulation and Gibbs ensemble Monte Carlo (GEMC) simulation. Other
methods that have been applied less frequently to these problems are semi-grand Monte Carlo
(SGMC), histogram-reweighting and histogram-biasing methods, and molecular dynamics. A
number of texts which cover these techniques in considerable depth are available, including
Computer Simulation of Liquids[4], Understanding Molecular Simulation[98], andComputer
Simulation and the Statistical Mechanics of Adsorption[260].

Among theoretical methods, the most widely used has been density functional theory
(DFT) [77,80,126]. While integral equation theories have proved useful for investigating the
structure of confined fluids [140,178,179], a realistic description of phase changes has proved
more difficult, requiring complex closures. Here we give a brief review of simulation and
density-functional techniques and their application to confined fluid phase equilibria.

2.1. Grand canonical Monte Carlo

The GCMC method simulates an open system specified by fixed temperatureT , volumeV
and chemical potentialµ. It is the staple technique for the simulation of an adsorbed fluid
(or fluid mixture) in equilibrium with a bulk fluid reservoir, which is frequently the situation
encountered in experimental studies of confined fluids. The method was first used in studies
of bulk fluids [1,263], and was quickly extended to adsorbed systems [365,366].

GCMC, like other Monte Carlo methods used in molecular simulation, is based on the use
of a Markov chain to generate a series of molecular configurations [134,318] with the correct
distribution of energy and density. In the grand canonical ensemble, the probability associated
with any given (classical) states of the system is

P(s) ∝ exp[−β(V(s)−Nµ)− lnN ! − 3N ln3 +N lnV ], (1)

where3 is the de Broglie wavelength,β = 1/kBT , V(s) is the total intermolecular potential
energy of the system, andN is the number of molecules in the system. Most simulators use the
original prescription for generating the Markov chain proposed by Norman and Filinov [4,263].
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In this method, subsequent steps in the chain are generated by modifying the current molecular
configuration in one of three ways: either creating a new molecule at a random position,
destroying an existing molecule, or displacing an existing molecule by a random vector. These
‘moves’ are then accepted or rejected according to criteria based on the temperature and
chemical potential. Thermodynamic quantities of interest can be estimated by averaging their
microscopic counterparts over a large number,M, of these configurations; for instance, the
average internal energy〈U〉 is estimated by the average of the instantaneous potential energy,
1
M

∑M
i V (s). In general, there is considerable freedom in choosing the parameters controlling

the simulation, and statistically efficient choices of these parameters, as well as the total
simulation length, vary widely between different systems.

The thermodynamic potential appropriate to the grand canonical ensemble is the grand
free energy,�, given by

� = F − µ〈N〉 (2)

whereF is the Helmholtz free energy,F = U−T S and〈N〉 is the average number of molecules
(for a mixture the last term on the right-hand side of equation (2) is replaced by sum over all
components,

∑
α µα〈Nα〉). For a pore of general shape the exact differential of� is given by

d� = −S dT − Pb dV − 〈N〉 dµ + γ dA (3)

whereS is the entropy,Pb is the bulk phase pressure,γ is the solid–fluid interfacial tension
andA is the surface area. For slit-shaped pores this is often written as [11,78]

d� = −S dT − Pb dV − 〈N〉 dµ + 2γ dA− Af dH (4)

whereA is now the surface area of one of the pore walls,H is the pore width and has been
allowed to vary, andf is the solvation force (also called the solvation pressure), defined as
f = PH − Pb, wherePH is the pressure exerted on the pore walls by the adsorbate. From (4)
the form of the Gibbs adsorption isotherm is obtained,(

∂�

∂µ

)
T ,V,A,H

= −〈N〉. (5)

An important refinement in the use of GCMC simulations to study capillary phase
equilibria was the development of an integration scheme that allowed precise location of
the thermodynamic condensation pressure in mesoporous systems [290]. In this method, the
grand free energy� is integrated along the adsorption isotherm using equation (5). The lower
limit of the integration is taken as an ideal gas state, for which the grand potential can be
calculated directly from the external potential [127].

The grand potential density of the desorption branch of the isotherm is determined using
a three-part integration. First, a supercritical (and hence reversible) adsorption isotherm is
measured. Then a second integration along a path of decreasing temperature at constantµ is
done, using the expression(

∂(�/T )

∂(1/T )

)
V,A

= U − 〈N〉µ (6)

with U the (absolute) potential energy of the system. Finally, the desorption isotherm itself is
integrated using equation (5). The thermodynamic transition chemical potential is found at the
intersection of the�(µ) curves for the adsorption and desorption branches. These methods
have been used to study liquid–vapour coexistence in both simple cylindrical models [291]
and more complex models [274, 275]. For pores of irregular geometry or pore models based
on an atomistic description of the adsorbent, this integration scheme is the only method so
far used to calculate capillary condensation phase diagrams. We note that the thermodynamic
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transition pressure cannot be determined by experiment in general, because the internal energy
data required for this integration scheme is extremely difficult to obtain. We also note that, for
the case of slit pore geometry, amechanicalroute to� has been proposed [378].

2.2. Gibbs ensemble Monte Carlo

The GEMC method is a more recent development [279] which directly calculates phase
coexistence by simulating the two phases in different simulation cells, with both mass and
volume exchange between the two phases; for a pure fluid, this imposes equality of the
pressure, temperature, and chemical potentials between the two phases, which implies phase
coexistence. The method has also been extended to mixtures [281]. The chemical potential of
each component in each phase can be calculated at no extra cost in this type of simulation [338].
Since its introduction, the Gibbs ensemble has enjoyed wide use in the study of bulk phase
equilibria [280].

A Gibbs ensemble simulation is also based on a Markov chain generation; in this case, the
different types of moves are displacement of molecules (in each box), transfer of molecules
betweenboxes, and exchange of volume between boxes; the latter is generally accomplished
by rescaling the physical dimensions of each simulation cell.

For some confined systems, this method can be used directly to obtain capillary
condensation [160,278] phase diagrams and liquid–liquid phase diagrams [119]. The system
must be of a sufficiently ideal geometry that volume-scaling moves can be used; this essentially
restricts one to studying smooth-walled pores of either cylindrical or planar geometry.

2.3. Semi-grand Monte Carlo

The SGMC method was developed for use in studying multicomponent phase equilibria [182].
In the case of a binary mixture, it consists of a simulation at constant(T ,N,µ1− µ2), which
is achieved by including simulation moves that attempt to change molecules of species ‘1’ into
molecules of species ‘2’, and vice versa. In the constant-pressure version of the algorithm,
the simulation is performed at constant(T , P, µ1−µ2). In both cases, the absolute chemical
potentials of both species can be calculated using a modification of the Widom insertion
method [182]. This method is especially useful for studying liquid mixtures [67] in which the
quantity of main interest is the mole fraction, rather than the density.

The semi-grand method can be used for studying liquid–liquid coexistence in pore
systems [106, 108]. However, if the bulk phase in equilibrium is to be specified as well,
the method has little advantage over direct grand canonical ensemble simulation of the binary
mixture, since the chemical potential of both species is specified in advance in the GCMC
method.

2.4. Quench molecular dynamics

Molecular dynamics is a widely used technique in which the classical equations of motion for
the system are integrated using a finite-difference algorithm. The resulting trajectory samples
the microcanonical ensemble of states, and can be used to obtain thermodynamic averages.
More important for phase equilibria calculations are the constant-temperature modifications of
this method, in which the total kinetic energy of the system is adjusted, either by direct rescaling
or by various schemes of coupling to an external bath of constant temperature [21,145,264].

Most molecular dynamics studies of phase equilibria in confined systems have focused
on the kinetics of two-phase separation. In these studies a system is prepared at supercritical
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temperature and then quenched into the two-phase region by resetting the thermostat in the
equations of motion. The phase separation then proceeds dynamically. It can be quantitatively
followed by tracking either the total potential energy of the system or measuring structural
quantities such as the inter-species radial distribution function. This method has principally
been used to study the separation of liquid mixtures, and has been applied in planar pores [168],
two-dimensional ‘strip’ pores [398], cylindrical pores [106, 107, 396], and more complex
disordered media [343].

2.5. Lattice models

The isomorphism between the spin-1
2 Ising model and the classical lattice gas is well known,

and discussed in most standard texts on statistical mechanics [147]. The Ising model is given
generally by

E{si} = −
∑
〈ij〉

εij sisj −H
N∑
i=1

si, (7)

where the first sum is taken over all pairs of spins, and the second term is the contribution
of an (optional) applied magnetic fieldH . εij is the interaction energy between each pair of
spins. The Ising model has been studied in many dimensions, for many lattice geometries,
and for many spatially varying external fields. Most work, however, has focused on a three-
dimensional cubic lattice, with only isotropic nearest-neighbour couplings.

This simple Ising model is isomorphic with a simple model for liquid–vapour equilibria,
the lattice gas. The lattice gas is generally given by a simple uniform lattice in which lattice
sites can be occupied by a single ‘gas’ molecule. Gas molecules on neighbouring sites interact
through some energy−εlg. This model is made equivalent to the Ising model with nearest-
neighbour interactions on the same lattice by equating occupied lattice gas sites with spin ‘up’
Ising sites, etc. The thermodynamic state of the lattice gas is specified by a temperature and
chemical potential (µ), while the state of the Ising model is specified by a temperature and a
magnetic fieldH ; the mapping is given by 2(εγ −H)↔ µ, with γ the coordination number
of a lattice site.

In a similar way, the simple Ising model can be used to describe a coarse model for a
mixture of two species. The two spin states correspond with the two species in this case. The
mole fraction of the mixture is just the net magnetization, and the nearest-neighbour coupling
ε corresponds withε11 + ε22 − 2ε12, these being the nearest-neighbour couplings between
isolated pairs of ‘1’ atoms, ‘2’ atoms, and the cross-coupling [147].

The kinetics of phase separation and domain motion in the Ising model have been
extensively studied by computer simulation. Ising calculations are of the Monte Carlo type, so
that there is no physically definedtime; instead, an (arbitrary) time parameter is associated with
each particular Monte Carlo simulation algorithm. Of particular interest are two algorithms; the
standard spin-flip algorithm and dynamics, in which the total magnetization is not conserved,
and the ‘Glauber’ dynamics associated with the spin-exchangeIsing model, in which the only
allowed move is the exchange of spins on neighbouring lattice sites. The spin-exchange model
is suitable for studying the dynamic separation (or mixing) of liquid mixtures, although it omits
hydrodynamic effects.

In this review we will hold to the usual liquids-oriented notation in describing the
thermodynamics of confined systems, exept where directly concerned with spin system
calculations. Those more familiar with magnetic systems might review the mappings described
above in order to better reconcile these different descriptions.
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2.6. Histogram analysis methods

A variety of new methods have been used in the last decade to obtain bulk phase coexistence
and critical point data to very high precision. These methods are based on the collection and
analysis of histograms of the energy and (usually) number of particles over the course of a
Monte Carlo simulation, from which can be extracted the density of states and free energies
in the system.

Histogram data were first collected some time ago, in studies of the supercritical Lennard-
Jones (LJ) fluid [235]. The fact that these data could be used to efficiently estimate free energy
differences was suggested by Bennett [20], after which these techniques were widely applied
in analysis of spin systems and lattice models. Histogram methods were applied to phase
transitions by Ferrenberg and Swendsen [87], who later determined optimal methods for the
combination of data from multiple simulations [88] and uncertainty analysis [86].

Histogram methods were finally re-applied to continuous systems by Wilding and Bruce
[385, 386], in conjunction with ‘mixed-field’ finite-size scaling analysis, which allowed the
determination of the critical parameters of a LJ fluid to very high precision.

In the grand canonical ensemble, the probability of observing a stateswith givenU = V(s)
andN is given in equation (1). Equivalently, the probability of observing a state with energy
U and number of particlesN could be written as

P(U,N) ∝ exp(βµN)× exp(−βU)×W(U,N), (8)

whereW(U,N) is themicrocanonical density of statesof energyU and numberN . In a given
(long) GCMC simulation, if we collect a histogram of the energy and number of particles, the
number of ‘counts’ in each histogram bin will be proportional toP(U,N), and so the density
of states can be recovered up to a constant factor from the simulation data by dividing by the
Boltzmann factor and chemical potential term. Furthermore, multiple simulations at different
state points can be used to build up an accurate density of states over a large range ofN and
U by combining data. Ferrenberg and Swendsen [88] give an optimal statistical recipe for this
combination.

The probabilityP(U,N) can be estimated fordifferent temperatures and chemical
potentials, by reweighting the histogram according to

Pβ ′,µ′(U,N)

Pβ,µ(U,N)
∝ exp((β ′µ′ − βµ)N)× exp(−(β ′ − β)U), (9)

which is obtained by dividing the previous expression by itself at differentβ andµ. This
new distribution can be used to regenerate quantities such as〈U〉 and 〈N〉, and to locate
thermodynamic transitions.

The form of P(U,N) near a critical point is universal up to some scaling factors.
Wilding [385] showed that this property could be used to precisely locate the critical point in
both finite and infinite systems.

Histogram schemes are also immediately extensible to multicomponent systems. In
addition, they can be used to obtain surface tension data in both spin systems [23] and molecular
simulations [148]. These methods have not yet been extensively applied in the study of confined
fluids, but ought to allow for detailed and direct characterization of critical fluids in some porous
materials.

2.7. Histogram-biased Monte Carlo simulations

A closely related technique, based on similar ideas, is that of histogram-biasedsimulation
[22,270]. In this family of techniques, the Monte Carlo chain itself is biased to favour certain
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areas of phase space; this results in a biased probability distribution histogram, which can be
correctedafter completion of the simulation by dividing out the biasing function. The strength
of this technique is that it allows distant sections of phase space (such as the solid-like and
liquid-like regions) to be covered by a single series of simulations, so that transition points can
be located as described above.

2.8. Density functional theory

DFT has been used extensively in theoretical treatments of confined phase equilibria and is
the basis of much of our theoretical understanding of capillary phenomena [83]. In this family
of methods, which are applicable to both confined and bulk systems, the equilibrium density
profileρ(r) is obtained by minimizing a free-energyfunctional[77,80,126]. For the particular
case of a pore system in equilibrium with a bulk phase, we write the grand potential� as a
functional of the density profile:

�[ρ(r)] = F [ρ(r)] −
∫

dr ρ(r)[µ− Vext(r)] (10)

whereF is the intrinsic Helmholtz free energy of the fluid (i.e. the Helmholtz energy in the
absence of the external field) andVext is the potential field due to the pore material. For the LJ
and similar fluids,F is usually given by a first-order perturbation around the hard-sphere fluid,
with the attractive part of the fluid–fluid potential interactions approximated by a mean-field
term:

F [ρ(r)] = Fh[ρ(r)] + 1
2

∫
dr
∫

dr′ ρ(r)ρ(r′)φatt(|r − r′|). (11)

Generally, the attractive part of the fluid–fluid potential is taken from the Weeks–Chandler–
Andersen division of the LJ potential [382]. The intrinsic free energy of the hard sphere fluid
is then split into an ideal part and an excess part. The ideal part is trivial; the excess part is
dealt with in one of several ways, which distinguish the several commonly used forms of the
theory.

• Local density approximation. In this approximation, the excess (over the ideal gas) free
energy of the hard-sphere fluid is taken to depend only on the local density, so that

F ex
h [ρ(r)] =

∫
dr ρ(r)fex(ρ(r)) (12)

wherefex is the excess free energy per molecule of the bulk hard-sphere fluid given by
some equation of state. This theory, while simple to use, does not account for even short-
range correlations in the fluid, and is not able to describe the structures assumed by fluids
in narrow pores.
• Tarazona’s weighted density approximation. In this theory, the excess hard-sphere free

energy is still written as a single integral over the density profile, but the integrated quantity
is now a functional of some weighted density:

F ex
h [ρ(r)] =

∫
dr ρ(r)fex[ρ(r)]. (13)

ρ(r) is a weighted average over the original density profile, with weighting functions
chosen so that the theory gives a good description of the direct correlation functions of
the bulk fluids. In Tarazona’s theory the weighted density is an implicit function of the
local density; the weighting functions themselves are functions of the weighted density.
Further details and applications of this theory to various systems can be found in the
original papers [348,349].
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• Kierlik and Rosinberg’s weighted density approximation. This theory is formally similar
to Tarazona’s. The four weighting functions used here are chosen such that this theory
exactly reproduces the Percus–Yevick result for the direct pair correlation function in
the uniform hard-sphere fluid. In addition, these weighting functions are independent
of the density, so that the calculation of the weighted density from the local density is
conceptually simpler [170]. This version of DFT has been found to be somewhat more
accurate in very small pores than the Tarazona recipe, and has the added advantage that it
is easily and unambiguously extended to adsorbed mixtures [161,171].

A number of papers [171, 349, 367] have extensively compared these and other theories
for confined systems. There have also been applications of other liquid-state theories to
confined fluids; integral equations in particular, have been found to be in excellent agreement
with simulation data [178, 179], and have been used to obtain solvation forces between large
particles [139,141] and between large particles and surfaces [112].

2.9. Intermolecular potential functions

Calculated property behaviour for confined fluids is sensitive to the model used for the fluid–
wall interaction. When the wall structure is included, the location of the various wall atoms
must be defined in the simulation; such locations may be taken from x-ray or neutron diffraction
data for the experimental material, or may be defined as part of the model in other cases. It is
common to assume pairwise additivity of the intermolecular potentials; the total intermolecular
interaction of a given adsorbate moleculei with the walls is then obtained by summing the pair
interactions with individual wall atoms,

∑
j usf (i, j), where the sum is over all wall atoms,

j . In some applications it is possible to treat the walls as structureless; in this case a fluid–
wall intermolecular potential is obtained by replacing the sum over fluid–wall interactions
by a sum of integrals over wall atoms in a given plane. This is a reasonable approximation
at higher temperatures and when the adsorbate molecule is large compared with the spacing
between wall atoms. In graphitic carbons, for example, the C–C spacing between surface
carbon atoms is only 1.42 Å , so that even a small molecule such as methane (diameter 3.81 Å)
feels only a rather small corrugation in the fluid–solid interaction as it moves parallel to the
surface. In the case of a planar graphite surface the graphite layers are separated by a uniform
spacing,1 = 3.35 Å. Assuming a LJ (12, 6) potential for the fluid–wall atom interaction and
integrating over the interactions with individual carbon atoms in each graphite plane, followed
by summation over these planes, gives the ‘10, 4, 3 potential’ [340,341]

usf (z) = 2πρsεsf σ
2
sf 1

[
2

5

(
σsf

z
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−
(
σsf

z

)4

−
(

σ 4
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31(z + 0.611)3
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, (14)

wherez is the distance from the graphite surface,σsf andσsf are LJ potential parameters for
the solid–fluid interaction, andρs = 0.114 Å−3 is the atomic density of the solid. Here the
‘10’ and ‘4’ terms represent the repulsive and attractive interactions of the fluid molecule with
the surface graphite plane, and the ‘3’ term results from the summation over the remaining
layers of the solid. For a slit pore, the fluid molecule will interact with both graphite walls, so
that the total fluid–solid interaction will be the sum of two terms of the type given by (14), i.e.
usf (z) + usf (H − z).

If, in addition to integrating over each graphite plane, one integrates over all of the graphite
planes in thez direction, the (9, 3) potential is obtained [341]:
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The (9, 3) potential is, in general, a considerably poorer approximation to the true solid–
fluid interaction than the (10, 4, 3) potential, and underestimates the depth of the potential
well [341]. Analogous potentials for structureless walls have been developed for pores of
cylindrical geometry [294].

For low temperatures and for surfaces where the atomic spacing is not small the
structureless approximation will not be appropriate. The LJ intermolecular potential has often
been used as an approximate two-body potential between atoms or simple molecules. However,
even for molecularly simple systems both higher-order two-body dispersion and three-body
interactions have been shown to be significant, often contributing of the order 15% to the
intermolecular potential energy [55, 188, 258, 261, 288]. Implicit in these commonly used
potential functions for dispersion is the assumption that the polarizability is isotropic. This is
not, in general a good approximation for polyatomic molecules [121] or for carbon surfaces,
since the polarizability of graphite is quite anisotropic [257]. Some of the implications of this
have been discussed by Nicholson [258] and Nicholson and Parsonage [260].

For many systems both direct electrostatic and induction forces between the adsorbate
molecule and the surface atoms will be significant [188, 258]. For zeolites and some other
materials it is necessary to account for charges on the adsorbent species, and these can lead
to strong direct electrostatic and also induction forces with adsorbate molecules. Quantum
mechanical calculations are helpful in determining the magnitude of partial charges to be
assigned to various adsorbent atoms [384].

Although suitable functional forms for the solid–fluid intermolecular potential can be
constructed, it is generally necessary to fit some parameters to experimental data. Data for
the zero-coverage heat of adsorption and Henry’s law constants are especially valuable in this
regard, since they depend only on the adsorbate–adsorbent interaction, and are sensitive to
details of this potential.

It is usual to use expressions for the fluid–fluid potential that have been developed for the
bulk fluid [121, 227]. However, it should be noted that the parameters in such pair potentials
have been optimized for bulk fluid properties, and such parametrizations include the effects of
three-body forces. Adsorbed fluids, in contrast, are inhomogeneous, and additional kinds of
three-body forces are present. For example, the ‘mediated’ three-body interaction involves two
adsorbate molecules and a wall atom [258]. Despite these reservations, three-body dispersion
interactions are unlikely to account for more than 5–10% of the total interaction, so that the
uncertainties associated with these effects may not be too serious.

3. Capillary condensation

The gas–liquid transition has been extensively studied in pores, by experiment, DFT, and
molecular simulation. Such a transition occurs when the temperature is below the pore critical
temperature, and the pore width is greater than a few times the adsorbate molecule diameter.
Such a transition appears in the adsorption isotherm (amount adsorbed versus bulk gas pressure)
as a sudden and large jump in the amount adsorbed at thecapillary condensation pressure. In
a porous material in which all the pores are of the same size and shape, with homogeneous
walls, such a condensation may be a sharp transition, signified by a sudden vertical jump
in adsorption. In real systems, this jump is often replaced by steeply rising adsorption, i.e.
continuous filling. Such behaviour can result from a distribution of pore sizes and shapes, from
connectivity among pores, and from heterogeneity of the walls; in the last case, clusters of
adsorbed molecules may form at strongly adsorbing centres prior to filling, and the filling may
not occur as a sharp transition. Capillary condensation is usually accompanied by hysteresis.
That is, desorption starting from pores that are filled with a dense fluid phase occurs via a
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different path than adsorption in the pressure range where condensation occurs. Provided that
the temperature is above the triple-point temperature of the bulk adsorbate, such hysteresis is
usually taken to be a signature of capillary condensation. (For temperatures below the triple
point, hysteresis may be due to a fluid–solid or solid–solid transition.)

3.1. Experimental studies

Although many experimental studies of capillary condensation have been reported, relatively
few of these have been for well-characterized materials with a narrow pore size distribution
(PSD). In this section we consider several examples of investigations where well-characterized
materials have been used. Such materials have included Vycor and CPG, silica aerogels, and
more recently MCM-41. The porous glasses have networked pores of roughly cylindrical
shape, with pore sizes from about 4.5 nm upwards; although these materials are amorphous,
the PSD is narrowly peaked about the mean pore size. MCM-41 is an aluminosilicate
material having straight, non-interconnected, cylindrical pores of nearly uniform diameter.
This material can have pore sizes in the range 1.5–10 nm.

Results for the adsorption of xenon in two porous materials, Vycor glass (mean pore size
about 5 nm) and active carbon, are shown in figure 7 for a range of temperatures [42,46,265].
In both cases we observe a low-pressure region of the adsorption isotherm that is reversible,
followed by a sharp increase in adsorption for a narrow range of pressures, accompanied
by a hysteresis loop; the hysteresis region indicates capillary condensation. The capillary
condensation pressure increases with temperature, and the hysteresis loop becomes narrower
at the higher temperatures, finally disappearing at somehysteresis critical temperaturewhich
lies below the bulk critical temperature. The hysteresis loops arise from metastability, and so
do not represent true equilibrium states; points on these irreversible sections of the adsorption
isotherm generally represent a system trapped in a local minimum in the free energy. In
principle, it should be possible to calculate the grand free energy for these ‘gas-like’ and
‘liquid-like’ states in the pore, and so determine the point of true thermodyamic equilibrium,
using equations (5) and (6). This is difficult in practice due to the difficulty in measuringU ,
and does not appear to have been attempted using experimental data.

Although the broad features of the adsorption isotherms shown in figure 7 are similar
for glasses and carbons, there are marked differences in the behaviour of the hysteresis loops
in the two cases. In the case of the glasses these loops are more triangular in shape, and
become smaller in both width and height asT is increased. For the active carbons these loops
have a parallelogram shape, and while becoming narrower do not vary much in height asT is
increased. These differences are believed to arise from differences in pore shape in the two
cases, the glasses having roughly cylindrical pores and the carbons pores that are slit shaped.

By plotting the temperature versus the total number of moles adsorbed,nt , at the extremes
of the hysteresis loop it is possible to construct ahysteresis phase diagram. Such a diagram is
superficially similar to what one expects for the true equilibrium ‘gas–liquid’ coexistence curve
in the pore, but will differ from the latter since the ‘gas’ and ‘liquid’ points at a given temperature
are not in true thermodynamic equilibrium. Hysteresis vanishes above thehysteresis critical
temperature, Tch. Such hysteresis phase diagrams are shown in figure 8 for CO2 in Vycor and
for Xe in active carbon. For CO2 in Vycor the adsorption isotherms are found to be reversible
for temperatures below about 193–200 K. The pore triple-point temperature is believed to
lie in this range, thus providing a lower limit to capillary condensation and hysteresis. For
simple fluids such as CO2 and Xe in Vycor the pore triple-point temperature is believed to lie
below the bulk value (see section 4 and figure 8). For the Xe/active carbon system the two
branches of the hysteresis coexistence curve remain more widely separated than for CO2/Vycor
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Figure 7. Adsorption isotherms for xenon, plotted as moles adsorbed per g of adsorbent versus log
of fugacity of xenon in the bulk gas phase: (a) in Vycor glass, (b) in active carbon. From [46].

or Xe/Vycor until close toTch, reflecting the different shape of the hysteresis loops in the
adsorption isotherms for the carbon and Vycor systems. Moreover, the top of the coexistence
curve is flatter for the Xe/active carbon system than for the Vycor system. This could arise
from the more nearly two-dimensional nature of the pores in the case of the carbon. The
hysteresis phase diagram for Xe/Vycor is similar to that for CO2/Vycor, and when these are
plotted in reduced units asT/Tch versusnt/ntch, wherentch is the value ofnt at the hysteresis
critical point, the two curves coincide within experimental error (figure 9). Comparison of the
hysteresis phase diagram with the bulk coexistence curve can be made by converting the total
moles adsorbed to the average density of fluid in the pores,ρ, as shown for CO2/Vycor in
figure 10. The coexistence curve in the pore is seen to be narrowed and the hysteresis critical
point is depressed relative to that for the bulk. The considerably higher density for the ‘gas’
phase in the pore relative to that for the bulk is due to the adsorption of dense layers of adsorbate
on the pore walls, leading to a high value ofρ on averaging over the pore cross section. The
density of the ‘liquid’ phase is similar to that for the bulk liquid. The pore critical temperature
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Figure 8. Hysteresis phase diagrams for (a) CO2 in Vycor, (b)
Xe in active carbon. The triple-point temperature for the bulk
fluids is shown as dashed lines labelledTt . From [46].

is expected to be lower than the bulk value, since from simple mean field theory [144]

Tc = c zε
k

(16)

wherec is a constant,z is the mean coordination number for a molecule in the fluid andε is the
interaction energy with a nearest-neighbour molecule. For a confined adsorbate the average
coordination number will be lower than for the bulk fluid, since many molecules will lie close
to a pore wall, leading to a lower critical temperature.

Thommes and Findenegg [354] have reported similar measurements for SF6 in CPGs.
These materials have a narrower PSD than Vycor. The hysteresis phase diagrams are shown
in figure 11 for two pore sizes. The shift in the critical temperature,1Tc = Tc − Tch, was
0.480± 0.23 K for CPG having a mean pore width of 31 nm, and 0.92± 0.24 K for a 24 nm
mean pore width. Similar measurements [64] for a CPG with a mean pore size of 7.7 nm gave
1Tc = 15± 5 K. The data near the pore critical region can be represented by the usual power
law,

ρlp − ρgp = a(Tch − T )β (17)

whereρlp andρgp are the mean density in the pore for the liquid and gas phases, respectively.
Fits to the data gave the critical exponent asβ = 0.45 for the 24 nm CPG andβ = 0.53 for
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Figure 9. Comparison of hysteresis phase diagrams for
CO2/Vycor and Xe/Vycor, in reduced units. From [46].

Figure 10. Comparison of hysteresis phase diagram for
CO2/Vycor with phase diagram for bulk CO2. From [46].

Figure 11. Vapour–liquid coexistence curve for bulk sulfur hexafluoride, and hysteresis phase
diagrams for SF6 in CPG of mean pore diameters 31 and 24 nm. From [354].

the 31 nm glass. These values are considerably larger than the Ising value of 0.33 for three-
dimensional systems, and close to the classical value (β = 0.5). However, these differences
from the Ising value were not regarded as necessarily significant in view of the large error
bars on the density data. The shift in the hysteresis critical point was found to increase with
decreasing pore width, and to be consistent with a power law of the form

1Tc = bH−y (18)

with y ∼ 2.5. Similar measurements have been reported by Findenegget al [90] for
cyclopentane, iso-pentane, perfluoropentane and SF6 in CPG with mean pore diameters of
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7.7 and 24 nm. Measurements have been reported by other workers for Vycor and silica gels
having fairly narrow PSDs (e.g., [213–215,273]).

Gross and Findenegg [123] have studied adsorption and capillary condensation of SF6 in
a mesoporous silica material having straight, non-interconnected pores, prepared by a sol–gel
synthesis of silicates in lyotropic liquid crystal media [7]. This material is similar to MCM-41,
but has larger ordered domains. Gross and Findenegg found a capillary phase diagram similar
to that of figure 11. The lowering of the critical temperature,1Tc, was 20± 5 K, reflecting
the smaller average pore diameter of about 3 nm.

Thommeset al [355] have also shown that adsorption is reduced at temperatures very close
to, but slightly above, the bulk critical point. Starting at a temperature in the one phase region
above the bulk critical point, and cooling along the critical isochore, the amount adsorbed in
a CPG, at first increases asT is reduced, as expected. However, at a temperature about 1.5 K
aboveTc the adsorption goes through a maximum and on further lowering the temperature
the adsorption is much reduced. There have been several attempts to explain thiscritical
depletion effectusing molecular simulation [217,387] and theoretical methods [216,217] for
the independent slit pore model. Although an initial study based on lattice gas theory [216] did
seem to show the critical depletion effect, recent molecular simulation studies [217,387] and
DFT calculations [217] show that there is no critical depletion effect for the independent slit
pore model; the apparent depletion found in the lattice gas results was an artifact of that simple
theory. Thus this effect remains to be explained. Apparently, it arises from effects omitted in
this simple model, possibly pore geometry, connectivity or some form of heterogeneity.

The mesoporous glasses used in these studies have a networked pore structure that
makes a molecular analysis of the capillary condensation results difficult (see later in this
section and section 5). Mesoporous MCM-41, an aluminosilicate molecular sieve with
straight, parallel cylindrical pores and with negligible pore interconnections, is a more
suitable material for investigating capillary condensation. The pore diameter can be tailored
within the range 2–10 nm. Recently, experimental studies of capillary condensation and
hysteresis for simple adsorbates in these materials have been reported by several workers
[37–39, 187, 206, 243, 246, 309, 310]. Some typical results are shown in figure 12 for argon
in MCM-41 samples having two different average pore diameters. At the lower temperatures
the isotherms show the sharp rise characteristic of capillary condensation, accompanied by
hysteresis. As the temperature is raised the hystersis loop shrinks and vanishes at the hysteresis
critical temperatureTch. For these systemsTch ≈ 62 K for the smaller mean pore radius of
rp = 1.2 nm, and≈100 K for rp = 2.1 nm.

The hysteresis critical temperatureTch, can be distinguished from thepore critical
temperature,Tcp, defined as the temperature where the sharp jump in adsorption due to capillary
condensation just disappears. While some authors have implicitly assumed that the hysteresis
critical temperature coincides with the pore critical temperature, there is evidence that these
two temperatures are different, withTcp > Tch. This is plausible on theoretical grounds, since
it is known that for straight unconnected pores, as in MCM-41, the hysteresis results from the
system being trapped in a local minimum in the free energy. On adsorption, for example, this
local free-energy minimum would correspond to the gas-like state, and the system may remain
in this state at pressures somewhat above the true thermodynamic transition pressure. However,
we might expect that as the temperature is raised this local minimum well in the free energy
either disappears or becomes too small to hold the system in the gas-like state (fluctuations
in such small systems can be large). In this situation, hysteresis would disappear somewhat
below the pore critical temperature. Morishige and Shikimi [246] have estimatedTcp for argon
in siliceous MCM-41 by measuring how the slope of the adsorption isotherm in the capillary
condensation region varies with temperature. In a perfectly monodisperse material, in which
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Figure 12. Adsorption isotherms for argon in siliceous MCM-41 at various temperatures for two
mean pore radii: (a) rp = 1.2 nm, (b) 2.1 nm. Adsorption points are shown as open circles,
desorption as filled circles. In (a) the isotherms at the two lower temperatures, 57.7 and 72.2 K,
are plotted against reduced pressure, while the others are plotted versus reduced fugacity. The
triple-point temperature of bulk argon is 83.8 K. From [246].

all pores are of the same diameter, surface structure and composition, capillary condensation
should result in a sharp vertical jump inV , the adsorption; thus, the slopes(∂ lnP/∂V )T
or (∂ ln f/∂V )T should be zero. By plotting the experimentally determined values of the
slope(∂ lnP/∂V )T or (∂ ln f/∂V )T against temperature [253] it is possible to make a rough
estimate ofTcp, as shown in figure 13 for argon. In the temperature range where capillary
condensation occurs these derivatives are positive but small; their non-zero values arise from
the distribution of pore sizes in the real material. For temperatures up to about to about 98 K
the derivative increases slowly, but above this temperature, it increases more rapidly withT .
Such a rapid increase is expected whenT is above the pore critical temperature. Morishige and
Shikimi interpret the intersection of these two straight line regions as being the pore critical
temperature,Tcp ' 98 K. If this interpretation is correct, thenTcp is significantly larger than
Tch, which for this system is approximately 62 K. Both of these temperatures are substantially
below the bulk fluid critical temperature of argon, which is 150.7 K, as expected for such
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Figure 13. Effect of temperature on the inverse slope of the adsorption isotherm at the point of
capillary condensation, for argon in siliceous MCM-41 with a mean pore radius of 1.2 nm. The
inverse slope at higher pressures is estimated on the basis of both(∂ logP/∂V )T and(∂ logf/∂V )T .
From [246].

Figure 14. Shifts in the hysteresis and pore critical temperatures,(Tc−Tch)/Tc and(Tc−Tcp)/Tc,
vs reduced inverse pore radius, for various adsorbates in mesopores: Ar (◦), N2 (4), O2 (�),
C2H4 (5), CO2 (↓) and Xe (∗). Open and closed points representTch andTcp , respectively. The
four open points at smaller values ofd/rp , which lie well below the line for the hysteresis critical
temperature of MCM-41, are results forTch for networked mesoporous adsorbents, Vycor [46] and
silica gel [214]. Lines are guides for the eye. From [246].

small pores. Morishige and Shikimi have estimated pore critical temperatures for other gases,
including N2, O2, CO2 and C2H4, in this material, and find thatTcp > Tch in each case, the
difference being of the order 40–60%.

A dimensionless plot of the shift in the both the hysteresis and pore critical temperatures
against the inverse pore radius is shown in figure 14 for several adsorbates. According to
simple theories of adsorption [83] such a plot should be linear, and the results agree with this
prediction within experimental error. The results for(Tc − Tch)/Tc versusd/rp, whered
is the diameter of the adsorbate molecule, for Ar, N2, O2 and C2H4 fall on a single straight
line passing through the origin; the data for CO2 and for C2H4 at rp = 1.4 nm deviate from
this relationship. The shifts in the pore critical temperature are smaller than those for the
hysteresis critical temperature. Also included in figure 14 are four points for(Tc − Tch)/Tc
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versusd/rp for the networked porous materials Vycor and silica gel. The shift in hysteresis
critical temperature for these materials is considerably smaller than for the straight cylindrical
pores of MCM-41. Such a result might be expected, since in MCM-41 as the pore critical
point is approached the molecular correlation length can grow only to the pore diameter in the
radial direction normal to the pore axis. In networked materials, on the other hand, we expect
the correlation length to be able to grow to larger values, on average, so that the depression of
the pore critical point would be less.

A few studies have been reported for silica aerogels. In particular, Chan and colleagues
[389,390] have studied the liquid–vapour transition for4He and for nitrogen in a silica aerogel
having a porosity of 95%, using heat capacity measurements in the case of4He and light
scattering in the case of N2. In spite of the disordered nature of the void spaces, sharp transitions
were seen, with a pore critical temperature that is somewhat below the bulk value. They found
that the coexistence curves were much narrower than those for the bulk fluid. They were able
to determine the critical exponent of equation (16), and found it to beβ = 0.280± 0.05 for
4He andβ = 0.350± 0.05 for nitrogen. These values are consistent with that found for bulk
fluids (β = 0.33), but not with the random-field Ising model [66], for which a value ofβ close
to zero is expected.

In principle, carbon nanotubes also offer an attractive material for fundamental studies
of capillary condensation, since the pores are straight, non-interconnected cylinders with
monodisperse pore size. So far adsorption studies have been limited due to several problems,
including difficulty in obtaining the nanotubes in a sufficiently pure form and strong adsorption
on the outer surfaces [102].

3.2. Theoretical and simulation studies: simple pore geometries

There have been many studies of fluids confined in pores of simple geometry over the last
decade. Here we define ‘simple geometry’ to mean pores of some simple and regular
shape, usually slit-like or cylindrical, although some studies have been reported for pores
of spherical shape. Furthermore, our definition implies that the surfaces are homogeneous
(fluid interactions with the wall are the same for different regions of the wall), the pores are
not interconnected, and are independent in the sense that the adsorbate molecules in a given
pore are unaware of the existence of those in neighbouring pores; the pores all have the same
geometry, although they can differ in pore width.

3.2.1. Macroscopic thermodynamic treatment.For sufficiently large pores it is possible to
use a macroscopic treatment of capillary condensation. For such pores, oscillations in the
density profile due to the fluid–wall forces can be ignored, and the grand free energy can be
written as the sum of a bulk and a surface term,� = −PV + 2γA, as follows from integration
of equation (3) using Euler’s theorem (here we have implicitly assumed a slit geometry, and
the areaA is that of one of the pore walls). By writing equations for the grand free energy of
the confined gas-like and liquid-like phases, assuming that the liquid wets the walls completely
(contact angle is zero), and equating the grand free energies it is possible to derive an equation
for the pressureP at which capillary condensation occurs [82,83,122]:

ln

(
P

P0

)
= − 2γlg

RTρlH
(19)

whereP0 is the saturated vapour pressure of the bulk fluid,γlg is the gas–liquid surface
tension for the bulk fluid,R is the gas constant, andρl is the density of the bulk liquid. This
equation, called the Kelvin equation after its originator, should be valid for large pores and
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for temperatures well below the pore critical temperature. Its derivation is based on several
assumptions: density oscillations due to the walls can be neglected, the system is large enough
that a surface tension can be defined [357], the gas phase can be treated as an ideal gas, the
liquid phase is incompressible, and the surface tension can be taken to be the value for the bulk
fluid at this temperature.

Because the Kelvin equation fails to account for the strong adsorbed layers on the pore
walls, it is common to modify equation (16) by replacing the true pore widthH by some
modified pore width which accounts for the adsorbed layers that form prior to capillary
condensation. Usually this is done by replacingH byH − 2t , wheret is the thickness of the
adsorbed layer on the wall. A systematic treatment of the influence of wetting on corrections to
the Kelvin equation was carried out by Derjaguin [65]. He showed thatH should be replaced
byH −2t only when the solid–fluid forces are exponential or of finite range; when dispersion
forces are present and wetting films developH should be replaced byH−3t ; see the discussion
by [81, 83]. In practice, this thickness is usually estimated from an adsorption isotherm (or
‘ t-curve’) for the adsorbate fluid on a non-porous surface of the same chemical type as the
porous material. In addition, the Kelvin equation can be modified to account for nonideality
of the gas phase, liquid compressibility, and non-zero contact angle.

An estimate of the range of applicability of equation (18) can be obtained by determining
the capillary condensation pressure for suitable model fluid/pore systems, using either DFT
or molecular simulation, and comparing the result with the prediction of the Kelvin equation
or its modified form. Such comparisons for simple models of nitrogen in carbon slit pores
indicate that the Kelvin equation becomes inaccurate for pore sizes below about 7.5 nm [378].
This estimated lower bound to the pore width below which the Kelvin equation breaks down
will depend on the temperature and the material. Nevertheless, the figure of 7.5 nm is in
good general agreement with an estimate of Fisher and Israelachvili [93], which was based on
experimental observations of cyclohexane between mica surfaces in the surface force apparatus.
They concluded that the Kelvin equation broke down for separationsH below 8.0 nm (16
molecular diameters). These estimates are for cases where the liquid completely wets the
surface. When the contact is non-zero (partial wetting) the Kelvin equation may remain
accurate to somewhat smaller pore widths [349]. The Kelvin equation, and its modified
forms, overestimates the capillary condensation pressure for a given pore size; conversely,
it underestimates the pore width corresponding to a given capillary condensation pressure.
These errors become large for small pores, as shown in figure 15 [197]. The modified Kelvin
equation is seen to be in significant error even for pores of 4–5 nm. For pores ofH = 2 nm, use
of the modified Kelvin equation to predict the pore size from a known capillary condensation
pressure is in error by a factor of about 2 for these model carbons. Errors of this magnitude
have also been shown to occur when this equation is applied to realistic models of porous
silica glasses [110]. The non-local form of DFT is in very good agreement with the simulation
results shown in figure 15. Local DFT (not shown) gives capillary condensation pressures that
are somewhat too low [195]. Comparisons of the modified Kelvin equation, and other semi-
empirical approaches, with molecular simulation have also been made for straight cylindrical
pores [197]. The results are similar to those shown in figure 15.

3.2.2. Microscopic treatment: theory and molecular simulation for pure fluids.Work up
to 1990 has been reviewed by Evans [79], and most of what follows focuses on more recent
work. Such studies have often included investigations on heats of adsorption, structure of the
adsorbent, and in some cases solvation forces, as well as capillary condensation. They differ
in (a) the method used, (b) the pore geometry (primarily slit or cylinder), and (c) the use of a
structured versus a structureless wall. The methods used have included DFT, lattice gas model
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Figure 15. Pore filling pressures versus pore width from the Kelvin and modified Kelvin equations,
the Horvath–Kawazoe equation (HK), DFT and molecular simulation (points) for a simple model
of nitrogen adsorption in a slit carbon pore at 77 K. HereH is defined as the distance between
the planes passing through the centres of the carbon atoms making up the first layer of each wall.
The DFT and simulation results show capillary condensation for the larger pores, with continuous
filling at some smaller pore widths. The sharp increase in the curve forH <∼ 7 is due to the
molecular sieving effect. From [197].

calculations [44, 230], integral equation theory [140, 178, 179], and molecular simulation.
These different methods have been found to give similar results for capillary condensation.

In the case of pores of slit geometry with the walls lying in thexy plane, the molecular
correlation length,ξ , can grow to infinity in thex andy directions, although its growth is
limited toH in thez direction normal to the walls. True phase transitions are possible in such
a geometry, and capillary criticality will correspond to the two-dimensional Ising universality
class [79]. Fisher and Nakanishi [94] used scaling arguments to show that for large pores the
decrease in the critical temperature in the pore should obey

1Tc = (Tc − Tcp)/Tc ∝ H−1/ν (largeH) (20)

whereν is the critical exponent for the correlation length, and takes the value 0.63 for bulk
three-dimensional fluids. For small pores [79]

1Tc ∝ H−1 (smallH). (21)

Since the criticality is of the two-dimensional Ising class, we expect the jump in adsorption,
0, due to capillary condensation to vanish as0 ∝ (Tcp − T )β , with β = 1

8 rather than
the bulk three-dimensional value ofβ = 0.32. Even for very strongly attractive adsorbents,
such as carbon, molecular simulations [160] suggest thatβ is very close to the unperturbed
two-dimensional value of18.

Numerous studies of adsorption behaviour and capillary condensation in slit pores have
been reported [10,11,58,79,83,162,195–197,230,254,259,283,311,312,325,328,376,378].
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Calculations of adsorption isotherms for a given pore size bear a qualitative resemblance to
those found experimentally. For mesopores and sub-critical temperatures, as the pressure is
increased layers of adsorbate molecules first form on the walls of the pores, leading to an
initially rapid increase in adsorption. At higher pressures there is a sudden, discontinuous
jump in adsorption, corresponding to the capillary condensation transition [378]. Following
the transition, the pores are filled with a nearly incompressible liquid-like phase, and little
further increase in adsorption is observed on further increasing the pressure. Starting from
such filled pores and decreasing the pressure, capillary evaporation is delayed and occurs
at a lower pressure than that observed for condensation. Such hysteresis effects are due to
metastability. The system becomes trapped in a local minimum in the free energy, and remains
in the metastable state until the pressure has changed sufficiently that the local minimum
disappears or becomes small enough that a small fluctuation in the density is sufficient for the
system to change to the state representing a deeper minimum in the free energy [294]. If such
calculations are repeated at higher temperatures the capillary condensation moves to higher
pressures and the hysteresis loops decrease in size, until they eventually disappear [83, 84].
This adsorption behaviour is similar to that shown by the experimental systems in figure 7,
except that since the pores are monodisperse in these model systems the jumps in adsorption
corresponding to capillary condensation are sharp discontinuities. In addition, the shape of
the hysteresis loops in the model calculations are somewhat different to those observed in
the experiments, being usually more rectangular in form. In the simulations it is possible to
determine the true thermodynamic transition condition by using equations (4) and (5), and the
integration scheme described in section 2.1 [290, 291]. In general, the true phase transition
pressure lies between the adsorption and desorption curves.

For a given adsorbate/adsorbent system at a fixed subcritical temperature, the capillary
condensation pressure is reduced as the pore widthH gets smaller. This is illustrated for a
simple model of nitrogen in a graphitic carbon having slit pores in figure 16. The capillary
critical temperature also decreases as the pore width gets smaller. For sufficiently narrow
pores the sharp capillary condensation transition no longer occurs, and is replaced by a steep
but continuous filling. In the example shown in figure 16 this occurs for a pore widthH ∗

between 3.75 and 4.00. This phenomenon is due to the fact that the pore critical temperature
lies somewhat below 77 K for the pore of width 3.75, but is above 77 K forH ∗ = 4.0. Thus,
the pore width below which continuous filling occurs will depend on the temperature.

From figure 16 it can be noted that the capillary condensation pressure is very sensitive to
the pore width. This observation is the basis of commonly used methods for measurement of
the PSD for porous materials [122]. The usual procedure is to assume the pore structure of the
material can be represented as a collection of non-interconnected pores all of which have the
same geometry (e.g. slit or cylinder) and surface structure, but which can differ in pore width
H , so that the total adsorption0 can be represented by

0 =
∫
ρ(P,H)f (H)dH (22)

whereρ(P,H) is the mean density of fluid in the pore of widthH at pressureP , f (H) is
the PSD, and the integration is carried out over all possible values of the pore width. In early
approaches to determination of the PSD, the Kelvin equation or a modified form of it was used
to determine the relation between capillary condensation pressure and pore size [122]. In such
methods the pore widthH in equation (16) is replaced by(H −nt), wheret is the thickness of
the adsorbed film on the wall andn is 2 or 3, depending on the particular method used [81]. The
film thickness is usually estimated empirically from an adsorption isotherm for a nonporous
sample of the material of interest. Such methods are known to give pore sizes that are too small
for pore widths below 7–10 nm (see figure 15), and more accurate theories for the prediction of
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Figure 16. Adsorption isotherms for a LJ model of nitrogen in slit-shaped graphitic carbon pores
with 10, 4, 3 walls at 77 K, from the Tarazona form of DFT. Reading from left to right, the pore
widths areH ∗ = H/σ =3.75, 4.0, 4.25, 4.5, 5, 6, 8, 14 and 40, whereσ is the LJ diameter of the
N2 molecule. The inset shows the characteristic solid–fluid potential profile for a mesoporous slit.
From [195].

ρ(P,H) have been proposed. Thus, Seatonet al [331] used local DFT to predict this quantity,
while later workers have used either non-local DFT [157,195–197,255,266–269,301,311,320]
or molecular simulation. An example of the application of these methods to determine the PSD
of an activated carbon, CXV, is shown in figure 17; the pores are assumed to be slit shaped.
The use of DFT results in a great improvement in the accuracy of prediction of the adsorption
ρ(P,H) for various pore sizes in equation (21). Moreover, DFT is accurate for pores of
any size, in contrast to the Kelvin-based and other semi-empirical methods, and provides
a good prediction of the entire isotherm (not just the condensation pressure). The principal
problems remaining in such PSD determinations result from the oversimplification represented
by equation (21). In addition, it is usually necessary to use some assumed mathematical form
for the PSD given byf (H) in (21); however, this is not believed to be a major problem provided
that the function assumed for this is sufficiently flexible (e.g. it allows for multiple peaks of
widely varying width).

Using DFT or molecular simulation, it is possible to explore the effects of system variables
on the adsorption behaviour in a systematic manner. For example, Balbuena and Gubbins
[10–12] have used the Tarazona form of DFT to study the effects of varying temperature,
pressure, pore width, and the LJ intermolecular force ratiosσsf /σff andεsf /εff , wheresf
andff refer to solid–fluid and fluid–fluid interactions, respectively, for adsorption into slit
pores. They determine the ranges of these variables for which the adsorption behaviour is
found to be in each of the classes of the IUPAC classification shown in figure 18. Classes IV
and V are of interest here, since the hysteresis loops are a signature of capillary condensation.
The step-wise adsorption shown in class VI indicates adsorption by layers; that is, adsorption
proceeds by completing a given layer before starting the next layer. Such layering transitions
are discussed in section 4.

An example of the results of this classification of adsorption behaviour is shown in
figure 19, which is for the case when the ratioσsf /σff = 0.9462; this ratio corresponds
to the adsorption of methane on graphite, for whichεsf /εff = 0.435. In this figure a class VII
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Figure 17. PSD for an activated carbon, CXV, based on inversion of equation (22) using nitrogen
adsorption data at 77 K over the reduced pressure rangeP/P0 = 0 to 1: solid curve, Tarazona non-
local DFT; dashed curve, local DFT; dotted curve, Kelvin equation; dash-dotted curve, modified
Kelvin equation. From [195].

Figure 18. The six types of adsorption isotherm
according to the 1985 IUPAC classification. From
[333].
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Figure 19. Classification of adsorption isotherms for slit pores forσsf /σff = 0.9462: (a) T ∗ =
kT /ε = 0.5; (b) T ∗ = 0.8; (c) T ∗ = 1.4, from DFT. The lines in the figure are approximate
and refer to qualitative changes in the adsorption behaviour. Subscript f means ‘finite’, i.e. the
adsorption remains finite asP → P0 (T is below the wetting temperature). Superscript sc means
‘supercritical’ (T is above the pore critical temperature). From [11].

has been added to the empirical classification of figure 18; class VII is similar to V, but because
the solid–fluid interaction is very weak compared with the fluid–fluid one, and the temperature
is relatively high, condensation does not occur untilP/P0 > 1, i.e., the pressure is greater than
the bulk vapour pressure, a phenomenon referred to ascapillary evaporation. Subscript f on
the classes in figure 19 indicates that the adsorption remains finite atP/P0 = 1, in contrast to
adsorption on single surfaces above the wetting temperature. As with the adsorption results,
it is possible to classify capillary condensation (and layering transition) behaviour in terms of
these independent variables [10, 11]. An example of these results is shown in figure 20. A
similar classification of adsorption and capillary condensation behaviour has been made for
pores of cylindrical geometry [12].

Turning from slit to cylindrical pores, we can recognize two main differences. First,
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Figure 20. Phase coexistence envelopes for capillary condensation (cc) and first (first LT)
and second (second LT) layering transitions for potential parameters corresponding to the
methane/carbon system from DFT. Results for pore widthsH ∗ = 2.5, 5.0 and 10.0 are shown.
Dashed curves are a rough estimate of the pore critical region. The abscissa is the reduced density
in the pore,ρ∗‘p = ρ′pσ 3

ff , whereρ′p is the number density excluding the dead space (thickness
0.7σff ) near the walls. From [11].

because the fluid is now confined in two dimensions rather than one, the confinement effects
are greater. Thus, we observe capillary condensation at lower pressures, and the lowering of
the critical temperature is greater than for slit pores of the same width. Second, for narrow
cylindrical pores the system approaches a one-dimensional system, and so cannot exhibit true
phase transitions at temperatures above 0 K. Any first-order phase transition in a cylinder must
be rounded by finite-size effects [300]. A rough estimate for the effect of rounding on the
chemical potential shows [78, 79] that the change inµ scales as exp[−(R/σ)2], whereR is
the radius of the cylinder andσ is the diameter of the confined fluid molecule. Thus, even for
(R/σ) = 2.5 the rounding is small, and the capillary condensation transition appears sharp in
both simulations and DFT calculations [83, 291]. A second consequence of these finite-size
effects is that, because of the finite surface area of the gas–liquid interface in a cylinder, we
do not observe single domains of ‘gas’ and ‘liquid’ phase in the cylinder, but rather a series of
alternating domains of each phase [300]. The average length of these domains depends on the
specific system, the pore diameter and the temperature, becoming shorter for small diameter
pores and for temperatures approaching the pore critical value. Such alternating domains have
been observed in simulations of long cylindrical pores for both capillary condensation [138]
and liquid–liquid equilibria [106]. Typical results for the average domain length are shown in
figure 43; it is seen that, except near the pore critical temperature, the average domain length
is quite large, often thousands of nanometres or more, so that it is reasonable to talk of these
domains as microphases.
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Numerous studies of capillary condensation have been reported for straight cylindrical
pores [12, 14, 83, 137, 138, 283, 290, 291, 293, 294, 302, 376]. For a given pore diameter the
intermolecular potential experienced by an adsorbate molecule due to the walls has a deeper
well than for a slit of the same width, so that capillary condensation occurs at lower pressures.
In addition, the mean density of adsorbate in the filled pore is generally lower for cylinders, a
result of packing considerations [12]. Of particular interest is the approach to one-dimensional
behaviour in narrow cylinders [291,302].

Pores of other regular geometries have been studied, including spheres [118, 391] as an
approximate model of some zeolite cavities, and pores of square [33] and triangular [35]
cross-section.

The hysteresis associated with capillary condensation has been studied by several methods.
Early studies were carried out by mean field DFT and GCMC simulations [83,84,294] for both
slit and cylindrical pores. As the chemical potential (bulk gas pressure) is gradually increased
the adsorbed phase remains in the gas-like state for some distance beyond the point of true
thermodynamic transition. This is because the system remains in a local minimum in the grand
free energy that corresponds to the gas-like state; only when the barrier separating this local
minimum from the global one becomes very small does the system exhibit condensation [294].
A similar phenomenon occurs on desorption, with the system persisting in the liquid state at
chemical potentials (pressures) below the true equilibrium value. Such metastability is similar
to that found in bulk liquids in the gas–liquid coexistence region, but is more pronounced
in confined systems. However, neither DFT nor GCMC calculations allow the presence
of both gas-like and liquid phases simultaneously, so that it is not possible to observe the
influence of a meniscus. This problem is not present in molecular dynamics or canonical
Monte Carlo, where the phase change can be effected by changing the overall density of the
confined fluid. Molecular dynamics calculations [138] have been used to observe the interface
between the coexisting phases, and its influence on hysteresis, for cylindrical pores of infinite
length. Calculations for pores having open ends, using both a lattice gas model and canonical
Monte Carlo simulations, allow the formation and disappearance of menisci at the open end
of the pore, and have shown [230,283] that this effect has a large influence on the width of the
hysteresis loops. Open-ended tubes of finite length also result in end effects (the net adsorbate-
wall interaction is reduced near the tube ends) that can significantly reduce the width of the
hysteresis loop [224]. Additional effects that influence hysteresis, due to pore networking and
tortuosity, are discussed in section 3.2.3.

For the most part, the studies described above have been of a general nature. However,
several attempts have been made to model capillary condensation in simple geometries for
specific systems, and in some cases to make direct comparison with experiment. Examples
include investigations of krypton [254], nitrogen [259], methane [162,312] and water [362] in
graphitic carbons; argon and nitrogen in MCM-41 [222,254,311]; argon in an alumina-pillared
clay [56]; and argon and nitrogen in carbon buckytubes [224]. Using a lattice gas model, Cole
et al [54] have studied condensation of4He in carbon nanotube bundles.

3.2.3. Microscopic treatment: theory and molecular simulation for mixtures.Several studies
have been made for simple mixtures in cylindrical [135, 136, 347] and slit [57, 58, 161, 346]
pores. The total adsorption isotherms display capillary condensation at pressures that are
usually below the bulk vapour pressure for the mixture, as for pure fluids. The essential new
feature for mixtures is the change in composition due to confinement. Results for a model
of an argon(1)/krypton(2) mixture in a cylindrical carbon dioxide pore [136] are shown in
figure 21. The LJ model was used for the fluid–fluid and fluid–solid interactions, and the
solid was treated as a structureless continuum. The results forR∗ = ∞ show the gas–liquid
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Figure 21. Mole fractions for coexisting gas (y1) and liquid
(x1) phases for a LJ model of argon(1)/krypton(2) mixtures
in a cylindrical CO2 pore. The upper figure is for a pore
of radiusR∗ = R/σ1 = 5 at T ∗ = kT /ε1 = 0.7, and
the lower one is forR∗ = 2.5, T ∗ = 0.6. The horizontal
axis is the mole fraction of argon in the bulk gas phase,yb1,
that coexists with the pore. The dotted (R∗ = ∞, bulk
system) and dashed curves denote local mean field results,
while the filled circles and the solid lines drawn through them
are molecular dynamics simulation results for the pore. Mole
fractions are averaged over the pore width; in the case of the
bulk system,x1 andy1 denotexb1 andyb1. From [136].

coexistence for the bulk mixture, as predicted by the local form of DFT. The confined mixture
shows a marked increase in the krypton mole fraction for the gas phase, a result of the stronger
attraction of krypton to the walls. This effect is much smaller for the confined liquid phase,
so that the difference in composition for the confined gas and liquid phases is much smaller
than for the corresponding bulk phases. Agreement between the local DFT and molecular
simulation results is only qualitative, since the local theory fails to describe the strong density
oscillations of the adsorbate near the walls.

The change in composition of the confined phase is often expressed as a selectivity,S,
defined by

S2 = xp2/xpl

yb2/ybl
(23)

wherexpi is the average mole fraction of componenti in the pore andybi is the corresponding
mole fraction ofi in the coexisting bulk phase. Results for the selectivity for ethane for a LJ
model mixture of methane(1) and ethane(2) in a slit carbon pore with (10, 4, 3) walls are shown
in figure 22. Calculations were based on an extension to mixtures [347] of the Tarazona form
of DFT. For the larger pore sizes shown the temperature chosen lies above the pore critical
temperature,Tcp, but is belowTcp for the smaller pore widths. The vertical jump inS at
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Figure 22. Selectivity for ethane ver-
sus pore width, H ∗ = H/σ11, for
methane(1)/ethane(2) mixtures in a slit carbon
pore, atT ∗ = kT /ε11 = 1.5, yb1 = 0.5.
Results are shown for two pressures,P ∗ =
Pσ 3

11/ε11 = 0.1 (solid curve) and 0.2 (dashed
curve). Vertical jumps are due to capillary con-
densation. From [346].

Figure 23. Selectivity isotherms for the same
system as in figure 22, forH ∗ = 8 and
yb1 = 0.5, for a range of temperatures. From
[346].

H = Hcc indicates the capillary condensation transition. ForH < Hcc the pore is filled with a
liquid-like phase, while forH > Hcc it is filled with a gas-like phase. The strong oscillations
in S, asH is varied when the pore is filled with liquid results from the layered structure of the
adsorbed phase; asH is decreased sudden changes in the average density occur at particular
pore widths where a whole layer of molecules is squeezed out of the pore.

The effects of temperature and pressure on the selectivity for this system are shown in
figure 23. The vertical jumps in selectivity at the lower temperature results from capillary
condensation. As a result of these and similar calculations, Tan and Gubbins [346] have
proposed the classification of selectivity isotherms shown in figure 24. Class I is found at
temperatures well aboveTcp. The increase inS at low pressure results from the stronger
fluid–fluid attraction between ethane molecules relative to methane. Class II corresponds to
temperatures slightly aboveTcp. A second maximum inS appears as the result of a buildup of
multiple adsorbed layers, a precursor to capillary condensation. Class III occurs at temperatures
somewhat belowTcp, and exhibits capillary condensation. For temperatures well belowTcp,
layering transitions can occur in addition to capillary condensation, leading to selectivity
isotherms of class IV.

Cracknell et al [57] have also carried out GCMC simulations of the adsorption of
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Figure 24. Classification of selectivity isotherms for mixtures
in pores. From [346].

methane/ethane mixtures in graphitic slit pores. Their simulations were in qualitative, rather
than quantitative, agreement with the DFT results of figures 22 and 23.

3.3. Theoretical and simulation studies: complex pore geometries

While of intrinsic scientific interest, the results for idealized pore geometries described in the
previous section are not easily related to experimental results for real materials. In particular,
they omit several complicating factors such as various kinds of pore heterogeneity. Among
these factors are inter-pore correlation effects, surface chemical heterogeneity, variations in
pore geometry, networking of pores, etc. Recent work has moved to address some of these
factors, although direct comparisons with experimental data for amorphous materials are still
fraught with difficulty.

3.3.1. Pore–pore correlation effects.For materials with closely spaced pores, inter-pore
adsorbate interactions might have a significant effect on phase changes. In particular, for
sufficiently narrow cylindrical pores the adsorbate molecules should form a one-dimensional
system for a single pore. Molecular simulations and theoretical calculations [291, 302] have
shown near one-dimensional behaviour in such single pores, and as expected, no phase
transition occurs forT > 0 K. Some aluminophosphates and aluminosilicates have nearly
cylindrical pores so that for appropriately sized adsorbates we expect no transition. However,
in cases where the pores are closely spaced we might anticipate that pore–pore correlations
would lead to a transition of the gas–liquid type at low temperatures. Such a transition has been
observed using molecular simulations by Radhakrishnan and Gubbins [302] for a LJ model
of methane in an array of cylindrical pores whose diameter was chosen to be that of AlPO4-5,
an aluminophosphate whose pores have a diameter which is just sufficient to accommodate
a line of such methane molecules. When the pores are placed close together in a hexagonal
array a phase transition was observed from a gas-like to a liquid-like phase at temperatures
below about 52 K. This phase change occurs below the temperature at which the correlation
length grows to about the inter-pore separation distance. Such pore–pore correlation effects are
expected to be larger for strongly dipolar fluids, such as water, ammonia and methyl fluoride,
and the resulting phase separation should occur at higher temperatures and be more easily
observed for such systems.

Saravanan and Auerbach [322] have used lattice GCMC simulations to show that a
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Figure 25. Temperature–density phase diagram for slit pore of widthH = 5σ with chemically
heterogeneous walls consisting of alternating strips of strongly and weakly attractive regions (see
text for details). Solid curves denote phase diagram for the heterogeneous walls, dotted curves
are for smooth homogeneous walls with potentialV0(z): (a) d = 20σ ; (b) d = 11σ . Hered is
the corrugation period for the heterogeneous walls; g, b and l denote ‘gas’, ‘bridging’ and ‘liquid’
phases, respectively. From [314].

transition from a gas-like to a liquid-like phase occurs for benzene in Na–X zeolite due to
adsorbate–adsorbate correlations between neighbouring cages of the zeolite. This transition
occurs at ambient temperatures, and is consistent with NMR results for this system. Cole
et al [54], using the quantum lattice gas approach, have recently shown that condensation
occurs for4He adsorbed into the interstitial channels within a bundle of carbon nanotubes due
to pore–pore correlation effects between4He atoms in neighbouring channels. They predict a
highly anisotropic quasi-one-dimensional condensed phase having a pore critical temperature
of about 0.3 K.

3.3.2. Chemically heterogeneous surfaces.Most studies of the influence of chemical
heterogeneity have been for slit-shaped pores, and these can be divided into two types. In
the first, the pore surface is divided into strips of strongly and weakly attractive regions
[32, 51, 314, 315, 326, 327, 372]. In the second, individual chemical groups are attached to
the planar surface [224, 234, 247–249, 360, 369, 370, 372, 374]. For the case of chemically
striped surfaces, the behaviour depends strongly on the ratiod/H , whered is the width of the
stripe andH is the pore width. For individual groups on the surface the corresponding variable
isn/H , wheren is the site density on the surface. Whend/H orn/H are sufficiently small the
behaviour is qualitatively similar to that for homogeneous walls, since the effects of surface
heterogeneity are not felt far from the walls. Whend/H or n/H are large the behaviour
is similar to that of a collection of independent pores of various widths or fluid–adsorbate
interactions. Intermediate cases between these two extremes are of particular interest. In
addition to these studies for slit pores, Segarra and Glandt [332] have studied a model of
water on activated carbons in which the carbon is modelled as made up of randomly oriented
platelets of graphite with a dipole distributed uniformly over the edge of the platelets to mimic
the activation.

Striped surfaces have been investigated using mean field Ising lattice models [32,315], non-
local DFT [51, 314] and GCMC simulation [327, 328, 372]. Although the interaction models
are somewhat different in these various cases, the resulting phase diagrams are qualitatively
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Figure 26. Density profile for a ‘bridge’ state for a slit pore of widthH = 7.2σ atT ∗ = kT /ε =
1.00, µ∗ = µ/ε = −11.50, from GCMC simulations. The strongly attractive wall strip lies
betweenx = −2σ and +2σ . From [32].

similar. Typical results for a slit pore of widthH = 5σ (whereσ is the diameter of the
adsorbate molecule) for two intermediate values ofd/H are shown in figure 25. For these
cases the fluid–wall potential was periodic in thex direction, and of the form

V (r) = V0(z) +A(z) cos(2πx/d) (24)

whereV0(z) is the mean strength of the potential,z is the direction normal to the walls,d
is the period of the fluid–solid potential corrugation, andV0 andA are given by Yukawa
potentials. Ford = 20σ two coexistence regions are seen, each with its own critical point.
At the lower densities, the coexistence is between a gas-like state (g) and a state (b) in which
liquid ‘bridges’ have formed between the strongly attractive regions of the surfaces of the two
walls of the pore; successive bridges of liquid are separated by gas-like regions that cover
the less strongly attractive wall areas. At the higher densities there is a coexistence between
the ‘bridge’ state and a state in which the pore is filled with a liquid-like phase (l). Such
behaviour is expected whend/H is relatively large. For the smaller value,d = 11σ , these two
coexistence regions merge at the lower temperatures, where coexistence is between the gas
and liquid phases, but remain separated at higher temperatures. These two temperature regions
are divided by a triple point, at which all three phases (g, b, l) are in coexistence. On further
reducing the value ofd, the triple-point temperature increases, and the triple point disappears
at a value betweend = 8σ and 9σ . Typical density profiles for the bridge state are shown in
figure 26, taken from the work of [32]. These results are obtained from GCMC simulations
for a wall model in which the fluid–solid interaction is the LJ model, and consists of strips of
strongly attractive (s) and weakly attractive (w) regions. The strongly attractive strips are of
width ds = 4σ , while the weakly attractive strips have a widthdw = 8σ .

Surfaces with individual chemical groups have been studied by lattice gas models [360].
GCMC simulations have been reported for water [224, 234, 247, 248], methane [372] and for
associating chain molecules [249, 369, 370] adsorbed on model activated carbons composed
of slit pores in which the surfaces are decorated with chemical groups. In the case of water
and associating chains, these groups can hydrogen bond to the adsorbate molecules. For water
it is found that if the site density is low enough the adsorption is similar to that in graphitic
pores [248, 362]. That is, almost no adsorption occurs at low to moderate relative pressures,
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but this is followed by capillary condensation. As the surface density of sites increases more
adsorption occurs at low pressures, and the pore filling moves to lower pressures. At these
higher site densities the pore filling ceases to be via a sharp phase transition, and occurs
continuously. Examination of snapshots of the adsorption at increasing pressures shows that
water molecules first adsorb singly on the surface sites, and these adsorbed molecules form
adsorption sites for further water molecules to hydrogen bond to. Thus water clusters are
formed around surface sites, and these grow until eventually they link up with other clusters on
the same wall, or with clusters on the opposing wall in narrow pores. This filling mechanism
is quite different to that for simple fluids on homogeneous pore walls, where the filling occurs
a layer at a time followed by capillary condensation.

3.3.3. Geometric heterogeneity.Geometric heterogeneity can take a variety of forms. For
example, the effects of surface irregularities in the pore walls, networking and interconnections
among pores of the same or different size and geometry, and disordered pore structures such
as those in aerogels are all of interest.

Surface irregularity. Adsorption in slit pores in which the surfaces have a step (raised region),
and in which the steps are in registry for the two walls, have been studied using the non-local
DFT of Tarazona by Chmielet al [51]. The behaviour is dependent on the lengths of the
step compared with the remainder of the surface, and on the step height relative to the pore
widthH , but is in many respects similar to that for the chemically striped surfaces considered
in section 3.3.2. When the step height is appreciable compared with the pore width two
capillary condensation transitions occur at a particular temperature, the one at lower pressures
corresponding to the formation of a ‘bridge’ phase in which a liquid-like layer forms in the
narrower part of the pore, and the one at higher pressure corresponding to the pore being
filled with a liquid-like phase (cf figures 25 and 26). Related studies for stepped surfaces
have been reported by Tovbin and Votyakov [360] using lattice-gas theory. Maddox and co-
workers [221, 223] have studied the case of two narrow slit pores, open at one end to a bulk
gas phase, and separated by a larger pore. The behaviour in this case depends strongly on
the relative widths of the two pores. Curryet al [61] studied a slit pore in which each of the
walls had a fcc(100) structure, and one of the walls was smooth while the other had a stepped
surface; depending on the registry of the two walls, the confined phase may be fluid or solid.
While adsorption on single walls composed of randomly packed spheres (the Bernal model)
has been studied [47], there does not seem to have been a systematic study for pores for this
model. Vishnyakovet al [372] have studied capillary condensation for methane in slit pore
models of coal in which the surfaces are geometrically structured.

Networked structures. So far we have considered only materials in which the pores are
independent, each connected through their open end to the bulk fluid phase with which they are
in equilibrium. In such systems the adsorbate molecules in a given pore are usually unaware of
the existence of adsorbate in neighbouring pores. However, most amorphous porous materials
have pores that are interconnected; moreover the pores may be tortuous and of varying size. It
has long been suspected that such connectivity of pores and size variation may have an important
effect on the adsorption behaviour, and particularly on capillary condensation. Thus, pores
of larger width may be connected to the bulk phase only through narrower pores or necks; in
such cases, once the pore structure is filled with a liquid-like phase, it will be difficult for such
larger pores to empty since molecules must diffuse through the liquid-like phase that still fills
the smaller pore regions (‘pore blocking’). In addition, near pore connection points, as the



1610 L D Gelb et al

Figure 27. Adsorption isotherms for xenon in Vycor glass, calculated from (a) the independent
single-pore model, (b) the network model of Mason, atT = 0.63Tc, whereTc is the bulk critical
temperature of xenon. From [14].

pore critical point is approached by raising the temperature the correlation length can grow to
lengths greater than the pore width, and this could have a significant effect on the location of
the pore critical point. Possible evidence for this is seen in figure 14, where the lowering of the
pore critical temperature for simple adsorbates in Vycor and silica gel, which have networked
pores, is smaller than for MCM-41, which has straight pores which are not interconnected.

The effects of networking on the adsorption of simple fluids in Vycor and CPGs have been
considered by several authors. Ball and Evans [14] used local DFT to study the adsorption
of xenon in Vycor glass for two models: (a) a collection of independent single cylindrical
pores, each open to the bulk phase, and (b) an interconnected network of such pores. Yukawa
potentials were used for the intermolecular interactions, and the PSD was assumed to be given
by a Gaussian distribution, with parameters appropriate for Vycor. In order to account for
networking in model (b) Ball and Evans used a theory due to Mason [231,232], in which pores
are interconnected via ‘windows’ or necks. Application of Mason’s model requires knowledge
or assumption of the distribution of pore and neck sizes, and the connectivityC, defined as the
average number of necks connected to a given pore. In Mason’s model adsorption is assumed
to be unhindered, but desorption cannot occur until the pressure falls to a value where the
menisci can pass through the necks. This pressure is calculated using the local DFT, andC is
taken to be 4. Mason’s model leads to hysteresis due to pore blocking, even when adsorption
is reversible in a single pore. Typical results from these independent pore and network models
are shown in figure 27. The two models give noticeably different shapes for the hysteresis
loops, the network model giving a sharper drop in adsorption, as is observed in the experiments
(see figure 7(a)). The horizontal region at high pressure and the sharp ‘knee’ in the desorption
curve are artifacts of the network model. The temperature dependence of these isotherms show
that the size of the hysteresis loops decreases with increasing temperature, disappearing at the
highest temperature studied,T/Tc = 0.94, for both models, in agreement with experiment. In
the case of the network model the width of the loops remains constant up toT/Tc = 0.87 in
contrast to the experimental findings; again this is an artifact of the network model.

A more realistic model of Vycor and CPG glasses has been developed by Gelb and
Gubbins [109] by mimicking the spinodal decomposition manufacturing process for these
glasses using quench molecular dynamics simulation. Such glasses are prepared by heating a
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Figure 28. Preparation of model porous glasses. Quench molecular dynamic simulations for a
binary mixture (top) produce a networked structure. Snapshots taken at later stages in the phase
separation are made into porous samples (bottom, shown in cutaway view) by removing one of the
phases. Pore size increases with time after quench. Simulation time is given in reduced unitsτ (τ
is equivalent to 0.781 ps). From [110].

suitable mixture of oxides (typically 62.7% SiO2, 26.9% B2O3, 6.6% Na2O and 3.5% Al2O3

in the case of Vycor) to about 1200◦C, where it forms a homogeneous liquid mixture, and
then quenching it to an intermediate temperature of about 700◦C, where it phase separates
on a microscopic scale into two continuous phases, one rich in silica and the other rich in the
other oxides. The mixed oxide phase forms a network structure of winding cylinders, whose
diameter grows with time. By controlling the time at this intermediate temperature it is possible
to control the diameter of the cylinders. When the desired diameter is reached the mixture
is quenched to room temperature and the mixed-oxide phase is removed by treatment with a
hot acid solution, leaving a porous glass that is 96% silica. This phase separation process is
relatively insensitive to the intermolecular potentials used. Gelb and Gubbins use a symmetric
LJ binary mixture in which the like pair interactions are the same for the two species, i.e.
ε11 = ε22 = ε andσ11 = σ22 = σ , but the unlike pair attraction is weak,ε12 = 0.25ε
(σ12 = σ ). Such a mixture has a liquid–liquid coexistence region which is symmetrical, with
the critical mixing composition atx1 = 0.5. Provided that the composition is not very dilute
in one of the components, quenching this mixture into the spinodal region leads to phase
splitting to produce locally tubular phases whose diameter grow with time. Following the
quench, one phase can be removed and the resulting porous structure relaxed or annealed.
Pore size is controlled by varying the length of the quench period; porosity can be controlled
by varying the initial composition. Such simulated glass structures closely resemble those
obtained experimentally in appearance, surface area, connectivity and porosity. Snapshots of
this procedure for preparing model porous glasses are shown in figure 28 for several stages of
the quench process; hereτ = (ε/mσ 2)0.5t is the reduced time, and corresponds to 0.781 ps.
In these simulations the sides of the simulation box were each 27 nm in length, and the cell
contained 868 000 atoms initially with a mole fraction ofX = 0.7, so that the porosity of the
glasses formed was close to 30%. The pore volume in these glasses is fully connected.

Porous glasses generated in this way are precisely characterized, since we know the
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Figure 29. Adsorption isotherms for a model
of nitrogen in the model glasses depicted in
figure 28, at 77 K. Adsorption data are shown
as circles; desorption data, shown only for the
A and D glass samples, are shown as squares.
The isotherms are vertically displaced for
clarity, and lines are a guide to the eye.
Uncertainties in the data are smaller than the
symbols. Glasses A, B, C and D had average
pore sizes of approximately 3.3, 3.9, 4.5 and
5.0 nm; all glasses had a porosity very close
to 30%. From [110].

position of all solid atoms, and hence the surface area, PSD, porosity, connectivity, etc. In view
of this, together with the fact that they appear to be realistic representations of the morphology
of real CPG and Vycor glasses, they provide ideal systems on which to test commonly used
characterization methods. In such calculations the LJ parameters for the substrate atoms are
set equal toσ = 0.27 nm,ε/k = 230 K, the values used to represent bridging oxygen atoms in
silica [222]. Simulations of nitrogen adsorption in these glasses provide nitrogen adsorption
isotherms (figure 29), which can be analysed by standard methods [122] to estimate the surface
area, PSD and porosity. The accuracy of these conventional methods can be rigorously tested
by comparison of such estimates with the exact values. Tests of this sort have been made
for the BET (Brunauer–Emmett–Teller) method for determining surface area [109] and the
BJH (Barrett–Joyner–Halenda) method for obtaining the PSD [110]. For the BET method,
the estimates of surface area are found to be accurate for large mesopores (pore diameters
down to about 5 nm), but corrections become significant for smaller pores, with the BET
method overestimating the surface area by as much as 20–25% for pore diameters of 2 nm.
The principal source of error in the BET method arises because the monolayer density for
cylindrical pores is generally higher than that for a planar surface; the latter value is commonly
used in applying the BET method to obtain surface areas. The BJH method for the PSD relies
on the modified Kelvin equation, and so is expected to give pore diameters that are too small,
based on previous tests for the independent straight cylinder model (see figure 15). This is
confirmed by tests for the more realistic glass model of figure 28. Typical results for the
PSD are shown in figure 30. The BJH method predicts PSDs which are narrower and have
maximum pore diameters that are about 1 nm smaller than the exactly known geometric PSDs.
This error is believed to be due to a combination of factors: (a) errors in using the modified
Kelvin equation for small pores (figure 15); (b) the use of the independent cylinder model in
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Figure 30. PSDs from geometric analysis using spherical probes (solid curves), together with PSD
estimates from BJH analysis (dashed curves) of the nitrogen adsorption isotherms of figure 29.
From [110].

BJH, which fails to include pore tortuosity, surface irregularities and networking effects; and
(c) the use of a standard reference isotherm for a planar surface, which underestimates the
density of the adsorbed layers.

These model glasses have also been used to study the adsorption and capillary condensation
of xenon [111]. Some typical results are shown in figure 31, together with results for the
independent straight cylinder model, and experimental results for Xe in Vycor [46]. Direct
comparison of the simulation results with the experimental ones is complicated by the fact
that the average pore size and porosity are not accurately known for the experimental glass.
However, it is clear that for the independent cylinder model the shape of the hysteresis loops,
and also the shape of the isotherm at low pressure, are both incorrect. For the more realistic
glass model of figure 28 the isotherms are qualitatively very similar to the experimental ones.
Slight adjustments to the mean pore size and porosity in the model calculations would bring
the two sets of results into quantitative agreement.

Cracknellet al [56] have used molecular simulation to study capillary condensation as a
function of pillar density in model pillared clays (consisting of slit pores in which the walls are
spanned by cylindrical pillars placed on a hexagonal close-packed lattice). They find that below
a critical pillar density capillary condensation occurs. The capillary condensation pressures
are below those for the slit pores, due to the increased confinement.

Disordered (random) porous media.Many porous materials, particularly oxides such as
silica, alumina, titania, zirconia, thoria and ceria, are formed from colloidal suspensions by
aggregation and suspension [155,306,307,363]. They are composed of microscopic particles
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Figure 31. Adsorption isotherms for xenon in Vycor
glass: (a) molecular simulations for the independent
cylindrical pore model, pore diameter 5.1 nm; (b)
simulation results for the glass model of figure 28,
mean pore size 4.6 nm, porosity 30%; (c) experimental
results of Burgesset al [46]. From [111].

that are interlinked in a random network. These particles have sizes that range from about 2
to 100 nm, and are often of spherical or cubic shape, but may also be in the form of rods or
platelets [306]. Such materials have often been modelled as a rigid matrix of solid spheres
(‘cannonball solid’), usually randomly arranged. Some of the possible variations on such a
model are shown in figure 32 [284]. Models (a) and (b) differ at higher porosities in that some
unconnected spheres can occur in (a), as shown by the sphere labelled 1, but not in (b). While
model (b) is probably the most realistic representation of this kind of disordered media, models
(c) and (d) are often easier to study theoretically. MacElroy and co-workers [210,211,284] have
developed models of this type for silica xerogels with solid spheres having a diameter of 2.4–
2.8 nm. Silica spheres were generated using Monte Carlo simulations and a quench procedure,
coupled with intermolecular interactions which included both pair and three-body potentials
with parameters proposed by Feuston and Garofalini [89]. Connected matrix structures, such
as (b) and (d) in figure 32, can be formed by starting with a randomly close-packed assembly
of hard spheres with porosity of 0.367; such an assembly is assumed to be fully connected.
Spheres are then randomly removed to get the desired porosity, with subsequent scanning
to check that remaining spheres are all connected. Random structures such as (a) and (c) in
figure 32 can be generated by carrying out a Monte Carlo run to generate a random configuration
for hard spheres. The desired porosity is obtained by setting an appropriate lattice spacing
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Figure 32. ‘Cannonball’ models for a disordered porous medium: (a) random overlapping spheres;
(b) randomly connected overlapping spheres; (c) random non-overlapping spheres; (d) randomly
connected non-overlapping spheres. Shaded regions are the solid matrix, the small solid circles
represent a fluid molecule moving through the void space. From [284].

in the initial fcc lattice. MacElroy and co-workers used these structures to study adsorption
and diffusion of methane in a silica xerogel. They found good agreement with experimental
data using the more realistic connected model, (d) of figure 32. Connectivity of the spheres
forming the matrix was found to have a pronounced effect on the diffusion rates. However,
they did not determine phase diagrams for capillary condensation.

Capillary condensation in such matrices has been studied by both theoretical and
simulation methods. Monson and co-workers [164–166, 274, 323] have used GCMC
simulations to study a simplified version of the system used by MacElroy and Raghavan [211] to
investigate methane in silica. In the work of Monsonet al the matrix was one of random non-
overlapping spheres, and the fluid–solid interaction was averaged over the atomic structure
of the surface, to give the analogue of the (9, 3) potential model for planar surfaces. They
found [274, 323] that the coexistence curve for capillary condensation, as determined from
the simulations by thermodynamic integration (see section 2.1), is much narrower than for the
bulk fluid, and that the pore critical point moves to lower temperatures and higher densities,
in agreement with experimental findings (figure 33). They also find that at low temperatures
a second transition occurs, from a low-density gas-like phase to a phase of moderate density.
This second transition is associated with the wetting behaviour of the fluid in regions of
the solid matrix where the spheres are more densely packed, and involves high-density fluid
permeating these more confined regions. The effect of varying the strength of the attractive
fluid–solid forces on the coexistence curve was also studied [274]. It was found that the form
of the coexistence curves was sensitive to this variation. Adsorption isotherms [323] showed
hystersis loops that were qualitatively in agreement with experiment for this system. Sarkisov
et alhave also obtained the coexistence curve for a matrix of spheres placed on a fcc lattice, and
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Figure 33. Temperature-density phase diagrams for a LJ fluid in a solid made up of a matrix of
spheres. The coexistence curve for the bulk fluid is shown as the solid curve. Filled circles are the
results for the random array of non-overlapping spheres, with a sphere density corresponding to a
silica xerogel, and a fluid modelled on methane. Open circles are for an ordered fcc matrix. Here
T ∗ = kT /ε andρ∗ = ρσ 3, whereε andσ are the fluid–fluid LJ parameters; (1−η) is the porosity,
with η being the fraction of the volume occupied by the solid spheres. From [323].

these results are also included in figure 33. This latter coexistence curve is quite different from
that for the random matrix, being similar to the bulk coexistence curve, but shifted to lower
temperatures; it does not show the second low-density transition. Evidently this transition
arises from the spatial variation of the density of solid spheres, and hence of the porosity.

The simulation results for these disordered porous media should be treated with caution,
since the systems studied are not large enough to represent a truly random sample, and are
periodic at the length scale of the simulation box. Several recent studies [5, 40, 76], using
larger systems and in some cases [76] histogram re-weighting, have shown that the resulting
phase diagram is highly sensitive to the particular configuration used for the solid particles.

It is interesting to note that Bryket al [45] have found similar phase diagrams to that shown
in figure 33 for a LJ fluid adsorbed in a system of semi-permeable walls. Their investigation
is based on the Kierlik–Rosinberg form of density functional theory. For intermediate and
low potential barriers separating the pores, coexistence curves exhibit two critical points and
a triple point, similar to that shown in figure 25(b). The two parts of the coexistence curves
correspond to condensation in the pore and in the semi-permeable walls.

A variety of approaches from liquid-state statistical mechanics have been applied to
disordered porous materials of this kind. The system can be treated as a so-called ‘quenched-
annealed’ binary mixture, in which the solid matrix of spheres is the ‘quenched’ component
whose configuration is obtained by sampling from an appropriate equilibrium ensemble,
while the second component is the fluid adsorbed into the matrix [316]. Madden and
Glandt [218] worked out the statistical mechanics of such a system, including the appropriate
cluster expansions and Ornstein–Zernike equations that relate the various total and direct
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correlation functions. Givens and Stell [113, 115] subsequently showed that the Ornstein–
Zernike equations given by Madden and Glandt were only approximate, and derived exact
equations. These derivations relied on the ‘replica method’, which exploits a mathematical
isomorphism between a partly quenched system and a limiting case of a corresponding
equilibrium system, called thereplicatedsystem. The resulting Ornstein–Zernike relations
are a set of coupled integral equations involving correlation functions for the matrix–matrix,
matrix–fluid and fluid–fluid structure, and are known as the replica symmetric Ornstein–
Zernike (RSOZ) equations. A range of approximate methods based on liquid-state theory have
been explored using the replica method [114, 172–174, 205, 289, 298, 299, 317, 361]. Several
of these methods have been used to determine temperature-density coexistence curves for such
systems [172–174, 299]. The results are sensitive to the closure relation used in conjunction
with the RSOZ equations. The most realistic of these calculations to date appear to be those
based on a quench-annealed lattice gas model, solved using the mean spherical approximation
as closure of the RSOZ equations [173,174]. This model produces gas–liquid phase envelopes
in which the critical temperature is lowered and the critical density raised relative to the bulk,
as in the experiments and simulations. For relatively high densities of matrix particles, and
sufficiently strong attraction between the fluid molecules and the matrix particles, a second
pre-condensation transition is observed at low temperatures that is similar to that shown in the
simulation results of figure 33. However, the calculated results, particularly those for the pre-
condensation transition, are sensitive to the lattice used and the thermodynamic route chosen
(e.g. ‘compressibility’ versus ‘energy’ routes).

4. Layering transitions

At relatively low temperatures, adsorption isotherms on smooth surfaces can show step-wise
behaviour, which is generally interpreted as layer-wise adsorption. In these situations, the
adsorbing gas prefers to complete each successive monolayer before beginning the next one.
In addition, the steps in these isotherms are often quite sharp, which led to speculation that
these systems undergo a series of first-order phase transitions as layers are added.

This hypothesis has been extensively tested by experiments, lattice-model simulations,
molecular simulations, and classical DFT and integral equation theory calculations. As a
result, these layer-wise transitions have been incorporated into a much larger picture of surface
phase behaviour involving the interplay between thesurface rougheningandsurface wetting
transitions.

4.1. Experiments

Many experimental observations of layering transitions have been made on clean, planar
surfaces such as graphite. Measurements have also been made on metal surfaces,
magnesium oxide ‘smoke’, exfoliated graphite and graphite foams, and other high-surface
area materials.

Methane adsorption on the MgO(100) surface shows stepwise behaviour in the isotherm at
87.4 K [104] up to the completion of the third layer, after which the isotherms become smooth;
at the lower temperature of 77 K up to five steps are found in the isotherm [225]. These
strongly adsorbed layers are found to be quite solid-like from quasi-elastic neutron scattering
experiments [24, 25]. Similar stepwise adsorption has been found for methane adsorption on
nonporous graphite at 77 K [192], as well as on exfoliated graphite and graphite foam [26].

Oxygen adsorbed on graphite also exhibits layering transitions at low temperatures, with
the number of observed transitions dependent on the temperature. These layers are found
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Figure 34. Phase diagram for argon multi-
layers on graphite. The thick cross-hatched
lines indicate first-order phase transition re-
gions (vertical isotherm steps) while the thin
lines denote possible continuous transition
lines (kinks in the isotherms). The symbols S,
G and F, represent solid, gas and fluid phase,
respectively. The fluid or disordered phase
most likely exists in a region where the ver-
tical extent of the liquid phase is not well
defined. Layer critical temperatures are lo-
cated atTc(2) = 70.0 ± 0.3 K, Tc(3) =
68.3± 0.5 K, Tc(4) = 67.2± 0.2 K and the
layer triple points atTt (2) = 66.5± 0.5 K
and Tt (3) = 67.2 ± 0.5 K. Reproduced
from [191].

to be crystalline below 43.8 K and liquid-like at higher temperatures [394]; the complete
adsorbed phase diagram, involving adsorbed multilayer solids, liquids, and mixed states, (e.g.,
solid films, liquid films, and surface-melted films) has been obtained by neutron diffraction
[49, 186]. In this system, transitions occur between crystalline layers at low temperatures,
between liquid-like layers at temperatures much above the triple-point temperature, and
between states composed of some liquid-like and some crystalline layers at intermediate
temperatures.

Argon adsorption on graphite has also been extensively studied using ellipsometry [394],
neutron scattering [191, 193], adsorption isotherm measurements [194] and x-ray scattering
[194], and a complex adsorbed phase diagram has been determined in which as many as seven
layering transitions appear at low temperatures. One estimation of this phase diagram is shown
in figure 34. Remarkably, a second series of layering transitions occurs at higher temperatures
between films which are thought to be surface-melted solids; the second series of transitions
is offset in pressure from the first, leading to ‘re-entrant’ behaviour [394], in which layerwise
transitions disappear near 69 K and then reappear near 73 K, and then disappears at yet higher
temperatures, as shown in figure 35. This behaviour indicates that a completed liquid-like
layer can be re-solidified by additional adsorption [295].

Other gases that have been shown to have complex layering adsorption phase diagrams
are ethylene [175, 345], ethane [256] and xenon and krypton [395]; much of the work in this
area has been concisely reviewed [143].

4.2. Theoretical treatments and systematics of surface phase transitions

Panditet al [282] discuss the systematics of layering, wetting, and roughening on a planar
surface in terms of the strength and range of the surface-fluid interaction, using a lattice-
gas approach. For a strongly-adsorbing surface, where the surface-fluid interaction is large
compared with the fluid–fluid interaction, adsorption at low temperatures proceeds through
a series of layer-wise first-order transitions, with the film thickness becoming infinitely
large at liquid–vapour coexistence. Each of these first-order transitions has an associated
critical layer temperature, at which that layer transition becomes smooth. These layer critical
points approach thesurface roughening temperatureTR at liquid–vapour coexistence. The
roughening temperature can also be physically understood as that temperature where the free
energy of defect formation in the surface drops to zero, which leads to a divergence in the
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Figure 35. Ellipsometric coverage isotherms for argon on graphite at four temperatures. The
abscissa is a function of the reduced pressure, given by [µn − µ0 = T ln(pn/p0)]. With the
particular functional form used, the simple Frenkel–Halsey–Hill model predicts a uniform staircase.
Reproduced from [394].

height–height correlation function along the surface. Thus, at the roughening temperature and
above, there can be no layer-wise phase transitions in this type of model.

For intermediate-strength surfaces, where the interaction between fluid and surface is
comparable with the fluid–fluid interaction, the picture is complicated by the additional
presence of a non-zero wetting temperature. For adsorption at temperatures below the wetting
temperature, the adsorbed layer is of finite thickness even at bulk liquid–vapour coexistence,
while at temperatures above, the thickness of the adsorbed layer diverges. The wetting
temperature is lower than the roughening temperature, and the layer-wise transition lines
intersect the bulk liquid–vapour curve. This leads to adsorption isotherms at intermediate
temperatures that show several steps at low pressures followed by a smooth divergence at high
pressures.

Panditet al also discuss the critical wetting regime in depth, as well as the layer-wise
transitions that occur in the critical drying region; since this section focuses principally on
physisorbed systems of the type discussed in section 3, we will not discuss these here.

Another surface phase transition relevant to confined liquids is theprewettingtransition,
which corresponds to a discontinuous butfinite jump in the adsorbed layer thickness, typically
of several monolayers’ size. The prewetting transition is first order with an associated critical
point, and occurs for some intermediate-strength substrates; prewetting has been verified by
both lattice-gas simulations [79, 262] and experiments on binary mixtures [169] and surface
melting [25]. Studies of the prewetting transition in lattice models [262] have confirmed that
this transition (and other layering transitions) are of the two-dimensional Ising universality
class.

In porous materials the asymptotic growth of the adsorbed layer is affected by the curvature
of the pore surfaces, and ultimately interrupted at the point of pore filling. This leads to
isotherms that consist of layer-wise regimes at low pressure, which lead to smooth multilayer
adsorption at intermediate pressures and finally capillary condensation at higher pressures.
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The prewetting transition is also still observable in some pore models [262]. Confinement in a
porous material suppresses both the roughening and wetting transitions, because they involve
macroscopic growth and fluctuations in the thickness of the adsorbed layer. In addition, the
nontrivial geometry and surface heterogeneity of most porous materials tends to smooth out
layer-wise behaviour.

Wetting and layering have been extensively studied in the context of the simple-cubic Ising
model and other lattice gases. In these studies, bulk and surface external fields replace the
pressure and surface-fluid attractions relevant for the gas adsorption problem. Many studies
using mean-field arguments [68, 73], the quasichemical approximation [6], renormalization-
group solutions [319], and Monte Carlo simulations [72, 73] have demonstrated the basic
structure of the surface phase diagrams involving layering transitions. Binder and Landau
[30,31] used Monte Carlo simulations to systematically map out the changeover from layering
to roughening to wetting behaviour as both the surface field strength and the first-layer spin-
coupling energy are changed.

Some of the drying and layering transitions predicted by lattice model studies have not
been observed in real adsorbed systems, possibly because the range of adsorption energies
available with common materials is not very great. However, many adsorbed films do have
quite complex phase diagrams due to the presence of solid–liquid transitions, which can (in
principle) occur at different temperatures in each adsorbed layer, with each layer freezing
temperature dependent on the total coverage. In addition, experiments (section 4.1) have
shown a complex interplay between (layer-wise)surface meltingin the adsorbed film and the
layer-wise buildup of the adsorbate.

Some theoretical studies of adsorption using Potts models and related multi-state lattice
models have focused on the interaction of solid and liquid states in the adsorbed film. These are
lattice models where a given site can be unoccupied, and if occupied, can be in one of several
symmetric states. Neighbouring occupied lattice sites in the same state have a more favourable
energetic interaction; this gives rise to distinct solid and liquid phases, characterized by order
and disorder in these symmetric states. Kahng and Ebner [163] used six- and eight-state Potts
models in both mean-field studies and Monte Carlo simulations to describe the adsorption of
simple gases on graphite, and obtained many complete surface phase diagrams, exhibiting a
rich variety of behaviour. Another model which reduces to the three-state Potts model has been
used in the mean-field approximation to study solid–liquid transitions in adsorbed films [353],
and Potts-type models have been extensively studied in the context of surface melting, which
is a closely related problem [105,158,352].

Layering transitions on strong substrates at low pressures are qualitatively easy to
understand, as they may be attributed to the packing of adsorbed molecules that maximizes
surface-fluid interactions. However, for thicker layers, where the substrate potential is
effectively zero near the surface of the adsorbed layer, and for weaker substrates, where even
the first adsorbed layers are quite liquid-like, the phase behaviour of the adsorbed film is
governed by very delicate fluid correlations acting over long length scales.

DFT has been used to characterize capillary transitions and adsorption in porous materials
(see section 3), and has also been used to study layering transitions. Ball and Evans [13] used
non-local DFT to study the LJ fluid and the Yukawa fluid both at solid surfaces and in narrow
cylindrical pores. At low temperatures steps were found in the adsorption isotherms, with
very small associated metastable regions. These first-order layering transitions disappeared at
a series of layer critical points, as predicted by earlier work with lattice models. In cylindrical
pores the layering transitions are shifted to lower pressures (for the same fluid–wall potential),
and there is a competition between the layering transitions and capillary condensation. Under
the conditions used in this study, solid-like layers and layer-melting transitions were not
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observed. Balbuena and Gubbins [11] have used non-local DFT to study the effects of
temperature, pore width and intermolecular interaction parameters on layering transitions in
slit pores. Both fluid–fluid (ff ) and solid–fluid (sf ) interactions were of the LJ type. The
layering transition behaviour was strongly influenced byεsf /εff , the ratio of solid–fluid to
fluid–fluid attraction. Henderson [142] has used mean-field DFT with and without linear
renormalization to fully analyse the interaction of the many competing length scales involved
in wetting and prewetting in adsorbed films, and related these phenomena to theories of the
asymptotic structure of liquids and mixtures.

4.3. Molecular simulation

Layering transitions have been studied using molecular simulations in a number of geometries.
In an early study, Pertersonet al [292] used GCMC simulations to study layering transitions
in a cylindrical pore of diameter 14σ , whereσ is the LJ diameter of the fluid molecule.
The pores had structureless walls (the cylindrical analogy of the (9, 3) fluid–wall potential
was used), and the fluid–wall potential was strongly attractive; LJ parameters typical of
a methane-like fluid in a carbon pore were used. Three layering transitions were found,
followed by capillary condensation. In addition, a quasi-two-dimensional freezing transition
occurred in the first layer at a pressure below that corresponding to the formation of the
second layer. Maddox and Gubbins [220] observed stepped adsorption isotherms in grand
canonical Monte Carlo simulations of argon and nitrogen in models of buckytubes; this
behaviour is to be expected due to the strength and smoothness of the adsorbate-fluid potential.
Interestingly, in the correponding desorption isotherms, most of the stepped behaviour is
not observed because the capillary hysteresis loop is so large in these calculations; most of
the layering transitions occur within the hysteresis loop of the larger transition. Since the
position of the thermodynamic capillary transition is not known, this may mean that some of
the layering transitions are entirely metastable, and occur at pressures where pore filling is
thermodynamically favourable.

The structure of argon films adsorbed on graphite has been studied with canonical Monte
Carlo simulations [295] in order to better understand experimental results. By analysis of the
layer densities and in-layer pair correlation functions, the solid-like or liquid-like character of
each adsorbed layer could be determined as a function of temperature and total adsorption.
This reinforced the picture of reentrant layering developed from experimental studies; that
increasing adsorption causes freezing transitions in already completed layers. The prewetting
transition for argon adsorbing on a ‘9–3’ wall has also been observed and characterized using
molecular simulations, and the interplay of prewetting, layering and wetting in this system has
been examined [85,91]. Simulations of neon adsorption on homogeneous surfaces have found
prewetting behaviour, while prewetting is absent on similar heterogeneous surfaces, indicating
that substrate roughness can significantly affect adsorbate phase behaviour [34,62].

Layering, freezing and capillary condensation transitions have been studied in a simulation
study of methane adsorption in graphite slit pores [162]. In this study, the freezing transition
was observed in the first layer only, and was signalled by a kink in the adsorption isotherm
(see figure 36) and marked change in the in-layer pair correlation function from that of a
strongly ordered liquid to that of a crystalline solid, and molecular dynamics studies found a
decrease in the self-diffusion coefficient of molecules in the first layer of more than two orders
of magnitude. The additional adsorbed layers in this figure are also thought to be solid at
this temperature, so that the transition from a one-layer to a two-layer system (and beyond)
is a transition between solid phases. As in the simulation study of adsorption in buckytubes,
for the larger pores several layering transitions were observed at higher pressureswithin the
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Figure 36. GCMC results for adsorption isotherms for methane in graphite slit pores atT ∗ = 0.5
and (a) H ∗ = 10, (b) H ∗ = 20, whereT ∗ = kT /ε andH ∗ = H/σ . Adsorption is denoted
by circles, desorption by triangles, and first-order transitions as dashed lines. FT is the freezing
transition. Reproduced from [162].

capillary condensation hysteresis loop. The number of layering transitions observed depended
on the width of the pore, as shown in figure 36; in pores 5σ (5 methane diameters) wide
only one layering transition was observed before condensation, while in pores 10σ wide three
transitions were seen, and in pores 20σ wide four transitions were found. The situation in
this and similar systems is that a competition exists between layering transitions, which are
induced by a single surface, and capillary condensation, which is caused by confinement. For
sufficiently narrow pores, capillary condensation obscures many (or all) layer-wise transitions,
while for large pores, layering phenomena mediate the thickness of the adsorbed layer, and
thus the pressure at which capillary condensation in the central part of the pore ultimately
occurs.

Forsman and Woodward [95] have used isotension ensemble MC simulations and non-local
DFT to study layering transitions in a slit pore with structureless walls. The interactions were
of the LJ type, and the fluid–wall interaction was given by the (9, 3) model (see section 2.9). In
the isotension ensemble the number of molecules,N , the average component of the pressure
tensor parallel to the walls,P‖, and the temperature are fixed, but the surface area of the pore
walls is allowed to fluctuate.

5. Liquid–liquid equilibria

Problems in liquid–liquid equilibria are often considered as special cases of liquid–vapour
equilibria, since both systems can (in the vicinity of a critial point) be mapped onto Ising-type
lattice models. However, the dynamic properties of binary liquid mixtures and liquid–vapour
systems are very different, and the range of coupling strength to external variables is much
larger for the liquid–liquid systems.

In confined systems, most studies (experimental or theoretical) have focused on either
the dynamic properties of a near-critical binary mixture or the position and properties of the
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phase envelope itself. A number of general trends have been observed. Firstly, these systems
exhibit strong metastability well within the two-phase region, and therefore both hysteresis
and history dependence are commonplace. Secondly, macroscopic phase separation does not
occur on the timescales accessible in the laboratory. Thirdly, the critical temperature and mole
fraction (as located by the heat capacity singularity, onset of opalescence, etc) are shifted, and
the signature of these measures is considerably broadened.

Three important and appealing hypotheses have become popular in describing the
dynamics and thermodynamics of these systems, and most experimental and simulation results
are interpreted with the predictions of one or more of these in mind.

Brochard and De Gennes suggested that the effect of a containing gel on a liquid mixture
should be much like arandom field[41, 66]. This hypothesis should be relevant when the
correlation length of the gel network is short compared with the correlation length of the liquid
mixture, which will occur near to the liquid–liquid (demixing) critical point, if ever. The
presence of the gel might then be considered as a weak, short-ranged random field acting on
the near-critical mixture, a problem which ought to be qualitatively described by therandom
field Ising model(RFIM), itself an object of intense study. The validity of this argument
depends on both the topological properties of the gel network, and the strength of interaction
(in this case, a preferential attraction for one component) between the gel and the liquid mixture.
As the experimental focus shifted from earlier studies on agarose and polyacrylamide gels to
later studies using rigid porous glasses and aerogels, this argument was extended to these new
systems. The random-field picture is difficult to investigate using molecular simulations or
fine-grained lattice models due to the very large length scales involved. While using a very
coarse-grained model for the fluid and gel network alleviates this problem, this is essentially
just simulating an explicitly random-field lattice model, and the mapping between the real (or
fine-grained model) systems and the RFIM remains unproven.

The second approach to these systems, put forth by Liu and others [202], is to consider
the wettingproperties of the binary mixture in a porous material. Through determining the
bubble radius as a function of wetting forces and surface tension, these workers were able to
derive a ‘wetting phase diagram’ for a binary liquid mixture in an ideal cylindrical pore. This
theory predicts an equilibrium betweentubeconfigurations, in which one component is ‘plated’
out onto the pore surface,plugconfigurations, in which cylindrical plugs of both components
exist, separated by hemispherical interfaces, andcapsulegeometries, which might be described
as a plug-arrangement inside of a tube structure. For sufficiently small capillaries, capsule
geometries are never observed; at near-critical temperature the stable configuration is tubular,
while at lower temperatures plugs are preferred. For larger pores, capsules are intermediate
between tubes and plugs, and the range of temperature in which tubular configurations are
observed becomes very small. This model predicts strongkineticbarriers to complete phase
separation at low temperatures; the plug configurations are strongly metastable. The capsule
configurations are not prevented from complete phase separation, but the process is shown to
be so slow that it is not observable on a convenient timescale.

Thirdly, these systems are often approached as examples offinite-size scalingphenomena.
Finite-size scaling has been extensively reviewed elsewhere [16, 29]; here we summarize its
possible application to confined systems. In a bulk system near to a critical point, the correlation
length in the system is described well by a function of the formξc = ξ0[(T −Tc)/Tc]−ν , where
Tc is the critical temperature,ν is a critical exponent, andξ0 is a proportionality constant.
Likewise, the behaviour of quantities such as the specific heat, magnetic susceptibility, and
isothermal compressibility are described well by the sum of a ‘regular’ part and a divergent part
with a scaling function of similar form, plus possible corrections. In aplanar pore system, the
pore structure will limit the growth of the correlation length in one dimension, and a crossover
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will occur to two-dimensional Ising behaviour very near the critical point, which will be shifted
as [252]

|Tc − Tm(L)|
Tc

∝ L−1/ν (25)

whereTm(L) is the position of the shifted maximum andL is the pore width of the system. In
a cylindrical pore system, correlations can only grow large in one dimension; it is well known
that in such a system no true first-order phase transition can occur, and so only a remnant of
phase behaviour is observed, with no real critical behaviour or divergences. Most real materials
have complex geometries, which may be locally cylindrical or planar, but have connections
(and correlations) between pore sections, which are the basis for the random field picture
described above. Many studies, as described below, attempt to correlate the average pore size
with the shift in critical temperature from that of the bulk system using equation (25) and to
confirm other hypotheses from the scaling theory, despite the non-ideality of the experimental
materials’ structure.

These attempts are frequently complicated by the fact that it is difficult to combine data
from materials of significantly different pore geometries because the meaning of the accepted
average pore size in different classes of materials is different. This is one reason why CPGs
have been extensively used in these studies; these materials can be prepared with a wide range
of pore sizes with essentially the same network morphology.

5.1. Experimental results

5.1.1. High-porosity materials. Maheret al [226] used light scattering to study the near-
critical behaviour of both isobutyric acid plus water and 2,6-lutidine (2,6-dimethylpyridine)
plus water in agarose and polyacrylamide gels of varying weight fraction. They report that
strong light scattering occurs when the systems were quenched into the two-phase region of
the binary mixtures, and that this scattering did not cease for hundreds of hours. They located
the temperature at which opalescence was observed as a function of the concentration of the
mixture; these data resembled the phase diagrams of the bulk mixture, except that they were
shifted slightly to favour the more strongly adsorbed component, and occurred at temperatures
outside (below, in the case of the water–isobutyric acid mixture and above, in the case of the
water–lutidine mixture) the bulk phase envelope.

Frisken and Cannell and co-workers have extensively studied the water-lutidine mixture
and the water-isobutyric acid mixture in dilute silica gels using both light scattering and neutron
scattering. These studies have focused principally on the properties of the near-critical mixture
in the gel, and have shown that the simple random-field approach to these systems does not
fully account for many of their properties.

The water–isobutyric acid system is a type II binary mixture and has an upper critical
solution temperature ofTc = 299.83 K with critical weight fraction near 38.8%. In
their study of this mixture in 4 wt.% silica gel [99], the dynamics of order parameter (in
this case, concentration) fluctuations were followed as the temperature was brought down
towards the critical temperature. At high temperatures, the gel-mixture system had the same
exponential fluctuation decay as the bulk mixture. Nearer to the critical point a wavelength-
dependent activated term becomes important, with the most significant contributions for large
q vectors. At a reduced temperature oft ∼ 0.002, (abovethe critical temperature) the system
spontaneously orders and a very long-time relaxation appears, which later dies away. A later
study [101] showed that this mode re-appeared with each successive temperature decrement,
but increasing the temperature had no such effect. This is consistent with a phase separation
process. For temperatures slightly below the critical solution temperature, similar behaviour
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Figure 37. Phase diagram showing the relationship between the water/isobutyric acid coexistence
curve of the bulk mixture (open circles, crosses), the narrow two-phase region of the silica
gel/mixture system, which lies between the open diamonds, and the slow mode onset temperature
(solid diamonds). Reproduced from [399].

is observed, and for deeper quenches, macroscopic phase separation was found to occur over a
period of months. Using neutron scattering, [100] found that in the two-phase region of a bulk
mixture of water and lutidine a gel-confined mixture showed scattering changes consistent
with a slow phase separation process in which the liquids segregate into large domains.

Further studies [8] showed that for low isobutyric acid concentrations, the phase-separation
induced by pressure quenching to within the coexistence envelope was described well by a
dynamic scaling model with the domain size growing ast1/3, indicating that ‘domain pinning’
behaviour due to the gel network is not present. For higher concentrations of acid, the scaling
hypothesis did not hold at any observed time. The overall behaviour of these systems is
similar to that of random field models, with the notable exception that the water–isobutyric
acid–gel system appears to relax to equilibrium from a ‘frozen’ domain state over an accessible
timescale, while random-field models do not.

The phase diagram of the gel/mixture system was measured using a more
thermodynamically oriented approach, in which the concentration of isobutyric acid in the
gel system was determined as a function of coexistingbulk-phaseconcentration [399]. Phase
separation in the gel system was found for temperatures of 15 and 19◦C, but not at 23◦C,
indicating that the critical temperature in the gel has been lowered from its bulk value of near
25.72◦C. The shift in concentration in the gel system was more dramatic; the entire phase
envelope was shifted to one side of the bulk critical concentration, as shown in figure 37.

5.1.2. Low-porosity materials. Voronov et al have studied the behaviour of the specific
heat of a mixture of water and 2,6-lutidine imbibed in porous glasses [75,375]. This mixture
has also been extensively studied by several other groups in the context of confined liquid–
liquid separation (see below). At constant pressure, water and 2,6-lutidine have alowercritical
solution temperature (LCST), so that at temperaturesabovethisTc the liquids separate into two
phases. The criticalweightfraction of the mixture isxc = 0.290±0.005 (equivalent to a critical
molefraction of 0.0642±0.0001) and the critical temperature isTc = 306.79±0.01 K [375].
In these studies the heat capacity was measured as a function of temperature for both critical
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Figure 38. The specific heat of 2,6-lutidine
+ water in CPG of 100 nm average pore size,
at x = 0.29 and atx = 0.16, and also the
bulk specific heat atx = 0.29 as functions of
temperature. Reproduced from [75].

Figure 39. Coexistence curve of a 2,6-lutidine–water mixture in the bulk(+), in the porous glass
with a characteristic pore size of 1000 Å(�), and in the porous nickel with a pore size of 2500 Å
(•). Reproduced from [375].

and off-critical mole fractions.
In these experiments the peak in the heat capacity around the critical point was shifted to

higher temperatures, and dramatically rounded, as shown in figure 38. The amount of shift
and rounding varied with pore size; in smaller pores the peak position was shifted further
and rounded more than in larger pores. By locating the heat capacity peak position at many
mole fractions, phase diagrams for the confined fluids were constructed, which gave a critical
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weight fraction of 2,6-lutidine ofx = 0.32 and a critical temperature ofT = 307.09 K in
pores of 100 nm size, as shown in figure 39. Additional measurements in a porous nickel
sample (of very different pore topology) and average pore size of 250 nm, gavex ' 0.30 and
T = 306.86 K.

These results were all interpreted in the context of finite-size scaling theory, and augmented
by calculations on the three-dimensional periodically bound Ising model. The displacement
of the temperature of the specific-heat maxima was described well by the finite-size scaling
prediction of equation (25). Ising, porous glass, and porous nickel data all fit the same curve,
with an exponent ofν = 0.64± 0.02. Furthermore, good agreement is found between the
universal functionF that describes the shape of the near-critical heat capacity, for all the
systems studied. The authors conclude that the predictions of finite-size scaling theory are not
dependent on the geometry of the specific porous media.

Sliwinska-Bartkowiaket al [336, 337] have studied the phase diagram of a mixture of
nitrobenzene andn-hexane in CPGs using nonlinear dielectric effect measurements and light
transmission. The nonlinear dielectric effect (NDE) is the change in electrical permittivity
of the system due to a strong electric field; near the liquid–liquid critical point this quantity
diverges with a critical exponentφ = γ −2β. When this mixture is confined in porous glasses
with pore sizes of 100 nm and 150 nm, the(T ,X) phase diagram is shifted to increased hexane
concentrations, and the critical temperature is slightly depressed. This mixture has a type II
phase diagram with an upper critical solution temperature (UCST), so this shift corresponds to
a shrinking of the phase envelope. These effects are stronger in the sample with smaller pores,
and in recent experiments on 7.5 nm porous glasses the depression is much larger, as shown in
figure 40. As the temperature is lowered towards the critical point, the NDE value increases
as it does in the bulk, with a comparable exponent, but in the region of the confined-system
critical point the divergence is replaced with a rounded-off peak. These authors interpret this as
a crossover from Ising-like behaviour to classical behaviour, arguing that once the correlation
length of the fluid is comparable with the pore size the system enters a mean-field regime [241].

Light transmission measurements in this system [337] implied that the phase-separated
mixture in the pores exists in a microscopic domain structure, at least on the timescale of these
experiments. As the temperature is reduced, transmission of visible light through the sample
drops off sharply at the confined critical temperature; in the bulk system similar behaviour is
found at the bulk critical point. In the pore system, at lower temperatures the light transmission
continues to decrease, while in the bulk system it returns to a high value just below the critical
point. While the pore system is expected to quickly equilibrate on a small length scale, it
may be that the two phases cannot globally phase separate in reasonable times, and the system
becomes trapped in a state with many small domains of each phase alternating throughout the
pore structure. In single-pore models, such alternating domain structures have been shown to
have extremely long lifetimes [107,242].

Other studies of liquid mixtures in large-pore glasses have revealed similar behaviour.
Goldburg et al [116] used light scattering to study a mixture of carbon disulfide and
nitromethane in a 100 nm porous glass. This mixture has anuppercritical solution temperature
of approximately 63.4 ◦C in the bulk phase. When confined in the porous glass, the critical
temperature, as identified by a sharp change in the light transmission with temperature, is
depressed to approximately 62.2 ◦C. In these experiments, the correlation length was found
to not exceed 30 nm, so that the random-field hypothesis was not expected to apply at any
temperature. The time autocorrelation function of the concentration fluctuations was found
to have a non-exponential decay with a spectrum of relaxation times that can be as long as
100 s. In additional experiments on the porous sample immersed in bulk mixtures of various
concentration, the form and timescale of the autocorrelation function were different from that
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Figure 40. Coexistence curves of a nitrobenzene/n-hexane mixture in two different CPGs,
compared with the bulk system. From [334].

of the isolated sample, and the confined fluid behaved much more like the surrounding mixture.
A simple one-dimensional Brownian domain-diffusion model was described which captured
many of the qualitative aspects of these dynamics.

Light scattering experiments have also been used to study the lutidine–water system in
Vycor glass, which has an average pore diameter of approximately 7 nm and a porosity near
28%. Wiltzius et al [388] measured the phase diagram of this system by measuring the
intensity of the Raman bands of lutidine in glass samples which had been exposed to bulk
mixtures of various composition. The ‘concentration shift’ (enrichment of lutidine in the
pores) varied between +0.15 weight fraction and−0.05 weight fraction, depending on the
bulk concentration. The picture of phase separation proposed in this study involves two
‘transitions’. As the system is heated from the one-phase region into the two-phase region, it
undergoes a transition from a state in which lutidine is preferentially adsorbed (the finite-size
analogue of ‘complete wetting’) to a state in which small domains rich in lutidine or water
are present (the finite-size analogue of ‘partial wetting’). This change is not abrupt, and is
signalled by a change in the scattered light intensity. Once domains of each phase are formed,
the correlation length in the system can grow to scales larger than the pore diameter, and a
random-field transition is possible. An effective phase diagram for this transition was found by
locating the divergence in the activation time for composition fluctuations. These data were fit
to the standard form of the coexistence curve|φA− φB | = B|T − Tc|β (whereφ is the weight
fraction of one component), from which was extracted anupper boundfor β of 0.21, smaller
than the bulk value of near13, and in agreement with simulated and theoretical predictions for
the random-field model. This study also found that far above the bulk separation temperature
the system became cloudy, but no macroscopic phase separation was ever observed.

A later study of the same system with small-angle neutron scattering experiments came
to somewhat different conclusions. Linet al [201] obtained the structure factorS(q) over a
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large range of temperature and concentration for the water–lutidine mixture in Vycor glass.
These data were then fit to standard predictions for the random-field model, which are generally
similar to the scattering predicted for a collection of random domains. In order to obtain a good
fit to the experimental data, an additional term was included to represent the scattering from an
adsorbed lutidine-rich layer; the form of this term was determined by separate experiments on
alkylsiloxanes attached to the Vycor surface. The conclusions of this study were that there was
a surface layer rich in lutidine at all temperatures studied, and that the domain size (as defined
by one of the fit parameters) never exceeds the Vycor pore size, even well above the critical
temperature, deep into the two-phase region. This picture is consistent with the predictions
of the single-pore model discussed above, and seems to represent a transition from the tube
phase (at low temperatures) to a ‘capsule’ phase near the critical temperature.

5.1.3. Liquid crystal transitions. There have been many studies of liquid crystal transitions
in controlled-pore and Vycor glasses and other porous materials. Most of these studies have
focused on the transition between orientationally ordered (nematic) and disordered (isotropic)
phases, with less attention paid to the orientationally and positionally ordered smectic phases.
In the bulk phase, the nematic–isotropic (N–I) transition is weakly first order; the heat
capacity has a strong peak at the transition temperature related to large fluctuations in the
local orientational order parameter.

In confined systems the substrate material affects the local order through surface effects,
by which molecules can be ‘anchored’ at the pore surface. This serves (in many cases) to
increase the degree of order in the liquid crystal. The interaction of surfaces and liquid crystal
phases has been extensively reviewed [159].

Conversely, ‘geometric’ confinement in a pore can either increase or hinder orientational
and positional order, depending on the regularity of the pore structure and its compatibility
with the bulk liquid crystalline structure. The pore geometry can either stabilize or destabilize
smectic structures, and these effects are closely linked with the favoured orientation of the first
adsorbed layer. Regular pore geometries can stabilize smectic structures, while locally rough
surfaces can destabilize them.

Another effect of confinement in low-porosity materials is to separate the adsorbed fluid
into weakly-coupled domains. Since the heat capacity peak (and strength of the transition)
are related to large fluctuations in the local order, confinement broadens and reduces this peak
in much the same way that it affects the susceptibilities of liquid–liquid mixtures near to
their critical transitions. For sufficiently small pore sizes, surface interactions dominate over
liquid properties and the sharp orientational transition disappears, replaced by a gradual loss
of orientational order with increasing temperature.

In the bulk phase, the N–I transition is necessarily first-order because of the change in
symmetry of the system. For porous networks with small pores, however, this need not be the
case; because most of these materials are homogeneous and isotropic at large length scales, a
confined nematic phase would also beglobally isotropic in order to maintain locally favourable
orientation throughout the network. That is, each section of pore would have its own preferred
nematic director, but at larger scales these would average to zero. As in the case of adsorbed
binary fluids, theoretical descriptions of these systems tend to focus either on a single-pore
model, in which surface interactions and local geometry are considered [351], or random-field
types of models, in which the system as a whole is studied, with the pore matrix taken as a
random or semi-random perturbation of the adsorbed fluid [229].

Dadmun and Muthukumar [63] studied the N–I transition ofp-azoxyanisole in a series of
CPGs using differential scanning calorimetry, and showed that as the pore size was reduced
from 313 to 16 nm the transition temperature first increased relative to the bulk phase and
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Figure 41. The DSC thermograms of the fully annealed
systems. (A) Purep-azoxyanisole (PAA), (B) PAA in CPG1,
pore size 3125 Å, (C) PAA in CPG2, pore size 347 Å, and
(D) PAA in CPG3, pore size 156 Å. The horizontal axis is the
temperature in◦C. Reproduced from [63].

Figure 42. Temperature evolution of the absorption spectrum width for pentylcyanobiphenyl in
12 nm(+), 150 nm (�, pathb; ×, patha), 200 nm (4) CPG, and for the bulk(♦) sample. The
half-height widths are shown for the 12 and 150 nm samples (measured via pathb) and the isotropic
phase for all samples. The spectral half splittings are shown for the 150 nm (measured via path
a), 200 nm and bulk samples in the nematic phase. The inset shows the details close toTNI .
Reproduced from [185].

then decreased, as shown in figure 41. For very large pores, the pore network structure has
little effect on the liquid crystal, and the major effect of confinement is an enhancement of the
nematic phase through surface-induced ordering. As the pore size is reduced, nematic order
is still locally enhanced by confinement, but the directors in different parts of the network
become decoupled, which overall weakens the nematic phase relative to the isotropic phase,
and reduces the temperature of the transition.
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Kralj et al [185] studied the liquid crystal pentylcyanobiphenyl in several CPGs using
deuterium NMR. In samples with 150 and 200 nm radius pores, the transition remained
bulk-like, with a discontinuity in the width of the adsorption spectrum near that found in
the bulk phase. For a sample with 12 nm radius pores, the discontinuity was replaced by a
continuous (though still relatively sharp) change from a somewhat less-ordered nematic state
to the isotropic phase. Some of these data are shown in figure 42. This study concluded that far
from the transition, in either phase, a single-pore picture was appropriate for these materials,
while near the transition their results could be accounted for by introducing strong effects due
to the junctions between pores. When the (different) directors in each pore section meet at
a junction defects must occur. Because these junctions (in 12 nm radius pores) are of size
comparable with the correlation length of the nematic phase, they may be responsible for the
continuous nature of the transition, as no sharp transition could occur in such a volume. In
the large-pore samples, the same geometric constraints on the director apply, but the junction
volumes are much larger and allow for bulk-like behaviour.

Iannacchioneet al [152] have used deuterium NMR and calorimetry to study the N–I
transition of a number of liquid crystals in Vycor and CPGs. For octylcyanobiphenyl in large
(100 nm) pores, they found that the nematic phase showed a NMR powder pattern spectra
consistent with a locally ordered material with no overall preferred direction. This phase
coexisted with an isotropic component. This liquid has a smectic-A phase as well, which was
strongly suppressed relative to the nematic phase. For this liquid in 10 nm pores, no phase
transition was detected, although there was a continuous variation of local orientational order
with temperature. In Iannacchioneet al [150, 151] several different liquid crystals in Vycor
glass were studied with the same techniques; in all cases no real transition was found, with a
strongly rounded remnant of the orientational transition occurring at a depressed temperature.
In these studies Landau-type theories were successfully used to describe these data.

In anopore and nucleopore membranes with 200 nm diameter pores, Crawfordet al [59]
used deuterium NMR to examine the effects of confinement on the orientation of the liquid
crystal 4’-pentyl-4-cyanobiphenyl, and found that the preferred orientation was along the axes
of the cylindrical pores of the materials. The NMR spectral patterns were used to characterize
the pore geometry of the two materials; the roughness of the pore surface was found to strongly
influence the degree of order at temperatures above the bulk transition.

5.1.4. Helium transitions. The superfluid phase diagrams and near-critical behaviour of
helium-4 (4He) and mixtures of3He and4He have been measured in a variety of porous
materials by Chan and co-workers. These fluids exhibit transitions to superfluid states at
very low temperatures, and attracted a great deal of attention in bulk-phase studies as ‘ideal’
experimental realizations of critical transitions. Similarly, the confined helium systems are
excellent experimental systems with which to study the effects of confinement. Some of the
work in this area has been directed at measuring and characterizing the critical exponents of
the superfluid transitions ofthin filmsof 4He [60, 92]; thin helium films adsorbed on Vycor
glass show a crossover from two-dimensional-like to three-dimensional-like critical behaviour
very near the superfluid transition. For temperatures far from critical, the films are described
well by a modified Kosterlitz–Thouless approach, while near to the transition the correlation
length becomes quite large (larger than the characteristic pore length), and a three-dimensional
XY -type transition is found. Experiments on porous gold and hydrogen-plated gold reaffirm
these findings, and show an additional peak in the heat capacity at temperatures significantly
below the transition, which has yet to be explained [60].

Helium and helium mixtures have also been extensively studied in very high porosity
aerogel materials. In the case of pure4He, adsorption in aerogels reduces the transition
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temperature, with larger reductions for smaller porosities (higher gel densities.) In addition,
as the gel density is increased, the heat capacity signature of the transition is more strongly
rounded, when compared with bulk data [393]. For 5% gels, the heat capacity has no singular
part below the transition, while for 2% and 0.5% gels it does; in general, as the percentage
weight of silica in the gel is reduced the near-critical behaviour shows a smooth evolution
towards the bulk limit [393].

In the case of3He–4He mixtures, the effects of even low gel densities are striking. In
the bulk phase, this system has a critical line which intersects a liquid–liquid coexistence
loop at a tricritical point. In the pore system, the coexistence region is narrowed so that the
critical line ‘misses’ it and continues down to very low temperatures; the topology of the phase
diagram is completely changed [176]. This system has been modelled using the spin-1 Blume
Emery–Griffths model with the silica framework described as a quenched random field; the
tricritical point was found to be unstable under conditions pertaining to these experimental
systems [228].

5.2. Lattice models

MacFarlandet al [212] used large-scale Monte Carlo calculations to study the Ising model
confined in a porous matrix comparable with CPGs. The matrices were produced using separate
Monte Carlo simulations of the bulk Ising model with spin-exchange kinetics (conserved order
parameter, withM ≡ 0); the bulk systems were quenched to subcritical temperatures, and the
dynamic phase separation of the two phases was continued until the desired ‘pore size’ was
reached. One phase was taken as the void space, and the other as the substrate. In this model,
the void and substrate are entirely symmetric, which is not true in experimental Vycor, though
it does hold for some other CPGs. In addition, the interaction between the confined Ising
model and the substrate was that of a hard wall; no interaction energy was present between
spins and the substrate. Sophisticated Monte Carlo sampling schemes were used to obtain
critical temperatures and near-critical properties for many realizations of the porous matrix,
and these data were analysed using finite-size scaling methods.

The principal conclusions of this study were that all of the data from all of the different
pore systems studiedcould be collapsed together using simple scaling laws, and that all of
their observations could be fit with a single set of critical exponents which were consistent
with those of therandom Ising model(also known as the ‘site-diluted Ising model’, not the
same as the RFIM). These exponents wereν = 0.8±0.1,γ = 1.4±0.1 andβ = 0.65±0.13.
While critical exponents are often difficult to measure precisely, these are quite different from
those of the bulk Ising model. Since there were no surface fields in this model, the change in
universality class appears to be due entirely to the effects of confinement. The dependence of
these exponents on the degree of confinement was not measured.

Liu and Grest [203] and Monette [242] used kinetic Monte Carlo studies to support the
single-pore model approach to confined liquid–liquid equilibria. These studies used a three-
dimensional square cross-sectioned single-pore and spin-exchange Monte Carlo moves to
investigate both the kinetics of domain growth and the effects of the pore surface field on
domain topology. These studies provide examples of much of the behaviour predicted by the
single-pore model. Upon quenching a system with weak surface fields from the disordered
(supercritical) phase into a plug region, the domains of each phase grow quickly until the
plugs are clearly visible, after which the dynamics slow drastically. The authors do not
present quantitative domain-growth data; due to the small number of domains observed in
these simulations, repeating these calculations many times would have been necessary for
this. Additional simulations showed that upon quenching from the tube phase into the plug
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phase, the appearance of plugs appears to be a nucleation-limited process. In simulations of
a pore with stronger surface fields and a capsule phase, the transition between capsule and
tube systems was also studied, and the rate of growth of capsules into tubes was found to be
dependent on the thickness of the wetting layer.

The two-dimensional Ising model has been used in many studies of the effects of
confinement on phase separation, with many different geometry ‘pores’. Lee [198, 199] has
studied a model with parallel pores separated by irregular, broken walls using kinetic Monte
Carlo simulations of the type described above. In these studies the kinetics of phase separation
were measured at both near-critical and sub-critical temperatures. These studies found very
slow dynamics similar to those determined experimentally by light scattering, and support the
hypothesis that some microscopic separation of the two phases begins at temperatures above
the bulk critical temperature, induced by the correlated disorder of the pore system and the
preferential attraction of the pore walls for one species. At sub-critical temperatures these
studies found that static correlation data from systems with varying pore size could be fit
with a single scaling function, provided that the correlation functions were measured using a
minimum-distance convention.

For a one-dimensional system without a conserved order parameter, simulations of a simple
‘kink–antikink’ model predicted a logarithmic growth of domains upon phase separation [251].
Albanoet al [3] tested this scaling using simulations of two-dimensional Ising ‘strips’ with no
preferential surface field. They found that at short times, when the spin domain length scale
was smaller than the strip width, the kinetics were very similar to those of the unconfined two-
dimensional Ising model, and that at late times and large length scales, the system formed ‘plug’
phases where the growth of plugs was described well by a logarithmic law. Later simulations
by Müller and Paul [250], however, indicate that this agreement with a logarithmic law may
be spurious, and that at late times the domain growth could be completely described by an
annihilating random-walk model, which predicts purely diffusive (power-law) domain growth.
While non-conserved order parameter models are not applicable to binary liquid mixtures, they
do describe single-component liquid–vapour coexistence, and can also be compared favourably
with liquid crystal systems.

Kotelyanskii and Kumar [184] have carried out Monte Carlo simulations for an Ising
model of an associating liquid mixture confined in a slit pore, with hydrogen-bond interactions
between the fluid molecules and the walls. They find that the single liquid phase can be either
stabilized or destabilized by the confinement.

5.3. Molecular simulation results

There have not been many molecular simulation studies of liquid–liquid phase equilibria in
porous systems, and no studies based on realistic models of the experimental systems discussed
earlier.

Most molecular simulation studies have focused on the kinetics of phase separation upon
quenching, with only a few recent efforts at locating the phase diagram itself. Keblinski
et al [168] used molecular dynamics to study the phase separation of a model LJ mixture
in a slit-pore geometry at two slit widths (2σ and 3σ ), allowing either one or two layers of
adsorbed atoms. The fluid model is a symmetric LJ binary mixture with the attractive part
(the dispersion term) of the inter-species potential turned off. This model mixture has been
extensively studied in the context of bulk phase separation [190, 209]. This study found that
the two-layer fluid showed good scaling in the radial distribution function, while the one-layer
fluid did not. Furthermore, the domain growth exponent in the two-layer fluid was found
equal to that from the author’s earlier study [209]. The growth exponents were sensitive to
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the simulation scheme used, with constant-temperature (canonical) simulations giving larger
growth exponents than constant-energy (microcanonical) simulations.

These results have not been fully reconciled with otherstrictly two-dimensional
simulations of the same mixture, which did find good scaling in the radial distribution function,
provided that different growth exponents of1

2 and 2
3 were allowed at short and long times,

respectively [371, and references therein], presumably due to a crossover from diffusive domain
growth to hydrodynamic domain growth. In these studies a slightly different potential was
used, in which the sign of the attractive dispersion term between unlike species was reversed;
this potential has a longer range than that used in the Keblinski study. However, the differences
between strictly two-dimensional fluids and fluids physically confined to a single monolayer
have not been systematically addressed, at least in this context, so comparison of these two
studies may not be well founded.

Zhang and Chakrabarti [398] have studied the same binary LJ fluid as Keblinskiet al in a
variety of confined geometries in two and three dimensions. In their study of two-dimensional
pores they investigated the kinetics of phase separation in ‘strip’ pores (the two-dimensional
analogue of cylindrical pores) with pore walls that were either parallel or ‘uneven’. They found
that the phase separation followed a power-law growth with a low exponent (around 0.3) for
short times, and then all but stopped once the domains of each phase were large enough to
form plugs. In the uneven pores, which contained sections of larger pore radius, the phase
separation continued for longer, with a late time crossover to a growth exponent of 0.64±0.04,
equal to the2

3 power law mentioned above. In a system that included a junction between two
simple strip pores, domains were found to grow faster in the region of the junction, although
no signature in the growth law was found. In a different study of a three-dimensional fluid
in a cylindrical pore [396], the authors found striking qualitative evidence of the ‘plug’ phase
proposed by Liuet al in the single-pore theory discussed above, although they did not locate
a stable ‘tube’ phase. The pore system in this study was relatively short (l = 69.6σ for a
8.7σ pore radius) which did not allow for the measurement of plug growth properties or size
distributions, as only a few plugs could be observed.

Stricklandet al [343] considered the dynamics of phase separation in a more realistic
two-dimensional medium, for several wetting conditions. In this work the porous material was
itself generated by a molecular dynamics simulation of bulk two-dimensional liquid–liquid
separation; once the desired pore size was reached, one phase was frozen, while the other was
split into a binary mixture. This study used a ‘12–3’ LJ-type potential, also with completely
repulsive forces between atoms of unlike species. For symmetric wetting conditions in which
the pore surface does not prefer either component, plug configurations were observed at late
times, while for the asymmetric system studied, in which one component was attracted to the
pore wall and one was repelled from it, a capsule ‘phase’ was observed.

Góźdź et al [119] studied the phase diagram of a symmetric LJ mixture in ideal slit-pore
geometries using the GEMC method. In this study the inter-species attractive well depth was
lessened;ε12 = 0.65ε11, which is sufficient to induce type II phase separation in this mixture,
but gives substantially more diffuse (and realistic) liquid–liquid interfaces than observed in
previous studies. The interactions between each fluid component and the pore wall were the
same, so that the phase diagram was necessarily symmetric aboutX = 0.5; this allowed
a modification of the Gibbs ensemble scheme in which only the ‘identity’ of particles need
be exchanged between cells, as the cell densities can be held equal. Both the influence of
the strength of the wall–fluid attraction and the pore size were studied. In this study the
temperature was held fixed, and(ρ,X) sections of the phase diagram were measured. This
study showed thatincreasingthe potential well depth led to an increased critical density (at
constant temperature), and thatdecreasingthe pore width also increased the critical density,
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apparently well into the solid-like region for very narrow pores.
Gelb and Gubbins [106, 107] have studied the kinetics of phase separation of the binary

LJ mixture used by Ǵoźdź et al in several different cylindrical pores. In these studies, the
effective pore density was held constant, and the course of phase separation was followed
for different temperatures and pore diameters. The systems used in these studies were all
symmetric, and no capsule ‘phases’ were observed. In all cases, the phase-separating liquids
reached plug conformations at late times. For deep quenches (to quench temperatures far below
the critical point) the phase separation slowed dramatically when the domain size reached the
pore diameter. For only slightly sub-critical quenches this was not the case, and the domains
continued a power-law growth to the latest times studied, reaching average sizes of several
pore diameters. The authors postulate that this temperature dependence is caused by large
fluctuations in the liquid–liquid interface near the pore critical point, which in turn enable
the diffusion of plugs of one phase in another. The motion of these domains was studied
qualitatively in [106], and over the length of the simulation it does appear that domain growth
is by a condensation mechanism.

Gelb and Gubbins [107] also considered the thermodynamics of their systems using
a simple model of one-dimensional behaviour. Strictly speaking, the ‘single-pore model’
cannot have a true phase transition at nonzero temperature, for much the same reason that
the one-dimensional Ising model cannot have one: the entropy associated with the position
of the domain boundaries causes the system to favour many small plugs, rather than a few
large ones. Using a histogram-weighted SGMC simulation they measured the probability
distribution of the pore mole-fraction at sub-critical temperatures. A simple division of these
probability distributions into ‘one-phase’ and ‘two-phase’ components allowed the calculation
of the surface tension between adjacent plugs, and hence the average plug length as a function
of temperature. The results of these calculations are shown in figure 43, supplemented by
estimates of the average plug size from direct canonical Monte Carlo simulations; they indicated
that the average plug length was extremely large except quite close to the critical point, and that
none of the molecular dynamics simulations had reached a thermodynamically stable state, by
at least an order of magnitude in plug length.

In a later study these authors used the same histogram-based methods to study the phase
coexistence properties of strongly asymmetric systems [108]. Three different strengths of
wetting potential were studied, with wall–fluid well-depth ratiosε2w/ε1w of 3:1, 2.2:1 and
1.67:1, in cylindrical pores of 5σ radius. The phase coexistence curve in the(T ,X) plane
was shifted towards the more strongly adsorbed component, and the pore critical temperature
(as extrapolated from lower-temperature data) was depressed, with both effects being most
pronounced for the 3:1 system, as expected. These data are shown in figure 44. Simulation
snapshots showed that the coexisting phases were a nearly pure phase of the preferred
component and a tubular phase in which the preferred component wet the wall and the non-
preferred component occupied the centre of the cylinder. Thus, these coexistence curves could
be interpreted as a coexistence between complete-wetting and partial-wetting states. The
authors also investigated the effects of the finite-size periodic boundary conditions used in
the simulations, and determined that, while the qualitative behaviour of the systems did not
change with increasing systemlength, theP(X) distributions and the shape of the top of the
phase diagram were quite sensitive, underlining the difficulties of using small ideal-geometry
systems for the investigation of near-critical phenomena.

5.3.1. Liquid crystal simulations.There have been many simulation studies of liquid crystals
in confined geometries, using both lattice-based models and more sophisticated off-lattice
potentials.
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Figure 43. Results from histogram analysis for the equilibrium domain length,leq (reduced with
molecular diameterσff ) in cylindrical pores of radii 3σ and 5σ , and from direct Monte Carlo
simulation of the equilibrium domain length in the 3σ system, over a range of temperature. Potential
parameters are chosen to model argon in pores of carbon dioxide. Reproduced from [106].

Telo da Gamaet al [351] solved a Lebwohl–Lasher model with both simulations and
approximate methods to locate the N–I phase transition for a liquid crystal confined in a slit
pore at many pore widths. This model consists of rotors fixed to a cubic lattice, interacting
through nearest-neighbour potentials based onP2(cosθ), whereθ is the angle between rotors
andP2 is the second Legendre polynomial. They found that the Kelvin prediction, that the
shift (downwards) in the N–I transition temperature is proportional to 1/L, whereL is the pore
width, is accurate forL > 64 layers. In addition, for wide enough pores a wetting layer of the
isotropic phase was observed at each wall; in this system the walls did not exert any ordering
potential on the fluid model, so that orientational order was greater in the centre of the pore than
at the wall. A subsequent study of the same model [53] also considered the effects of an aligning
surface field and simulation system size. For zero field, they concluded that the film (pore) has
a critical thickness 8< Lc < 16 below which no phase transition occurs. Chiccoliet al [50]
used Monte Carlo simulations of this type of lattice model to study the effects of confinement
in a slit pore with two different surfaces that preferred normal and tangential orientations of the
molecules, leading to complicated defect structures in the film. Zhang and Chakrabarti [397]
used a two-dimensional Lebwohl–Lasher model in a complex tortuous model of Vycor glass
to show that the ordered phase breaks into many nematic domains with independent directors,
as argued from experimental studies. Measurements of the order parameter relaxation in this
study were consistent with predictions based on random-field models.

Most molecular simulations of liquid crystals have used the Gay–Berne potential [103]
to model the fluid. The liquid crystal in contact with a graphite surface has been shown to
have a highly ordered surface layer oriented normal to the surface, while the second and higher
layers are much less strongly ordered [276]. In addition, the rate at which the surface-induced
order decays away from the surface depends on the orientation of the bulk nematic director.
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Figure 44. (T ,X1) phase diagrams for the symmetric LJ system and asymmetric systems #1, #2
and #3. These have values ofε2w/ε1w of 3.0, 2.3 and 1.67, respectively. Points are simulation data
(except for the estimated critical points) and curves are fits to the Ising lattice-gas form. Reproduced
from [108].

Wall and Cleaver [377] studied the Gay–Berne fluid between two graphite-like walls with
anisotropic substrate–fluid potentials, and found that the surface layers tilted slightly; this tilt
was propagated through the entire film. At lower temperatures layered (smectic) structures
were observed and the tilt angle changed considerably to accomodate this; the degree of tilt in
the smectic phases was found to be dependent on the strength of the surface–fluid interactions,
which was not the case for the nematic fluids. Gruhn and Schoen [124,125] studied a confined
fluid given by a modified Gay–Berne potential with a different pore–wall model and many
different pore widths, showing that the normal stress (across the pore) changed in a complex
oscillatory sequence as the pore width was increased, due to changes in the number of smectic
layers and the compression (axial tilt) of each layer.

6. Freezing

Improved understanding of confinement effects on freezing are essential in areas relating to
lubrication, adhesion and fabrication of nanomaterials and nanotribology. In addition, these
studies can provide insight into mechanisms involved in frost heaving and distribution of
pollutants in soils. Freezing in porous media has been widely employed in the characterization
of porous materials. In the method termed thermoporometry, the shift in freezing temperature
of water is determined, and the PSD is inferred from a thermodynamic analysis which is
analogous to the use of Kelvin equation for capillary condensation.

In this section we focus on theoretical and experimental studies of freezing and melting
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behaviour in completely filled, well-characterized porous systems. Various experimental
techniques used to measure freezing temperature as well as structure of the condensed phases
inside pores are briefly described. The effect of pore size and the nature of the fluid–wall
interaction, as well as various methods to calculate the free energy of the confined phases,
are discussed. Other important aspects of freezing in confined systems that are not discussed
in this review include freezing of monolayers on a substrate, commensurate–incommensurate
phase transitions, freezing of quantum fluids, and solid–solid transitions in pores. Some of
these topics warrant separate reviews by themselves and are discussed elsewhere [18,127,321].
We note that DFT has been widely successful in addressing freezing transitions in the bulk.
However, little progress has been made in extending this to freezing of confined fluids. Some
of the early attempts in this direction are reviewed by Henderson [140].

6.1. Experiments on freezing/melting

Freezing of oxygen in sol–gel glasses was studied by Warnocket al [379] by a sub-picosecond
optical technique. In this method, the optical pump pulses were used to create a birefringence,
that occurred due to the rotational motion of the molecules in the liquid, and the subsequent
molecular orientational relaxation time was measured. A change in the value of the relaxation
time was used as an indicator of the freezing temperature. The freezing temperature in the
confined system was always depressed as compared with the bulk; the shift was larger for
smaller pores, and as large as 10 K for the smallest (20 nm) pore (figure 45). Unruhet al [364]
examined the melting behaviour of indium metal in porous silica glasses by differential
scanning calorimetry (DSC) measurements, and reported a large depression in melting point
due to confinement (see figure 45). Other experiments that used porous silica glass as the
confinement medium also found a decrease in the freezing temperature,Tf , as compared with
the bulk [36,74,129,186,240,245,272,335,339,342,350,358].

The simplest way to understand this behaviour is through a classical thermodynamic
argument that determines the freezing temperature,Tf , as the point at which the chemical
potential of the solid core inside the pore equals that of the surrounding fluid†. The shift in
the chemical potential due to the presence of the pore wall can be determined along the same
lines of the Kelvin equation for gas–liquid condensation [260]. It is then easy to show that
(see, e.g., [82]),

1Tf

Tfb
= −2

(γws − γwl)ν
Hλfb

(26)

whereTfb is the bulk freezing temperature,γws andγwl are the corresponding wall–solid
and wall–fluid surface tensions,ν is the molar volume of the liquid,λfb is the latent heat of
melting in the bulk andH is the pore width. Equation (26) is sometimes referred to as the
Gibbs–Thomson equation. The sign of1Tf = Tf − Tfb depends on whether the walls prefer
the solid or the liquid, i.e. whetherγws is greater or less thanγwl . The observed depression
in the melting temperatures varied as 1/H in the above-mentioned studies, and were thus
consistent with equation (26) down to pore sizes as low as 6 nm (figure 45). However, this
type of classical thermodynamic argument breaks down for small pores, for reasons that are
analogous to those that lead to the breakdown of the Kelvin equation (section 3.2.1).

One can go further along the same lines to show that the latent heat of the confined solid
is related to that of the bulk solid by

λfp = Tf

Tf b
λf b. (27)

† Other approaches that lead to the same equation involve balancing the bulk, surface and interfacial components of
the excess free energy (see [379]).
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Figure 45. Shift in freezing temperature from experiment: O2 in sol–gel glass [379], indium in
CPG [364], cyclohexane between mica plates in a surface force apparatus [180], CCl4 in CPG [335].
The dashed lines are a guide to the eye.

Unruh et al [364] and Molzet al [240] reported latent heat measurements in the confined
systems that were less than the bulk values, but the magnitude ofλfp was much less than the
value predicted by equation (27). For example, in the case of indium in silica, the latent heat in
the bulk is 28.5 J g−1 and the latent heat in an 8.2 nm pore glass was measured to be 10.2 J g−1,
while that predicted by equation (27) is 26.3 J g−1. These differences were attributed to the
premise that, in a pore the first few molecular layers close to the pore wall (contact layer)
remained amorphous, while the interior froze to a crystalline form.

There have been experimental reports that investigated the structure of the confined
phases through NMR and x-ray diffraction techniques, that corroborate the above hypothesis.
Overloop and Gervan [272] studied freezing of water in porous silica using NMR, and they
suggest that in the confined solid phase up to three molecular layers adjacent to the pore wall
(which they term ‘bound water’) have a structure that is different from the crystal phase and
from that of the free liquid. The rest of the water molecules in the pore interior were in the form
of cubic ice (Ic) and the freezing temperatures were consistent with equation (26). The study
also indicated a distribution of the molecular correlation times associated with translation and
rotation in the bound water phase, with the values lying in a range that was inbetween the liquid
and the crystal phases. Morishige and co-workers [244, 245] used x-ray diffraction to study
water in siliceous MCM-41 having a range of pore sizes, and also confirmed the existence of
a disordered layer of water molecules near the pore wall, with the inner region being the Ic

phase. Morishige and Kawano [244] also studied water in Vycor glass and found evidence for
both the cubic Ic phase as well as the ordinary hexagonal (Ih) phase. Bakeret al [9] studied the
nucleation of ice in sol–gel silicas and MCM-41 and found that the crystal structure depends
strongly on the conditions and nature of the porous material, showing characteristics of both Ih

and Ic forms. X-ray diffraction studies of water in activated carbons suggested an increase
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in the freezing temperature due to confinement [153, 154]. Morishige and Kawano [244]
have reviewed other experimental studies of the freezing/melting behaviour of water in porous
silicas and glasses.

In a recent study, Booth and Strange [36] examined the melting of cyclohexane in porous
silica using the NMR technique. The melting temperature was below the bulk melting point,
and in the confined solid phase there were two distinct components of the transverse relaxation
time. The short component (15–30µs, comparable with the crystal phase in the bulk) was
attributed to the crystal phase in the interior of the pore, and the long component was attributed
to a liquid-like contact layer. Further lowering of temperature led to the freezing of the surface
(contact) layer as well.

Sliwinska-Bartkowiaket al [335] attempted to characterize the melting/freezing transition
for a dipolar fluid, nitrobenzene confined in CPG of different pore sizes, using DSC and
dielectric relaxation spectroscopy. The depression in the melting temperature followed
equation (26) for pore sizes larger than 7.5 nm; however, significant deviation was observed for
a smaller pore width. The results from both experiments were in good agreement. The authors
also made a quantitative estimate of the rotational relaxation time in the fluid and crystal phases
by fitting the complex permittivityε∗ = ε′(ω)− iε′′(ω)measurements to the Debye dispersion
equation. In addition to the liquid and crystal phase relaxation, a third relaxation component
was observed, that supported the existence of a contact layer with dynamic properties that were
more liquid like than the inner layers as found in the previous studies.

The experiments described so far show a decrease in melting/freezing temperature in the
pore, which seems to indicate that for the set of chosen fluids and porous materials, the wall
always prefers the liquid phase to the solid phase. Alternatively, this can be viewed as the fluid–
wall interaction being weak relative to the fluid–fluid interaction. The term−2(γws−γwl)ν/H
in equation (26), can be interpreted as the difference between the actual wall–solid potential
energy and the wall–solid potential energy, that would occur if the wall were made up of the
adsorbed solid itself. Moreover, for this type of fluid–wall interaction, it appears that the first
few layers of the confined solid phase melt at a temperature lower than the depressed melting
temperature in the interior of the pore.

In view of this large body of experimental evidence for a decrease in the freezing
temperature due to confinement, it is tempting to assume that a decrease always occurs.
However, in 1995 an experimental study of cyclohexane and octamethylcyclotetrasiloxane
(OCTMS) between parallel mica surfaces in a surface force apparatus provided evidence
of an increasein freezing temperature in confined systems [180]. In this study, Klein and
Kumacheva start from a confined liquid phase and slowly reduce the separation between the
mica surfaces. At a separation close to about seven molecular diameters, the liquid freezes
abruptly, which they monitor through viscosity measurements. At this separation the increase
in the freezing temperature for cyclohexane was about 17 K (figure 45). Similar studies have
been reported in a surface force apparatus (with mica surfaces) for linear alkanes [120, 146]
and cyclohexane [181], and again show an increase in the freezing temperature. This increase
is believed to be due to strong attraction between the confined fluid molecules and potassium
in the mica surface. In a subsequent molecular simulation study of the effect of confinement
on freezing of simple fluids in slit pores [238] it was shown thatTf was strongly affected by
the strength of the attractive forces between the fluid molecules and the walls (see section 6.2).
For strongly attracting walls such as carbons, anincreasein Tf was predicted. Moreover,
the increase inTf was predicted to be larger for slit than cylindrical pores [219]. Recently,
experiments on the freezing of CCl4 in activated carbon fibres by Kaneko and co-workers [380],
have indicated a large upward shift in freezing temperature of about 56 K in nanopores of
diameter 0.7–1.2 nm (figure 46). Similarly, a large increase in the freezing temperature for
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Figure 46. Shift in freezing temperature for CCl4 from experiment and simulation. For the same
adsorbed fluid CCl4, the direction of the shift depends on the nature of the fluid–wall interaction;
a positive shift observed in the case of attractive (graphite) pores and a negative shift observed in
the case of porous silica. The plot also shows evidence of a deviation from linearity in1T versus
1/H in the microporous regime. From [305,335,380].

Figure 47. Phase diagram of CO2 in Vycor glass: the crosses and the solid curves refer to the bulk
system while the symbols (•) and the dashed curves refer to the confined (pore) system. Dashed
curves, labelled PC (pore condensation) and PF (pore freezing) are a guide to the eye. BT denotes
the bulk triple point while PT refers to the ‘quasi-’ triple point of the pore fluid. From [70].

benzene in activated carbon fibres has been reported by Watanabe and Kaneko [381]. There
have been other experiments of simple fluids such as methane on single graphite substrates [48]
which have indicated a 10% increase in freezing temperature for the first molecular layer of
methane adjacent to the graphite wall (contact layer).
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The above studies did not attempt to determine a detailed phase diagram for the confined
fluid. However, Duffyet al [70] used the positronium annihilation spectroscopy to map out
the complete phase diagram (figure 47) for CO2 in Vycor glass with a mean pore diameter
of 70 Å. The confinement shifts the liquid–solid transition to a considerably lower, and the
gas–liquid transition to a considerably higher temperature than in the bulk. The triple point
is reduced both in pressure and temperature from that of the bulk. The positron annihilation
spectroscopy studies, while providing information on the location of the phase transitions, do
not provide any information on the microscopic structure of the confined solid phase. Brown
et al [43] reported studies of the microscopic structure of the confined solid CO2 adsorbed
in porous Vycor glass using x-ray diffraction. Their study concluded that the confined CO2

solidifies into crystallites with average dimensions of 160 Å, with a structure that is consistent
with thePa3structure (which is an fcc lattice with molecules oriented along the diagonals of
the cubic lattice) of bulk CO2. The average crystallite size of the solid phase of the confined
CO2 is comparable with the pore dimensions in Vycor indicating that the solidification occurs
separately in each of the pores. However the unit-cell size for the confined solid is larger than
what has been observed in the bulk at the same temperature, indicating a less dense solid in the
pores. Also a significant amount of disorder was observed in the arrangement of the molecules
which could not be accounted for with the Debye–Waller effect.

6.2. Simulation studies: simple pore geometries

6.2.1. Melting and freezing studies.Schmidt and L̈owen [324] studied the freezing of hard
spheres confined between two parallel hard plates for various plate separations, interpolating
between two and three dimensions, using Monte Carlo simulation. The co-existence conditions
were obtained by identifying van der Waals loops in pressure versus density curves, and then
applying a Maxwell construction. The full phase diagram for this model was mapped out for
arbitrary density and plate separations lying between one and two sphere diameters (figure 48).
The phase diagram is found to exhibit a rich structure with a fluid phase and many different
solid phases of buckled, layered and rhombic crystalline structure. For the finite system sizes
studied, the freezing was found to be first order, which was followed by a further solid–solid
transition as the density was increased. Some of the solid–solid transitions were found to be
weakly first order. These findings can be verified in principle, by performing experiments with
colloidal suspensions between parallel plates.

Detailed and systematic simulations aimed at qualitative comparison with the experimental
data were made by Miyahara and Gubbins [238] who studied freezing in slit-shaped pores and
Maddox and Gubbins [219] who studied freezing in cylindrical pores. The adsorbate was a LJ
fluid, and various pore sizes and choices of wall–fluid potential functions were investigated.
Miyahara and Gubbins [238] used GCMC simulation, and found that for the case of LJ-methane
confined in a hard wall pore the freezing temperature was significantly lower than in the bulk,
whereas for strongly attracting walls (modelled on graphite), there was a significant increase
in the freezing temperature (figure 49). In addition, the contact layers (the molecular layers
adjacent to the two pore walls) behaved differently than the rest of the fluid. For example, the
contact layers appeared to freeze at a different temperature than the rest of the fluid in the pore;
the freezing temperature was higher than that of the bulk material for the case of attractive walls,
and lower for the case of repulsive walls. Maddox and Gubbins [219] used a novel simulation
method that combined GCMC simulations with molecular dynamics for better relaxation of
the displacement moves for LJ molecules in cylinders. They reached similar conclusions
about the nature of the freezing-point shifts, but found important differences because of the
increased confinement in a cylindrical geometry. In particular, the additional confinement led
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Figure 48. Simulated phase diagram for hard spheres of reduced densityρ between parallel plates
with effective reduced separationh. Hereh = (H −σ −σw)/σ , whereσ andσw are the diameters
of the hard sphere and wall molecules, respectively, andH is the pore width as measured between
the planes through the centres of the atoms in the first layer of each opposing pore-wall. Six phases
occur (fluid; 14: triangular lattice with one layer; b: crystalline structure of buckled lines; 2�:
square lattice with two layers; r: rhombic phase; 24: triangular lattice with two layers). The closed
packed density is marked by a dashed line. Solid curves are guides to the eye. Thin horizontal
tie-lines represent two-phase co-existence. From [324].

Figure 49. Shift in the freezing temperature from simulation. The symbols show the shift in the
freezing temperature of LJ methane in three different pores of pore widthH = 7.5 σ , σ being
the LJ size parameter for methane. The attractive pore was modelled on graphite, the neutral pore
consisted of an artificial methane wall and the repulsive pore consisted of two hard plates. The
dashed lines are a guide to the eye. From [238].
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to downward shifts in the freezing temperatures when compared with confinement in a slit
geometry. Miyaharaet al [239] also studied the effect of the pressure of the equilibrium gas
phase on the melting temperature of the confined liquid phase using a innovative simulation
setup. They found that, while the solid–fluid co-existence line in aP–T diagram for the
confined system remained vertical above the bulk saturation pressures, there is significant
variation of the melting temperature with pressure for the confined system for pressures lower
than the bulk saturation pressure, which is very different from what is observed for the bulk
system. This observation is consistent with the experimental report of the CO2 phase diagram
in Vycor glass that was discussed earlier [70].

These simulation studies made use of pair correlation function and structure factor plots,
together with snapshots of molecular configurations to monitor the freezing process. These
were also verified by applying the Hansen–Verlet criterion [130,308] and calculation of self-
diffusion coefficients. The findings provide a detailed understanding of the freezing/melting
behaviour observed in the experiments. However, a limitation of the simulation studies was that
the precise location of the phase transition was not found. The freezing and melting displayed
large hysteresis loops, and thus the location of the equilibrium freezing/melting point could
be estimated only to the accuracy of the width of the hysteresis loops which often spanned
10–30 K. The nature of the transition was also not clear, as the results of the behaviour in
smaller pores suggested a continuous rather than a first-order transition. Answers to these
issues lie in a detailed and explicit calculation of the free energies of the phases involved in
the phase transition.

6.2.2. Free-energy methods.In an attempt to address the problem of locating the true
transition point, Dominguezet al[69] used thermodynamic integration [97] to calculate the free
energy of the solid and fluid phases in the pore. This method involves a numerical integration
of the Gibbs free energy starting from a known reference phase (the Einstein crystal for the
solid phase and the ideal gas for the liquid phase) to the state point of interest. It relies on
finding a suitable path of integration which is thermodynamically reversible, i.e., the path
must not intersect any phase boundary characterized by a first-order transition. The Gibbs free
energy was calculated for the case of purely repulsive and weakly attractively pores and the
location of the thermodynamic transition temperature was found. Their results also indicated
that the transition was first order. In addition, the authors calculated the condensation line and
mapped out the complete phase diagram for weakly attractive pores (figure 50). The behaviour
of fluids in attractive and repulsive pores was found to be consistent with the study in Maddox
and Gubbins [238].

The free-energy study of Dominguezet al [69] was limited to confined systems with
repulsive or weakly attractive wall–fluid potentials. For the more ubiquitous case of a wall–
fluid potential that is moderately or strongly attractive, this method breaks down. This is
because the adsorbed molecules adjacent to the pore–wall (the contact layer) freeze before the
adsorbed molecules in the interior of the pore. This makes it impossible to find a reversible
path from the ideal gas phase to the fluid phase, since any such path runs into a first-order
transition corresponding to the freezing of the contact layer.

To overcome this difficulty, Radhakrishnan and Gubbins [303] used a method based on
an order parameter formulation to calculate the free energy. They used GCMC simulations
on a system similar to that studied by Miyahara and Gubbins [238]. The method relies on
calculation of the Landau free energy as a function of an effective bond orientational order
parameter8. The Landau free energy can be defined through the equation [189],

3[8] = −kBT ln(P [8]) + constant (28)
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Figure 50. Coexistence curves for confined and bulk LJ fluid in slit pores of widthH = 10σ .
Note that for the pore,P denotes the normal pressurePz, whereas for bulk it is the bulk pressure.
The symbols represent,

Bulk ◦ liquid–gas � liquid–solid
Repulsive wall ♦ liquid–gas 4 liquid–solid N = 600
Repulsive wall 5 liquid–gas + liquid–solid N = 300
Weakly attractive wall × liquid–gas ∗ liquid–solid N = 300

whereN is the number of molecules used in the simulation. From [69].

whereP [8] is the probability of observing the system having an order parameter value between
8 and8+δ8. The probability distribution functionP [8] is calculated in a GCMC simulation
by collecting statistics of the number of occurrences of a particular value of8 in the form of a
histogram, with the help of umbrella sampling [359]. The grand free-energy�, is then related
to the Landau free energy by,

exp(−β�) =
∫

d8 exp(−β3[8]). (29)

This approach comes under the general classification of histogram re-weighting methods
discussed in section 2, and was first used to study solid–fluid transitions in the bulk by Van
Duijneveldt and Frenkel [368] and Lynden-Bellet al [208]. It can be used sucessfully for
the case of strongly attractive walls, as well as weakly attractive and repulsive ones, and
is not affected by phase changes in the contact layer. The method requires the choice of
an order parameter that is appropriate for the system of interest [303]. For example, for a
three-dimensional system a combination of the spherical harmonics of the orientation of the
nearest-neighbour bonds is suitable.

The Landau free-energy results of Radhakrishnan and Gubbins [303] for LJ methane in an
attractive graphite pore showed that there are three phases for such a system (figure 51); phase A
corresponds to all the layers having a liquid structure (figure 52(a)), phase B corresponds to the
contact layers (the layers adjacent to the two pore walls) being frozen and the rest of the layers
having liquid structure (figure 52(b)), and phase C corresponds to all the layers being frozen. A
plot of the grand free energy for each phase as a function of temperature gave the freezing point
for the contact layers as well as for the inner layers, and clearly indicated that both transitions
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Figure 51. The Landau free energy as a function of the order parameter, for methane confined
in a graphite slit pore of width 7.5σ , for (a) T = 123 K, (b) T = 118 K, (c) T = 113 K and
(d) T = 109 K; the relative depths of the minima indicate the stability of each phase. From [303].

were first order (figure 53). We note that the freezing temperature for LJ methane in the bulk
is 101 K. Transition temperatures in the pore are well above this value. Radhakrishnan and
Gubbins also found strong evidence for a liquid to hexatic transition prior to freezing in the LJ
methane/carbon system. They attributed the relatively weak first-order nature of the freezing
transition in this system to the large entropy loss associated with this liquid–hexatic transition
prior to freezing. The order parameter method can be applied to weakly attractive or purely
repulsive walls [303]. In this latter case there is no evidence of a hexatic phase, and the freezing
transition is strongly first order.

The effect of the fluid–wall interaction on the freezing behaviour has been investigated for
a slit pore model along with the ‘10–4–3’ Steele potential, by a systematic study of the Landau
free-energy surfaces as a function of the relative strengths of the fluid–wall to the fluid–fluid
interaction, given byα/εff = ρsεsf σ 2

sf1/εff in equation (14) [304]. For weak wall strengths,
α/εff < 0.5, the Landau free-energy function showed just two minima, corresponding to a
liquid and a solid phase, the intermediate phase being metastable. For intermediate wall
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Figure 52. The two-dimensional, in-plane pair correlation function for each of the adsorbed
methane layers for theH = 7.5σ graphite slit pore at three different temperatures: (a) T = 130 K,
corresponding to phase A; (b) T = 123 K, corresponding to phase B. Only four of the seven layers
are shown because of the symmetry about the mid-plane. From [303].

strengths 0.5 < α/εff < 0.85 there are three phases, with the intermediate phase B having
a structure such that the contact layers are liquid like while the inner layers are crystalline.
For strongly attractive pore walls,α/εff > 1.15, the intermediate phase B had frozen contact
layers and liquid-like inner layers (as in figure 52(b)). The LJ fluid confined in the slit pore
showed depression in the freezing temperature forα/εff < 0.85 and elevation in freezing
temperature forα/εff > 1.15. Radhakrishnanet al [304] used corresponding states theory to
map out a global phase diagram that predicts the phase behaviour and freezing temperatures
for different fluids confined in different porous materials based on the effect of the fluid–wall
interactions.

Figure 54 summarizes the predictions of this theory for a variety of fluids. The fluid–fluid
terms were determined from second virial coefficient data and the Lorentz–Berthelot mixing
rule was invoked to calculate the fluid–wall parameters. For the case of polar molecules, only
the dispersive part of the fluid–fluid interaction was used to obtain the fluid–wall parameters
and the pore walls were assumed to be non-polarizable. Figure 54 predicts the phase behaviour
of different fluids in model (slit shaped) silica and graphite pores. The structure of the confined
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Figure 53. The grand free energy of the three phases A, B and C, as a function of temperature
for LJ methane in the graphite slit pore ofH = 7.5σ . The cross-over pointsTA−B andTB−C
correspond to the two first-order phase transitions. The freezing temperature of LJ methane in the
bulk is 101 K. From [303].

Figure 54. The global phase diagram, summarizing the freezing behaviour of different fluids in
model silica and graphite slit pores of widthH = 7.5σ . The two dotted lines represent the boundary
between the elevation and depression of the freezing temperature. From [304].

phase is given by the pair correlation function plots of the individual layers of the confined
phase. Such a classification can be used to estimate freezing temperature shifts and phase
behaviour of a fluid/pore system. However, one should bear in mind that, apart from the fluid–
wall strength parameterα, other factors such as change in geometry (cylindrical instead of slit
shaped pore) and surface polarizability of the pore walls will also contribute significantly to
the freezing behaviour.
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Figure 55. The structure of water adsorbed in a slit carbon pore
of width H = 3σ at T = 180 K under a loading pressure of
1 Gpa, showing a distorted hexagonal lattice: (a) top view, (b)
side view. From [183].

Kogaet al [183] have studied the freezing of water in hydrophobic nanopores by molecular
dynamics simulation, using the TIP4P model for water and a weakly interacting, structureless
wall. They observed a bilayer ice formation by controlling the pressure normal to the pore walls.
The bilayer ice crystal is characterized by a hydrogen-bonding network of water molecules,
each layer forming a distorted hexagonal lattice (figure 55). However, the study only focused
on the approximate bounds for the free energies of the condensed phases.

6.3. Simulation studies: complex pore geometries

One of the first efforts in studying the effects of surface epitaxy on phase behaviour [313]
considered a slit pore model with the pore wall atoms arranged on a fcc lattice. The nature of
the confined phase (whether a liquid or solid) was found to depend on whether the top wall
surface was ‘in’ or ‘out’ of registry with the bottom surface. It was also found that, for the
same number of layers in the confined phase, pore widths below a critical value did not support
a solid phase, that is, below a certain value of inter-layer separation, the solid phase was not
stable. Similarly, under conditions that supported a confined solid phase [61], moving the top
plate such that the configuration goes from ‘out’ of registry to ‘in’ registry, melts the solid
phase. This observation was also confirmed by other studies modelling the shear behaviour in
a surface force apparatus, in which the ‘stick–slip’ behaviour was attributed to shear-induced
melting transitions [207,356].

The freezing of simple fluids in a corrugated pore model that consisted of a slit pore with
rectangular grooves carved out of one of the surfaces exhibits a rich phase behaviour that
depends on the width of the pore, width of the groove and depth of the groove [61]. Over a
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Figure 56. Local density profilesρ(1)(z), in-plane pair correlation functionsg(2) and snapshots
of the configuration of LJ molecules in a ‘grooved’ slit pore. The shaded spheres represent the
wall atoms (the grey and the black spheres represent alternate rows of an fcc lattice), and the
open spheres represent the adsorbed molecules. The parameterα defines the lateral allignment or
‘registry’ of the opposing pore walls, (α = 0: the walls are precisely in registry,α = 0.5: the
walls are completely out of registry). The dashed and the solid curves represent the profiles for
fluid adsorbed in the narrow region and the wide region of the pore, respectively. From [61].

range of registries and groove depth, the confined phase consisted of fluid and solid portions
in equilibrium, i.e., fluid filled nanocapillaries separated by solid strips (figure 56).

The effect of the presence of active sites on the adsorbent surface was briefly addressed
by Vishnyakovet al [372] for graphitic slit pores. The authors considered several models for
graphitic pores with varying pore widths and different densities of NH2, CH = O, CH3OH
groups on a graphitic surface to model anthracite. The freezing temperature was found to be
strongly dependent on the nature and the density of the active sites present.

6.4. Freezing versus glass transition

In general, one must exercise care in interpreting freezing inside pores. Experiments such
as differential scanning calorimetry do not give any information on the structure of the
confined phase. It is also difficult to use diffraction methods to characterize the structure
of the confined phase, because of the presence of the additional signal due to the adsorbent
molecules. Spectroscopic methods such as NMR and dielectric relaxation spectroscopy
are useful under these circumstances, as they yield information about the translational and
orientational relaxation time of the molecules in the confined phase. For example, in the study
of freezing of O2 in sol–gel glasses [379], the orientational relaxation timeτ of molecules
was measured as a function ofT and a sharp drop inτ (about four orders of magnitude)
was observed at the transition. A similar measurement for a glass transition would show a
continuous change from liquid phase to glass phase relaxation times.

In computer simulation studies of freezing in confined geometries, it is possible to
directly measure the pair correlation function to monitor the freezing process. However,
for finite system size even a glassy phase can display extended positional correlations [52].
An additional measure of the self-diffusion coefficient often provides a distinction between a
freezing transition and a glass transition. Free-energy calculations are very useful, as the nature
of the phase transition can be inferred directly. The order parameter provides a direct measure
of the difference in bond orientational order between the ordered and disordered phase. Thus,
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for the case of a glass transition, the minimum in the Landau free-energy curve at the value of
the order parameter corresponding to the crystalline phase would be absent, unlike figure 51.

The glass transition in a porous medium is an interesting topic in its own right. There have
been a number of studies that have investigated the effect of confinement on glass-forming
organic liquids [296,297,329,330]. It is well established that the glass transition temperatureTg
of a liquid inside a porous glass is shifted by1Tg, the sign and extent of which is material
specific, just as for the case of freezing. Dielectric relaxation studies have indicated a slower
relaxation process in the confined liquid as compared with the bulk, and the appearance of
an additional relaxation component due to the contact layer, consistent with the studies on
freezing. However, unlike freezing, there seems to be no general basis to explain the nature of
the shift in1Tg.

7. Conclusions

There has been a considerable advance in our understanding of phase equilibria and separation
in model pores of simple geometry, particularly cylindrical and slit-shaped pores, over the last
decade. Capillary condensation and layering transitions have been extensively investigated.
Less work has been done on liquid–liquid equilibria and freezing in such systems, but a clearer
picture of these phenomena is also beginning to emerge. Little work seems to have been
reported on the effects of confinement on phase equilibria for mixtures, other than that for
liquid–liquid separations.

The relationship between this rather large body of theoretical work and the behaviour of
adsorbates in real porous materials remains unclear. All experimental materials possess some
degree of heterogeneity in the pores (an exception is the surface force apparatus), and it is not
easy to distinguish effects of chemical and geometric heterogeneity. On the modelling side,
there is a need now to develop better models for such materials, and to use these to gain a better
understanding of phase equilibria in real materials. Examples of steps in this direction were
discussed in section 3.3 for the case of capillary condensation. The need for better models
is particularly acute for the amorphous porous materials, such as activated carbons, aerogels
and oxides. In some cases it may be possible to mimic the manufacturing process (as in the
case of the CPGs discussed in section 3.3). In others, such as the activated carbons, this will
be difficult or impossible because of the complexity of the processes involved; nevertheless,
it may prove possible to simulate the final stages of manufacture and thus produce structures
that more closely resemble the real materials.

On the experimental side there is a continuing need to develop more well-characterized
materials in which it is possible to control and vary the pore size in the manufacturing process.
Better ways to characterize such materials are needed. Many of the standard methods used to
estimate pore sizes, pore volumes and surface area are more than 50 years old, and in some
cases are known to be seriously in error for pore sizes below a few nanometres. Hopefully,
improved methods for interpreting experimental data will emerge from improved models of
the type discussed in the previous paragraph.

A persistent problem in this field has been the difficulty of bringing experiment and theory
together in a fruitful way, a result of the difficulty of characterization of materials on the experi-
mental side, combined with the difficulty of developing adequate models for use in the theories
and simulations. We hope that this situation will gradually improve as increased computational
power makes more sophisticated models a reality, and as new materials become available.
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[159] J́erôme B 1991Rep. Prog. Phys.54391–451
[160] Jiang S and Gubbins K E 1995Mol. Phys.86599–612
[161] Jiang S, Gubbins K E and Balbuena P B 1994J. Phys. Chem.982403–241
[162] Jiang S, Rhykerd C L and Gubbins K E 1993Mol. Phys.79373–91
[163] Kahng J and Ebner C 1989Phys. Rev.B 4011 269
[164] Kaminsky R D and Monson P A 1991J. Chem. Phys.952936–48
[165] Kaminsky R D and Monson P A 1994Langmuir10530–7
[166] Kaminsky R D and Monson P A 1994Chem. Engng Sci.492967–77
[167] Kaneko K 1998Adsorption and its Application to Industry and Environmental Protection: Surface Science

and Catalysis 120Bvol II, ed A Dobrowski (Amsterdam: Elsevier)
[168] Keblinski P, Ma W-J, Maritan A, Koplik J and Banavar J R 1993Phys. Rev.E 47R2265–8
[169] Kellay H, Bonn D and Meunier J 1993Phys. Rev. Lett.712607
[170] Kierlik E and Rosinberg M 1990Phys. Rev.A 423382–7
[171] Kierlik E and Rosinberg M 1991Phys. Rev.A 445025–37
[172] Kierlik E, Rosinberg M L, Tarjus G and Monson P A 1996J. Phys.: Condens. Matter8 9621–5
[173] Kierlik E, Rosinberg M L, Tarjus G and Monson P A 1998 ed F MeunierFundamentals of Adsorptionvol 6

(Paris: Elsevier) pp 867–72
[174] Kierlik E, Rosinberg M L, Tarjus G and Pitard E 1998Mol. Phys.95341–51
[175] Kim H K, Feng Y P, Zhang Q M and Chan M H W1988Phys. Rev.B 371745–65
[176] Kim S B, Ma J and Chan M H W 1993Phys. Rev. Lett.712268–71
[177] Kim Y W, Kim S C and Suh S H 1999J. Chem. Phys.1101230–4
[178] Kjellander R and Sarman S 1990Mol. Phys.70215–37
[179] Kjellander R and Sarman S 1991Mol. Phys.74665–88
[180] Klein J and Kumacheva E 1995Science269816
[181] Klein J and Kumacheva E 1998J. Chem. Phys.1086996

Klein J and Kumacheva E 1998J. Chem. Phys.1087010
[182] Kofke D A and Glandt E D 1988Mol. Phys.641105–31
[183] Koga K, Zeng X C and Tanaka H 1997Phys. Rev. Lett.795262
[184] Kotelyanskii M and Kumar S K 1998Phys. Rev. Lett.801252–5
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