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Understanding phase behavior in confined systems has a tremendous potential
in improving the efficiency of a variety of separation processes that use porous ma-
terials like activated carbons, controlled glasses, silica xerogels & aerogels, carbon
aerogels and zeolites. The effects of the reduced dimensionality and enhanced ener-
getic interactions due to the porous surface have important consequences that can
only be captured by molecular level modeling. Novel phase transitions can result
(capillary condensation in quasi-one-dimensional systems and orientational ordering
transitions in quasi-two-dimensional systems) that often are the cause of the break-
down of macroscopic equations like Kelvin and Gibbs-Thomson equations based on
classical thermodynamics. In this work, the focus on a free energy method based on
Landau theory which we developed and applications of this theory to understand
the breakdown of the macroscopic equations, developing global phase diagrams,
and characterizing hexatic phases. The results of our experimental studies are also

described, that provide supporting evidence for our modeling efforts.
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Chapter 1

Introduction

Molecules confined within narrow pores, with pore widths of a few molecular diam-
eters, can exhibit a wide range of physical behavior. The introduction of wall forces,
and the competition between fluid-wall and fluid-fluid forces, can lead to interest-
ing surface-driven phase changes. These include new kinds of phase transitions not
found in the bulk phase, e.g. layering, wetting and commensurate-incommensurate
transitions, as well as shifts in transitions (e.g. freezing, gas-liquid, liquid-liquid)
that are familiar from bulk behavior. In such confined systems the confined phase

is usually termed the adsorbate, and the porous material the adsorbent.

1.1 Porous materials

Some examples of nano-porous materials are given in Table 1.1, together with ap-
proximate pore shapes and sizes. It is convenient to divide these into those with

crystalline or regular structures, and those that are amorphous. For crystalline (e.g.



Table 1.1: Nano-porous Materials [1]

Material Surface Pore Shape | Pore Width/nm
A. Crystalline, Regular
Aluminosilicates O, Al, Si | Cylinder, cage 0.3-1.0
Aluminophosphate | O, Al, P Cylinder 0.8-1.3
MCM-41 0, Al, Si Cylinder 1.5-10
Carbon nanotube C Cylinder 2-10
B. Amorphous
Porous glass O, Si Cylinder 4-1x10*
Silicas, oxides O, Si, etc. Cylinder 1.0 up
Silica aerogel O, Si Void 5-50
Pillared Clay 0, Si, Al Slit+pillars > 0.5
Microporous BN B,N,H Slit <1
Activated C fiber C Slit 0.6-1.3
Activated C aerogel C Slit+void 1.5-30




aluminosilicates, aluminophosphates) or regular (e.g. carbon buckytubes) materials,
X-ray or neutron diffraction can be employed to determine the atomic structures,
and hence the pore geometry and dimensions. Such information provides the co-
ordinates of the solid atoms, and this structural information greatly facilitates the
interpretation of experiments carried out on these materials. In addition, modeling
of confinement effects in such materials is greatly simplified. Even in these materials
some structural uncertainties usually remain. The location of water molecules and
ions in the framework structure may be unknown. Ab initio calculations, and in
some cases classical simulations, can help in determining the likely location of such
molecules. In addition, defects in the lattice or pore structure can sometimes lead
to large effects on adsorption, particularly if the pore structure consists of straight
cylindrical pores that are not interconnected (as in some aluminosilicates and many
aluminophosphates). In such cases, a very small percentage of lattice defects can
block large amounts of pore volume. At the present time the small pore zeolites, con-
ventional aluminosilicates and aluminophosphates [3], can be prepared in a highly
crystalline form. The larger pore materials, MCM-41 [4] and carbon nano-tubes [5]
are difficult to prepare in a pure and completely uniform state. MCM-41 (Mobil
Catalyst Material 41)is a large pore aluminosilicate prepared by a liquid crystal
templating process; the pore size can be controlled by varying the chain length of
the liquid crystal molecules. A problem with MCM-41 is that ordered pore domains
are usually very small. This situation is improved upon in a second generation of or-
dered mesoporous materials, prepared by a sol-gel synthesis of silicates in lyotropic
liquid crystal media [6]. Such mesoporous silicas have large domains and can be

extended using amphiphilic block copolymers as templates [7, 8].



Amorphous nano-porous materials vary considerably in their micro-structure and
degree of regularity, and are in general very difficult to characterize completely.
For example, controlled pore glass and the related Vycor glasses [9] have pore cross
sections that are approximately circular, and are thought of as having roughly cylin-
drical pores. They are prepared by a spinodal decomposition process that involves
quenching a liquid mixture of oxides into the two-liquid-phase region; the pore size
is determined by the time at which the quenched mixture is kept at an intermedi-
ate temperature, before the final quench to room temperature. Such glasses have a
narrow distribution of pore sizes, and have been widely used in experimental stud-
ies. The interpretation of such experimental results has often relied on models in
which the pore structure is represented by a collection of straight, cylindrical, non-
connected pores having a range of diameters. However, electron micrographs of these
glasses show a networked structure with winding pores, and simple straight cylinder

models of these materials do not capture some important confinement effects.

Silica and many porous oxides are made by sol-gel processes [10]. Silica gel is
usually formed in an aqueous medium, and the solvent is subsequently removed. In
the case of xerogels, the structure is compressed and the porosity reduced by the
surface tension forces as the liquid medium is removed. Aerogels are gels in which
the liquid phase has been replaced by a gas in such a way as to avoid the shrinkage
that would normally occur if the gel were directly dried; thus, they are characterized
by very high porosity. Carbon aerogels are prepared by supercritical drying, followed
by pyrolysis, of an organic gel such as resorcinol-formaldehyde gel [11, 12]. They
are mesoporous and may contain some micropores [13, 14]. Silica aerogels [10] can
be prepared by replacing the water by alcohol, heating the gel to a temperature

above the critical temperature of the alcohol (to avoid the tension associated with a



gas-liquid meniscus, and consequent compression of the gel), followed by removal of
the alcohol vapor. Porous materials fabricated by sol-gel processes generally consist
of roughly spherical solid particles separated by void space. Models consisting of
a random array of spheres to represent the solid have been used to study such

materials.

Activated carbons [15, 16, 17, 18, 19] can take a variety of forms. They are usually
prepared by heating organic material (e.g. wood, coal, polymers, vegetable matter)
to a high temperature in the presence of an oxidizing agent (often steam). Such
carbons have been modeled using a collection of slit-shaped pores of varying widths,
with the pore surfaces modeled as graphite basal planes. Variations on this include
wedge shaped pores, and blocks of graphite with sections randomly removed [20, 21].
Carbon nanotubes can be prepared as regular straight carbon tubes; the diameter
and number of graphite sheets in the walls can be controlled in the manufacturing

process.

Experimental and theoretical work on phase transitions inside pores are beset
with significant difficulties. On the experimental side, it is difficult to describe the
adsorbed material, and one must attempt to infer its molecular structure from a
range of experimental techniques. With the exception of the crystalline materials,
one of the greatest difficulties is in determining the morphology of the material.
Often the distribution of pore sizes and shapes is poorly known, and little is known
of connectivity and surface chemistry. In such situations any interpretation of ex-
perimental results is speculative. In equilibrium experiments it is often difficult to
know if true thermodynamic equilibrium has been achieved. Metastable states are a

considerably greater problem in these systems than in bulk materials. In some cases,



such as freezing and liquid-liquid separation in amorphous materials, it is likely that
equilibrium is never attained in any reasonable time. Other common difficulties in
the experiments include (a) the possibility that the surfaces and pore structure may
change with temperature or pressure, and (b) trace amounts of impurities in the

adsorbate may preferentially adsorb on the pore walls, leading to spurious results.

In theoretical and simulation work the problems are somewhat different. In con-
trast to the experiments, the molecular structure of the adsorbate is completely
known. However, in trying to simulate amorphous systems, the lack of knowledge of
the morphology of the porous material is often the greatest problem. Two possible
approaches to this problem are: (i) attempt to build a model that looks as much as
possible like the real material by studying electron micrographs and other laboratory
measures, (ii) try to mimic by simulation the manufacturing process used to make
the real material. Other complications that arise in modeling are: (a) metastable
states arise frequently, as in the experiments. However, in theory and simulation
we can calculate free energies, and thus determine which of several different states
of the system is the true equilibrium one, and the point at which true phase equi-
librium exists. (b) Usually the pore walls are assumed to be rigid and don’t change
with the state conditions of the bulk fluid. This requirement can be relaxed, as in
clay swelling, for example. (c¢) Vibration of solid atoms is usually neglected, but
will be important for some properties. (d) The intermolecular potentials (fluid-fluid
and fluid-solid) are uncertain. The fluid-fluid potentials are often assumed to be the
same as those for the bulk fluid, i.e. the external field from the walls is assumed to
have a negligible influence on these. In the case of the fluid-solid interactions, the
importance of electrostatic, induction, and 3-body and higher-body interactions is

often unknown. In addition to its use to model real systems, simulation and theory



can also be used to study the behavior of adsorbates confined in hypothetical porous
materials that do not necessarily correspond to real materials. Such simulations of-
fer the possibility of systematic investigations not possible in the laboratory, since
the simulator can vary the pore geometry, connectivity and surface chemistry at

will.

1.2 Phase behavior in confined spaces

Considerable insight into liquid-gas transitions in pores (capillary condensation,
wetting and layering transitions) has been gained [22]. Important issues still remain
to be resolved for solid-fluid transitions in confined systems [23]. Recently there
has been growing interest in the study of fluid-solid transitions in porous materials.
Improved understanding of confinement effects on freezing are essential in areas
relating to lubrication, adhesion, fabrication of nanomaterials and nanotribology.
In addition, these studies can provide insight into mechanisms involved in frost
heaving and distribution of pollutants in soil. Freezing in porous media has also
been widely employed in the characterization of porous materials using the method

of thermoporometry [24].

There have been numerous experimental studies on freezing of simple fluids in
silica based pores [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Freezing
of oxygen in sol-gel glasses was studied by Warnock et al. [25] by a sub-pico sec-
ond optical technique; the freezing temperature in the confined system was always
depressed as compared to the bulk; the shift was larger for smaller pores, and as
large as 10 K for the smallest (20 nm) pore. Unruh et al. [31] examined the melting

behavior of indium metal in porous silica glasses by differential scanning calorime-



try (DSC) measurements, and reported a large depression in melting point due to
confinement. The simplest way to understand the freezing point shift is through
the Gibbs-Thomson equation. This determines the freezing temperature, T, as the
point at which the chemical potential of the solid core inside the pore equals that

of the surrounding fluid (see e.g. Evans and Marconi [40]).

%:_QM— Ad

= — 1.1
be H)\fb >\fb ( )

where T, is the bulk freezing temperature, v, and 7, are the corresponding wall-
solid and wall-fluid surface tensions, v is the molar volume of the liquid, A, is the
latent heat of melting in the bulk system and A¢ represents the difference between
the total wall-solid potential energy and the wall-solid potential energy that would
exist if the wall were made up of the adsorbed solid itself. This type of classical
thermodynamic argument breaks down for small pores, as the concept of surface

tension is not well defined in the limit of small and highly inhomogeneous systems.

Unruh et. al. [31], Molz et. al. [30] reported latent heat measurements \y,, using
DSC in the confined systems. The magnitude of Ag, in the above studies was much
less than the latent heat in the bulk. The difference was attributed to the premise
that, in a pore the confined crystalline phase may not be homogeneous, i.e., there
may be amorphous regions coexisting with crystalline regions. Such speculations can
only be tested if the fluid structure of the confined phases are studied, in addition

to thermodynamic properties such as freezing points and latent heats.

There have been experimental reports that investigated the structure of the con-
fined phases through NMR and X-ray diffraction techniques. Overloop and Van Ger-

van [38] studied freezing of water in porous silica using NMR, and they suggest that



in the confined solid phase up to 3 molecular layers adjacent to the pore wall (which
they term “bound water”) have a structure that is different from the crystal phase
and from that of the free liquid. The rest of the water molecules in the pore interior
were in the form of cubic ice (I.) and the freezing temperatures were consistent with
the Gibbs-Thomson equation. Morishige and Nabuoka [36] used x-ray diffraction to
study water in siliceous MCM-41 having a range of pore sizes, and also confirmed
the existence of a disordered layer of water molecules near the pore wall, with the
inner region being the I. phase. Morishige and Kawano [37] also studied water in
Vycor glass and found evidence for both the cubic I. phase as well as the ordinary
hexagonal (I;,) phase. Baker and co-workers [41] studied the nucleation of ice in sol-
gel silicas and MCM-41 and found that the crystal structure depends strongly on
the conditions and nature of the porous material, showing characteristics of both I,
and I. forms. Morishige and Kawano [37] have reviewed other experimental studies

of the freezing/melting behavior of water in porous silicas and glasses.

In a recent study, Booth and Strange [39] examined the melting of cyclohexane in
porous silica using the NMR technique. The melting temperature was below the bulk
melting point, and in the confined solid phase there were two distinct components
of the transverse relaxation time. The short component (15-30 s, comparable to
the crystal phase in the bulk) was attributed to the crystal phase in the interior
of the pore, and the long component was attributed to a liquid-like contact layer
(the layer adjacent to the pore walls). Further lowering of temperature led to the

freezing of the surface (contact) layer as well.

The effect of confinement on the triple point of CO, was examined by Duffy

et. al. [32] using positronium annihilation spectroscopy. The authors found that the



10

confinement of CO, in Vycor glass shifts the liquid-solid transition to a considerably
lower, and the gas-liquid transition to a considerably higher temperature, than in
the bulk. The triple point is reduced both in pressure and temperature from that of
the bulk. Recently, Morishige and Kawano [42] employed x-ray diffraction to study
freezing of Kr in MCM-41 under isothermal conditions, by varying the pressure, and
found that the confined triple point is not a single state point in the P-T diagram, but
a region in the P-T plane. The authors attributed the diffuse triple point region for
the confined system to heterogeneity of pore sizes, but speculated that the diffuse
triple point region is due to coexistence of molecular clusters of different phases.
Brown et. al. [43] reported studies of the microscopic structure of confined solid
COg adsorbed in porous Vycor glass using x-ray diffraction. Their study concluded
that the confined CO, solidifies into crystallites, with a structure that is consistent
with the Pa3 structure (an fec lattice with molecules oriented along the diagonals of
the cubic lattice) of bulk CO,. The average crystallite size of the solid phase of the
confined CO, was comparable to the pore dimensions in Vycor, indicating that the
solidification occurs separately in each of the pores. However, a significant amount
of disorder was observed in the arrangement of the molecules which could not be

accounted for with the Debye-Waller effect.

In view of this large body of experimental evidence for a decrease in the freezing
temperature due to confinement, it is tempting to assume that a decrease always
occurs. However, an opposing trend in the freezing point shift was reported by
Klein and Kumacheva [44]. These authors studied freezing of cyclohexane between
parallel mica surfaces (slit shaped geometry) and observed a significant increase of
about 17 K in the melting temperature on confinement for a 4.0 nm pore. Simi-

lar phenomenon have been observed for linear alkanes confined between mica sur-
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faces [45, 46]. Such an increase is consistent with the Gibbs-Thomson equation if
one recognizes that the direction of the freezing point shift depends on whether the
pore wall favors the confined solid phase or the confined fluid phase. If the wall-solid
surface tension 7,, is greater than the wall-fluid surface tension 7,,, then the shift
AT, = Thpuk — Tompore is predicted to be positive, otherwise it is negative. In
a subsequent molecular simulation study of freezing of simple fluids in slit pores,
Miyahara and Gubbins [47] showed that T was strongly affected by the strength of
the attractive forces between the fluid molecules and the pore walls. For repulsive
or weakly attractive potentials, T decreased. For strongly attracting walls such as
carbons, an increase in Ty was observed. Moreover, the increase in Ty was predicted
to be larger for slit than cylindrical pores [48]. More recently, Castro et. al. [49]
studied freezing of methane and other liquid alkanes on a graphite substrate by
incoherent elastic neutron scattering. They found that the layer nearest to the
graphite substrate melts at a temperature 10% higher than the bulk melting point

of methane.

The elevation in the freezing temperature in confined systems remain controver-
sial, as has been contradicting reports on the nature of the shift in the freezing
temperature of cyclohexane between parallel mica surfaces in a surface force appa-
ratus [50]. In the simulation studies of Miyahara and Gubbins [47] and Maddox
and Gubbins [48] the freezing and melting displayed large hysteresis loops in the
average density of the fluid adsorbed as a function of temperature, and thus the
location of the equilibrium freezing/melting point could be estimated only to the
accuracy of the width of the hysteresis loops. The nature of the transition was also
not clear from the adsorption behavior. The nature of the transition was unclear,

and the continuous nature of the freezing curves suggested that the phase transition
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could be continuous. A study of phase transitions can seldom be complete without

calculating free energies.

In an attempt to address this problem, Dominguez et al. [51] used thermodynamic
integration [52] to calculate the free energy of the solid and fluid phases in the pore.
This method involves a numerical integration of the Gibbs free energy starting from
a known reference phase (the Einstein crystal for the solid phase and the ideal gas for
the liquid phase) to the state point of interest. For slit pores with weakly attractive
walls Dominguez et. al. [51] were able to use thermodynamic integration to evaluate
the free energy of the confined phases. They were thus able to show that the freezing
transition was first order, and to locate the true equilibrium melting point. These
results were consistent with that obtained by Miyahara and Gubbins [47]. The free
energy study in Ref. [51] was limited to confined systems with repulsive or weakly
attractive wall-fluid potentials. For the more ubiquitous case of a wall-fluid potential
that is moderately or strongly attractive, this method breaks down. This is because
the adsorbed molecules adjacent to the pore-wall (the contact layer) freeze before
the adsorbed molecules in the interior of the pore (this issue is addressed in detain
in chapters 2 & 5). This makes it impossible to find a reversible path from the ideal
gas phase to the fluid phase, since any such path runs into a first order transition

corresponding to the freezing of the contact layer. *

In order to circumvent the problems involved in the thermodynamic integration
method, we have developed a novel approach involving the calculation the Landau

free energy as a function of a suitable order parameter, using the grand canonical

!The fluid phase referred to here, is characterized by a frozen contact layer but is liquid-like in

the interior of the pore.
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Monte Carlo simulation method. The grand free energy for each phase can be
obtained by one-dimensional integration of the Landau free energy over the order
parameter. Using this approach important questions regarding melting and freezing
in pores are addressed regarding the nature of the phase transition: first order vs.
continuous, the direction of shift in the melting temperature 7}, nature and origin
of hysteresis, dimensionality cross-over due to increasing confinement, structural
changes of the condensed phases in the restricted pore geometries, effect on latent
heats, etc. The focus of this thesis will be on the effects of the geometric confinement
and enhanced energetic interaction due to the presence of the pore walls, on the
freezing behavior of the confined fluid phase. There is a considerable shift in the
phase diagram of a fluid due to confinement effects. In addition, novel phases
manifest solely due to the presence of the pore walls. In the following chapters the
Landau free energy methodology and several applications of freezing transitions in

confined systems are described.



Chapter 2

A new free energy formalism to

study freezing in slit-pores

This chapter deals molecular simulation study of freezing transitions for simple flu-
ids in narrow slit-pores. A major stumbling block in previous studies of freezing
in pores has been the lack of any method for calculating the free energy difference
between the confined solid and liquid phases. Conventional thermodynamic inte-
gration methods often fail for confined systems, due to the difficulty in choosing a
suitable path of integration. A novel approach involving the calculation the Landau
free energy as a function of a suitable order parameter, using the grand canonical
Monte Carlo simulation method is described. The grand free energy for each phase
can be obtained by one-dimensional integration of the Landau free energy over the
order parameter. These calculations are carried out for two types of wall-fluid in-
teraction, a hard wall and a strongly attractive wall modeled on carbon. The grand
free energy results for both cases clearly indicate a first order fluid to solid transi-
tion. In addition, the angular structure function in the individual molecular layers

provide strong evidence of a transition from a two-dimensional liquid phase to a

14
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hexatic phase. This is followed by a transition from the hexatic to a crystal phase.
This chapter is organized as follows: in section 2.1, we discuss the various potential
models and simulation methods and also describe the formulation of the free energy
method used. Sections 2.3 & 2.4 outline the free energy calculation. We investigate
the quasi-two-dimensional nature of the fluid phase in the case of a graphite pore
in section 2.5. Finally in section 2.6, we point out some areas for future work along

with our conclusions.

2.1 Simulation methodology

The interaction between the adsorbed fluid molecules is modeled using the Lennard-
Jones (12,6) potential with size and energy parameters chosen to describe methane.
Two types of pores, (1) a purely repulsive and smooth hard wall pore, and (2) a
graphite pore, are chosen to study the effect of a purely repulsive and a highly

attractive fluid-wall potential on the freezing point of methane.

Our model of the repulsive pore is characterized by a pore width H, which is
defined to be the distance between the planes through the nuclei of the atoms in
the first atomic layer of each of the opposing walls. The repulsive wall can be
thought of as being composed of a continuum of hard sphere atoms. The hard
sphere diameter in our model is chosen to be the same as the Lennard-Jones size
parameter, of, = 0.361 nm, that characterizes the methane-graphite interaction.
To model the graphite pore, we use the integrated 10-4-3 Steele potential [53, 54]

given by,

_ 2 (0w \" _ (Opw\* T
Pru(2) = 27 Pue 0 {6 (7) _(7> _<3A(z+0.61A)3>] (2.1)
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The potential parameters for methane and for the graphite wall were taken from

Steele [53, 54],

077 = 0.381 nm, err/kp = 148.1 K
T = 0.340 nm, Cwn/kp = 28.0 K
pw = 114 nm—3, A = 0.335 nm

Opw = (077 + Oww)/2, €0 = (€f7€ww)?

Here, the o’s and €’s are the size and energy parameters in the Lennard-Jones (LJ)
potential, the subscripts f and w denote fluid and wall respectively, z is the coor-
dinate perpendicular to the pore walls and kg is the Boltzmann’s constant. For a

given pore width H, the total potential energy from both walls is given by,

¢pore(z) = d)fw(z) + ¢fw(H - Z) (2'2)

We expect the approximation of a structureless graphite wall to be a good one here,
since the diameter of the LJ molecule (0.381 nm) is much larger than the C-C bond
length in graphite (0.14 nm), so that methane molecules only feel a mild corrugation
in the fluid-wall potential in passing along the surface. This has been confirmed by
simulations of monolayers of methane on structured, planar carbon walls [55], where
wall structure had only a minor effect for temperatures down to 60 K. This argument
was further tested in Ref. [47], where it was found that the structure of methane was
practically identical when confined between smooth and structured graphite pore

walls, for both the fluid as well as the solid phase.

The simulation runs were all performed in the grand canonical ensemble as de-
scribed in Ref. [56], fixing the chemical potential y, the volume V' of the pore and

the temperature T". The pore width in the simulation was typically around 7.50¢,



17

and the rectilinear simulation cell was 100y by 100 in the plane parallel to the
pore walls, consistent with a cutoff of 50 for the fluid-fluid interaction. The system
typically had up to 700 particles, and periodic boundary conditions were employed
in the plane parallel to the pore walls. The simulation was setup such that inser-
tion, deletion and displacement moves were attempted with equal probability, and
the displacement step was adjusted to have a 50% probability of acceptance. Ther-
modynamic properties were averaged over 40-100 million individual Monte Carlo
steps. The length of the simulation was adjusted such that a minimum of ten times
the average number of particles in the system would be inserted and deleted during

a single simulation run.

2.1.1 The Landau free energy formalism

In the Landau theory of phase transitions [57, 58], the model system is characterized
by an order parameter ®, which is generically a density variable that takes on
distinct values in different phases of the system. The behavior of ® as a function
of the state variables in the thermodynamic limit determines the nature of the
phase transition. In particular, the probability P[®] of observing the system having
an order parameter value between ® and ® + 0P assumes a bi-modal distribution
when there is two-phase coexistence. As the state conditions are varied, the relative
behavior of the two peaks with respect to each other provides information on which
phase is more stable in the thermodynamic sense. The probability distribution
function P[®] is calculated during a simulation run by collecting statistics of the
number of occurrences of a particular value of ® in the form of a histogram. For

the general case of a spatially varying order parameter ®(Z), the probability P[®]
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is defined as,

P[®] =

[I]I —

N) 3
> e ) ,ffw / Dy[®(@)]8(B — @) exp(—BHy)  (2.3)
N=1

= is the partition function in the grand canonical ensemble, N the number of
molecules in the system, § = 1/kgT, X is the de Broglie wavelength and Hy is
the Hamiltonian of the system. The path integral notation Dy[®(Z)] should be

interpreted as [58],

/ DA[#(H)] = lim 1T, / i, = / ar (2.4)

Equation (2.4) defines the path integral in terms of a trace over a discrete number
of sites a, and v, represents the volume per site. The Landau free energy A[®] is

then defined as,

(D) = Y- SR [ pyla@)s@ - o) ep(-piy)  (25)
N 1

and can be interpreted as the free energy corresponding to a restricted partition

function in order parameter space. From this definition it follows that,
A[®] = —kgT In(P[®]) + Constant (2.6)

For a particular phase, for instance phase A, the grand free energy €2, is related to
the Landau free energy by

spl(-p04) = [ " 10 exp(—BA®) (27)

min,A

The grand free energy at a particular temperature can be calculated by numerically
integrating over the order parameter range (®in 4, Pmaz,.a) that corresponds to
the particular phase A in consideration. More complete details of the method for

confined systems are given elsewhere. [59, 60|
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2.1.2 Umbrella sampling

To overcome the difficulty of collecting reliable statistics on the probability distribu-
tion function we used umbrella sampling [61]. To calculate P[®], the order parameter
space is divided into ten windows. As a first estimate, an approximate probability
distribution P;[®] was calculated separately in each of the windows, by collecting
statistics in the form of a histogram in ® without the use of any weighting function
in the umbrella sampling. A successive set of simulations were then performed in
each of the windows by using a weighting function w{®} = (P;[®])~", in addition

to the usual acceptance criteria for the probabilities in the GCMC simulation [60].

This process can be interpreted as performing the simulation in a new ensemble,
U(T,V,p, h), which is related to the A-ensemble A(T,V,u,®), by the Legendre

transformation

where the term —h® = w{®} is the weighting function in the umbrella sampling.
Thus, using the weighting function in the acceptance criteria of the GCMC simula-
tion is like applying an external field h that is conjugate to the order parameter ®.
At the coexistence condition, it is this field that forces the system to move from one
stable minimum to the other. For this method to work successfully, it is important
to choose an appropriate order parameter ® which responds to changes in h; ®
should act as a conjugate variable to h [60]. It is equally important to ensure that
the choice of w{®} causes the regions of ® that are thermodynamically unstable in
the A-ensemble, to be thermodynamically stable in the ¥-ensemble. These two con-
ditions ensure ergodicity and the collection of reliable statistics, respectively. The

Landau free energy A[®] is recovered from the U-ensemble using equation (2.8).
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2.2 Order parameter

In order to study solid-liquid phase transitions, the order parameter should be sensi-
tive to the degree of crystalline order in the system. We followed the previous work
on bulk fluids [60, 59] in using an order parameter that measures the orientational
order (a measure of the rotational symmetry of the crystal). Our calculations of the
adsorption vs. temperature, and of the radial distribution function, showed that
the behavior of methane was qualitatively different in the hard wall pore and in the

graphite pore. We used these results as a basis to choose a suitable order parameter.

2.2.1 Hard wall pore

The adsorption curve and the three-dimensional pair correlation functions were cal-
culated for methane confined in a hard wall pore of width 7.50; using standard
GCMC simulations. The chemical potential was maintained at a value correspond-
ing to a pressure of 100atm.; a LJ equation of state from the literature [62] was
used to relate the chemical potential to the pressure. This high pressure is neces-
sary to study hard wall systems because the methane would evaporate inside such
pores under normal pressures [47]. These results indicated that the structure of the
fluid and solid phases were similar to the bulk three-dimensional structure, but the
transition itself was occurring at a much lower temperature than for bulk methane;
the freezing of Lennard-Jones methane in the bulk occurs at T = 101K [63],[64].
Thus, three dimensional bond orientational order parameters introduced by Stein-
hardt et al. [65] (see also Refs. [59, 60]) are employed. These order parameters are
defined as follows: each nearest neighbor bond has a particular orientation in space
with respect to a reference axis, which can be described by the spherical coordinates

(0, ). Nearest neighbors were identified as those particles that were less than a cut-
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off distance r,,, away from a given particle. We used a cutoff distance r,,, = 1.3 oy,
corresponding to the first minimum of ¢(r) in a fcc crystal at bulk coexistence .

One can then define the global order parameter Q,,, [66],

Np
— 1
Qun = = D Yim(0:.67) (2.9)
Ny i
where the index 7 runs over the total number of nearest neighbor bonds NV, and the
Y,n’s denote the spherical harmonics. In order that the order parameter does not

depend on the overall orientation of the crystal in the simulation cell, rotationally

isotropic combinations of the @,,,’s are defined as [66],

47 o 2 2
0= (555 3 ) 210
m=—I

and,
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(2.11)
The matrix in equation (2.11) is a representation of the Wigner 3.J symbols defined
in Ref. [67]. The value of the order parameters for some common crystal types are
given in Table 2.1. From the positions of the first five peaks in the pair correlation
function of the solid phase (at r/os; = 1,1/2,1/3,2,&/5), it was evident that
the crystal structure could either be a simple cubic lattice or a face centered cubic

lattice. The calculation of the order parameters showed that,

Qs = 0.505, Q. = 0.159

Ws = —0.0128, W, = —0.151,

!'We note that the Landau free energy formalism is independent of any arbitrariness involved in

the definition of the order parameter such as choosing of the nearest neighbor cutoff distance 7.
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Table 2.1: Bond orientational order parameters in 3-d crystals

Crystal Q4 Qs Wy We | & =Qs—3Wy
f.c.c. 0.191 | 0.571 | -0.159 | -0.013 1.052
h.c.p. 0.097 | 0.485 | 0.134 | -0.012 0.082
b.c.c. 0.036 | 0.511 | 0.159 | 0.013 0.033

s.C. 0.764 | 0.354 | 0.159 | 0.013 -0.124
[cosahedral 0 0.663 0 -0.170 0.663
Liquid 0 0 0 0 0

confirming that the crystal structure was a face centered cubic lattice. We therefore
followed Lyndenbell et. al. [60], and used the combination ® = Qg — 3W, as the
order parameter for the Landau free energy calculation. The quantity Q¢ alone is
a good order parameter in terms of being able to distinguish the fluid phase from
a solid phase, but it is the quantity ® that responds to the external field in the

umbrella sampling method.

2.2.2 Graphite pore

For methane adsorbed in the graphite pore (H = 7.50), the adsorption curve was
calculated along a path such that, for each temperature, the value of the chemical
potential corresponded to the pressure at which there is two-phase (gas-liquid for
temperatures above the triple point and gas-solid line below the triple point) coexis-
tence in the bulk fluid [63],[64]. This path was chosen so that our calculations could
be verified in a real experiment, without having to depend on an accurate LJ equa-

tion of state [47]. In figure 2.1 the density profile along the z direction (the direction



23

perpendicular to the pore walls) is shown. In contrast to the behavior for hard wall
confinement, distinct layering occurs for the whole range of temperatures for which
freezing and melting occur. The order in each of the individual layers is studied
by calculating the in-plane, two-dimensional pair correlation functions within each
layer (see figure 2.2). The plots in figure 2.2(b) indicate that the contact layers (the
two layers adjacent to the pore walls) freeze at a temperature higher than the rest
of the layers. The large value (about 4.5) of the first peak in g(r) for the contact
layer, a first minimum of zero, and the split second and third peaks, all show evi-
dence of a solid phase in this layer. These results are consistent with those obtained
by Miyahara and Gubbins [47] and by Dominguez et al. [51] for similar systems.
Miyahara and Gubbins also verified the Hansen-Verlet criterion [68] for freezing by
calculating the structure factor. This criterion is based on the value of the first
peak in the structure factor, S(k,), and states that in the solid phase S(k,) > 2.7
in three dimensions and S(k,) > 4.4 in two dimensions. In order to capture the
layer-by-layer freezing behavior, we chose to use a two-dimensional order parameter

previously introduced by Mermin [69, 70,

- ‘(exp(iGHi» ) (2.12)

1 &

=1

®; measures the hexagonal crystalline bond order within each layer j. The overall

order parameter ® is an average of the hexagonal order in all the layers.

Niayers
2= 2 @] Nuger (2.13)
j=1
For molecules with isotropic interaction potential the only two-dimensional closed
packed structure is the hexagonal crystal. The quantity ® is invariant under rotation
about the z axis. We expect ® = 0 when all the layers have the structure of a

two-dimensional liquid (figure 2.2(a)), ® = 1 in the solid phase (figure 2.2(c)) and
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0 < ® < 1 for the phase in figure 2.2(b).

2.3 Results for the hard wall pore

The variation of adsorption with temperature for L.J methane confined in the hard
wall pore of width H = 7.50¢ indicated that freezing occurred at a temperature
T ~ 40K, and melting occurred at a temperature 7' ~ 80K. Thus, a pronounced
hysteresis loop occurs, spanning about 40K. The Landau free energy, A[®], is shown
in figure 2.3 for two different temperatures, 7' = 60K and 7" = 45 K; it has a double
well structure, with the broad minimum centered around ® = 0 corresponding to
the liquid phase and the second minimum centered around ® = 0.95 corresponding
to the face centered cubic solid phase (ideally, ®f.. = 1.052). The high temperature
curve shows the liquid phase to be more stable, while the low temperature curve
shows the crystal phase to be the most stable. The Landau free energy curves in
figure 2.3 are determined up to an arbitrary constant. The grand free energy for each
phase is calculated from the Landau free energy using equation (2.7), by evaluating
the integral numerically over the order parameter range characterizing the particular
phase. This calculation determines the relative free energy difference between the
liquid and solid phases at a particular temperature. To relate the grand free energy
of a particular phase at two different temperatures, we numerically integrate

to obtain () as a function of u at constant temperature, and

(500 |,

to obtain €2 as a function of T" at constant chemical potential. In equation (2.15), U is

= U — Ny (2.15)

the total internal energy of the system. A suitable reversible path of integration can
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Figure 2.1: Density profile of methane in the graphite pore along the direction
perpendicular to the pore walls for four different temperatures showing distinct
layering. The solid curve for 7 = 101K is for the crystalline methane and is not
symmetric about the center of the pore along the z axis because of defects in the
two-dimensional crystal phase in the second and third layers. The profiles for the

other temperatures correspond to a fluid phase and are symmetric.
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Figure 2.2: The two-dimensional, in-plane pair correlation function for each of the

layers for the H = 7.50; graphite pore: (a) T = 130K, corresponding to Phase A,

(b) at T" = 123K, corresponding to Phase B, (¢) at T = 101K corresponding to

Phase C.
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always be chosen either along the melting or the freezing branch of the adsorption
curve. The grand free energy for the liquid and the crystal phase as a function of
temperature is shown in figure 2.4. The crossover of the liquid and solid branches at
different slopes clearly establishes the transition as first order, and also determines
the transition point at T' = 48K, which should be compared to the bulk transition
of T" = 101K for LJ methane. The free energy surface formed by the locus of
points representing the stable thermodynamic phase is convex upwards, as required
by the thermodynamic stability criterion (e.g. [71]). The free energy calculation in
figure 2.4 is consistent with that obtained by Dominguez et al. [51] for the hard
wall case using the method of Frenkel and Ladd [52], and is presented here just to
establish the validity of the Landau free energy method, before applying it to the
more interesting case of confinement in an attractive fluid-wall potential.

We note that the true equilibrium freezing temperature of 48 K is lower than that
inferred for a system of H = 7.5 o, from the work of Miyahara and Gubbins [47]; in
that work a sharp rise in the density of the confined material occurred at about 70 K,
on cooling. However, we note that the effective pore width for the present system
is less than that used in [47], since the hard sphere diameter of the wall molecules
was chosen to be oy, of methane-carbon interaction in our study, whereas in [47]
it was 0.840y,,. Thus the effective pore width, W = H — oy, in the present work,
is less than that of Ref. [47] by 0.32 oy,. This decrease in W is believed to be

responsible for the difference in freezing temperatures.

2.4 Results for the graphite pore

The Landau free energy as a function of the average hexagonal bond order ® as

defined in equations (2.12,2.13) is shown in figure 2.5 for four different temperatures
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Table 2.2: Thermodynamic stability of phases

Most stable phase | Temperature range

Phase A T > 124K
Phase B 114K < T < 124K
Phase C T <114K

for methane confined in the graphite pore of pore width 7.50¢;. Unlike the hard
wall confinement case (or the bulk behavior), this system is characterized by three
phases A, B and C corresponding to the three minima in figure 2.5. The structure
of the three phases has already been shown in figure 2.2. In phase A, all the layers
have an isotropic liquid-like structure; phase B is characterized by frozen contact
layers, with the rest of the layers having an isotropic structure; and in Phase C,
all the layers are frozen. The relative stability of the three phases as a function of
temperature can be pictured qualitatively from the positions of the minima in the
Landau free energy curves. The freezing point of the contact layers and that of the
inner layers were determined exactly by calculating the grand free energy, which
depends on the positions as well as the width of each minimum. This calculation
is depicted in figure 2.6 for the three phases A, B and C. The plot indicates two
first order transitions, one at T' = 124K corresponding to the freezing of the contact
layers and the other at T" = 114K corresponding to the freezing point of the inner
layers (see Table 2.2).

The equilibrium freezing temperature found here, 114 K, is somewhat lower
than the freezing temperature of 118 K found in Ref. [47] by observing the rise in
adsorbate density as the system is cooled. Although the model and pore width used

in the two cases are identical, we note that in [47] the ideal gas equation of state
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was used to relate the chemical potential and pressure of the coexisting bulk gas.
In the present case, the virial equation of state was used instead; this modification
yielded chemical potentials that were up to 10 % different from the ideal gas values.
Although the difference is small, we note that, because of the small difference in the
slope of the grand free energy vs. 1" curves shown in figure 2.6 for the three phases,
such a change can affect the calculated melting/freezing temperature significantly.
Thus, we believe the freezing temperature determined here is more accurate than
that inferred in Ref. [47].

As far as we are aware, this is the first calculation of the free energies and the

thermodynamic freezing points in confined systems with a generic fluid-wall po-
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tential. Comparing the grand free energy results for the hard wall pore and the
graphite pore (figure 2.4 and figure 2.6), we conclude that the freezing transition in
the graphite pore case is a weak first order transition, as compared to the strong
transition in the hard pore case. This is indicated by the magnitude of the disconti-
nuity in the slope of the free energy curve at the transition point, which is a measure
of the first order jump in the heat capacity. The nature of the fluid phases A and
B, and the reason for the freezing transition being weakly first order, are discussed

in section 2.5.

2.5 Quasi-two-dimensional behavior

Care is needed in interpreting the isotropic two-dimensional pair correlation func-
tions corresponding to all the layers in figure 2.2(a) and the inner layers in fig-
ure 2.2(b). Although the plots of the isotropic pair correlation functions are remi-
niscent of those of a two-dimensional liquid, a closer look at the third peaks of the
g(r) functions in figure 2.2(a) reveals that the contact and the second layers have
extended positional correlations compared to the inner layers. Secondly, the value
taken by the order parameter ® in phase A is about 0.24 (figure 2.5) as compared
to the expected value close to zero if all the layers were liquid. Similarly the value
of ® in phase B is 0.5, which is much larger than the expected value of 2/7 if the
contact layers are frozen (®; = ®; = 1), and the inner layers are assumed to to have
the structure of a liquid (®; = 0, i = 2t06). Such intermediate values for ® suggest

the occurrence of an intermediate phase with bond-orientational order.

Two-dimensional systems have a special significance for phase transitions in which

continuous symmetry is broken (such as freezing transitions). The Mermin-Wagner
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theorem [72] states that long range order (LRO) cannot exist in such systems. The
two-dimensional XY model of spins falls into this category, and Kosterlitz and
Thouless [73] showed that there can still be a continuous phase transition from the
disordered phase (where the two point correlation function decays exponentially) to
a quasi-long range ordered (QLRO) phase (where the two point correlation function
decays algebraically). The QLRO phase is characterized by bound pairs of vortices
(topological defects) with opposite sense. The Kosterlitz-Thouless (KT) transition
describes the unbinding of a dilute gas of vortex-pairs through a renormalization-
group treatment. The existence of the isolated vortex spin states causes the system
to be disordered. The KT transition is accompanied by a non-universal peak in the
specific heat above the transition temperature, associated with the entropy liberated

by the unbinding of the vortex pairs.

Halperin and Nelson proposed a mechanism for melting of a crystal in two dimen-
sions [70] which involved two KT-like transitions. The first is a transition between
the crystal phase (having positional QLRO and orientational LRO) and a hexatic
phase (having positional disorder and orientational QLRO); the second transition is
between the hexatic phase and the liquid phase (having positional and orientational
disorder). The crystal to hexatic transition occurs through the unbinding of disloca-
tion pairs, and the hexatic to liquid transition involves the unbinding of disclination
pairs. In two dimensions, the only close packed structure for circular disks with
isotropic interaction is the hexagonal lattice. A disclination is then characterized by
a local configuration in which a molecule has five or seven nearest neighbors instead
of the usual six. A disclination pair is a bound state of a five and a seven nearest
neighbor configuration. A dislocation can be viewed as a pair of disclination pairs.

A complete review of the mechanism of two dimensional melting is given in Ref. [74].



35

The hexatic phase was first observed experimentally in liquid crystals. In be-
tween the smectic-A phase and the crystal-B phase, a hex-B phase exists that pos-
sesses long range orientational order. This was detected in an electron diffraction
experiment on liquid crystalline thin films [75], in which the intensity pattern dis-
played a sixfold symmetry of diffuse spots indicating positional disorder but long
range orientational order. The intensity pattern for a smectic-A phase is a uni-
form ring and that of the crystal-B phase has six Bragg peaks corresponding to
a two-dimensional hexagonal lattice. These layered liquid-crystalline systems are
quasi-two-dimensional because of the additional interaction of molecules between
layers. It is believed that this inter-layer interaction causes the crystal phase to
have true long range positional and orientational order, and the hexatic phase to
have true long range orientational order (and positional QLRO), and therefore the
hexatic to crystal transition is first order, unlike the strictly two-dimensional case
[76]. The nature of layer by layer freezing in a free standing film of smectic-A phase
with four molecular layers was investigated by Chao et al. [77]. The transitions
were probed using heat capacity and shear modulus measurements as well as elec-
tron diffraction patterns. Specific heat peaks were observed for the liquid-hexatic
transitions but not for the hexatic-crystal transitions because most of the entropy
change occurs in the former transition. However the shear modulus increased from
zero continuously as the hexatic-crystal transition occurred. These measurements,
together with the diffraction patterns, revealed that both the liquid-hexatic and the
hexatic-crystal transitions in the two edge layers occurred at higher temperatures
compared to those in the two inner layers.

The spontaneous ordering of the adsorbed molecules in the graphite pore into dis-

tinct two-dimensional layers (figure 2.1) is analogous to the structure of a smectic-A
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phase in liquid crystals. Thus the nature of the freezing transitions in the individual
layers of methane can be studied along the same lines as freezing in the free standing
liquid crystalline films. In figure 2.7 we show the heat capacity of the whole system
and the order parameter in the individual layers as a function of temperature as the
system is cooled. The i** layer is a liquid for the range of temperatures for which
®; = 0 and is a solid when ®; ~ 0.85. The first peak in the specific heat that occurs
close to T'= 127K indicates a liquid to hexatic phase transition in the contact and
second layers, as seen from the continuous increase in the order parameter value in
these layers. Similarly, the second peak in the specific heat at 7" = 114K indicates
a liquid to hexatic transition in the third and the middle layers. The hexatic to
crystal transition is expected to produce a discontinuity in the specific heat, which
is probably too small to be seen in figure 2.7 for the same reason as in the case of the
liquid crystalline film [77]. The structure factor I(k,, k,) (equivalent to the intensity
pattern in the electron diffraction experiment) was also calculated to support the
interpretation of the above trends. Figure 2.8 shows the in plane structure factor
for the contact and the third layers at four different temperatures. The intensity
patterns in the form of a uniform ring suggests a liquid structure at 7' = 160K . The
structure factor at 7' = 128 K (figure 2.8(b)) shows a six fold symmetry in the inten-
sity pattern in the contact layers supporting the onset of the hexatic transition in the
contact layer, as indicated by the specific heat peak at that temperature. The third
and the middle layers however, have the intensity pattern of a liquid (figure 2.9(b)).
The structure at 7' = 111K (figures 2.8(c) & 2.9(c)) is consistent with the existence
of a hexatic phase in the second, third and the middle layers and a solid phase in the
contact layers (as indicated by the highly peaked structure of the intensity pattern).

Finally, the structure factor at 7' = 101K (figures 2.8(d) & 2.9(d)) shows all the
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layers having the structure of a hexagonal crystal. In the structure factor plots,
the difference between the hexatic and the crystal phase patterns can be seen from
the height and the width of the peaks in the intensity pattern. The reason for the
crystal phase pattern having peaks of finite width is the finite size of the simulation
cell. The structure factor patterns are consistent with the specific heat behavior in
figure 2.7. In addition, the defect structures in these phases were analyzed using
snapshots of molecular configurations. The molecular positions in the crystal phase
correspond to a defect free hexagonal crystal (figure 2.10(a)). The hexatic phase
configurations (figure 2.10(b)) show bound disclination pairs; there is also sufficient
orientational order in the system. A snapshot of the liquid phase clearly indicates
positional disorder and the presence of free disclinations (figure 2.10(c)). The defect
structures in these snapshots are consistent with the Halperin-Nelson theory of 2-d
melting. Together, these results provide strong evidence of a liquid to a hexatic to
a crystal transition in the individual layers of methane. However, we note that they
do not provide concrete proof of the existence of the hexatic phase, because of the
relatively small size of our system. This would require a careful calculation of the
free energy in the hexatic phases and a systematic finite size scaling analysis which
we have not attempted here [78, 79]. For our purpose, this study provides sufficient
insight into the nature of the fluid phases in figures 2.2(a) & 2.2(b) and the reason

for the weakly first order nature of the freezing transition.

2.6 Conclusions

We have used the Landau free energy formalism to calculate the grand free energy
of the fluid and crystalline states as a function of temperature, for LJ methane

confined in slit-shaped pores. The free energy difference between the ordered and the
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Figure 2.8: The structure factor I(k;,k,) (ks k, being measured in nm~") for the
first or contact layer in the graphite pore at (a) T = 160K, (b) T" = 128K, (c)

T = 111K, (d) T = 101K.
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Figure 2.9: The structure factor I(ky,k,) (ks k, being measured in nm ') for the
third layer in the graphite pore at (a) T' = 160K, (b) T = 128K, (c) T = 111K, (d)

T =101K.
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disordered state is directly calculated, thereby eliminating the need to numerically
integrate the free energy, starting from a well characterized reference phase. Thus,
unlike the methods that involve thermodynamic integration, this method is not
limited to repulsive or weakly attractive fluid-wall potentials. In addition to the
free energy, this method provides quantitative information on the energy barrier
to nucleation, although this is a quantity sensitive to system size effects and needs
careful interpretation. However, the free energy difference is only a weak function
of system size, and is estimated to an accuracy of 1kgT, as shown by Lyndenbell
et al. [60]. Our free energy results clearly indicate a first order fluid to crystal
transition for methane confined in both hard wall and graphite pores. They also
confirm the sensitivity of the shift in the freezing point to the nature of the fluid-
wall potential [47], by calculating the exact temperatures at which the transitions
occur. The exact location of the equilibrium transition temperature by free energy
calculation is an improvement over methods that use the jump in the density to
locate the freezing/melting points in terms of accuracy, as it is independent of the

width of the hysteresis loops.

Methane confined in graphite shows strong evidence of a quasi-two-dimensional
behavior, and our results indicate the occurrence of an intermediate hexatic phase
between the fluid and crystal phases. The specific heat and structure factor calcu-
lations, and the analysis of defect structures, support the Halperin-Nelson theory
of two-dimensional melting. These results also provide an explanation for the weak
first order nature of the freezing transition, as most of the entropy change is believed
to occur in the fluid-hexatic transition. A rigorous proof to the existence of the hex-
atic phase would involve a careful analysis of system size effects, which we have

not attempted. The fluid-hexatic transition could be studied in more detail using
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the Landau free energy method by choosing a more appropriate order parameter.
It may also be possible to directly observe the hexatic phase experimentally, using

electron diffraction or equivalent techniques on fluids confined in graphite pores.

The extension of the free energy method to fluids confined in model cylindrical
pores and other, more realistic, pore models that include poly-dispersity and pore
networks would be of great practical interest. Such calculations would enable direct
comparison with experimental data on freezing and melting in pores to be made.
The key to such a study is finding a suitable order parameter that distinguishes

between the ordered and disordered phases.



Chapter 3

Freezing of Simple Fluids in

Activated Carbon Fibers

This chapter describes an application of the Landau free energy formalism (de-
scribed in chapter 2), that deals with the study the freezing of CCly in microporous
activated carbon fibers (ACF), using Monte Carlo simulation and differential scan-
ning calorimetry (DSC). Micro-porous activated carbon fibers are well character-
ized porous materials, having slit-shaped pores due to the voids formed between
graphitic basal planes. They serve as highly attractive adsorbents for simple non-
polar molecules, the adsorbent-adsorbate interaction being mostly dispersive (of the
van der Vaals type). Recent molecular simulation studies have predicted an upward
shift in the freezing temperature (ATy = T pore — Typur > 0) for simple fluids con-
fined in such highly attractive carbon slit pores. Our DSC experiments verify these
predictions about the increase in Ty. The results also indicate significant deviation
from the prediction of AT, based on the Gibbs-Thomson equation (simple capillary
theory). The Landau free energy method is employed to calculate the exact freez-

ing temperature in these confined systems using molecular simulation, in order to

44
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address the failure of the simple capillary theory.

3.1 Experimental Method

Pitch-based activated carbon fibers of different pore widths (P5, P10 and P20, see
Table 3.1) in the micropore region were used as adsorbent materials. The pore width
H reported throughout this paper is the distance between the planes through the
carbon nuclei in the first atomic layer of each of the opposing walls. The micropore
volume, specific surface area and the average slit pore width were determined by
high resolution Ny adsorption measurements at 77 K [80]. CCl, was adsorbed on dry
ACF samples at 303 K from a gas phase at the saturated vapor pressure. The DSC
scans were performed at temperature scanning rates of 5.0-1.0 Kmin ! using a MAC
Science, DSC3100 calorimeter. The freezing and melting temperatures were mea-
sured by identifying the peak positions in the DSC scan relative to the background,

and the enthalpies of the phase change were calculated from the peak areas.

3.2 Simulation Method

Potential Models

The interaction between the adsorbed fluid molecules is modeled using the Lennard-
Jones (12,6) potential with size and energy parameters chosen to describe CCly. The

LJ parameters were fitted to the bulk properties at solid-liquid coexistence, and are:

Off = 0.514 nm, Eff/k'B =366 K

The above parameters predict the correct melting temperature (7,,) and liquid



Table 3.1: Summary of Pore Widths

Pore Type H/nm H/nm | No. of layers
experiment | simulation
Micropores:
- - 0.94 1
P5 1.09 - 1-2
P10 1.20 - 1-2
P20 1.44 1.44 2
- 1.74 1.74 3
- - 1.93 3
Mesopores:
- - 2.44 4
- - 2.93 5
- - 3.87 7
- - 7.25 14

46
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Table 3.2: Physical Properties of CCly

Property Real CCly LJ-CCly
T, (at Latm.) | 251.8 K 252 K
o 1.59 g/cc 1.55 g/cc

crystal type | Rhombohedral fce

Af 16.1 J/g 21.3 J/g

density (p;) at coexistence, at a pressure of 1 atm.. However, these parameters fail
to predict the correct crystal structure; the LJ crystal is fcc, while real CCly freezes
into a rhombohedral phase. As a result, the latent heat of melting, Ay, is not given
accurately by this model. The properties of real CCly and LJ-CCly are compared in

Table 3.2.

We model activated carbon fibers as regular slit-like graphite pores. For the
fluid-wall interaction, we use the integrated “10-4-3” Steele potential [53, 54] that
corresponds to a smooth wall (equation 2.1). The potential parameters for the
graphite wall were taken from refs. [53, 54]. For a given pore width H, the total

potential energy from both walls is given by equation (2.2)

Characterization methods based on nitrogen adsorption have been used to de-
termine the pore size distribution in pitch-based activated carbon fibers [80]. The
maximum deviation in the pore width was within 10% of the mean pore width.

Since the porous matrix is formed from the interstecies created by re-orientation of
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the basal graphitic planes during the activation process [17], a regular slit shaped
geometry is a reasonable first approximation in modeling these porous materials.
We expect the approximation of a structureless graphite wall to be a good one in
our present study, since the diameter of the LJ CCly molecule (0.514 nm) is much
larger than the C-C bond length in graphite (0.14 nm), so that the CCl; molecules
only feel a mild corrugation in the fluid-wall potential in passing along the surface.
This has been confirmed by simulations of monolayers of methane on structured,
planar carbon walls [55], where wall structure had only a minor effect for temper-
atures down to 60 K, and by Miyahara and Gubbins [47], where it was found that
the structure of methane was practically identical when confined between smooth

and structured graphite pore walls, for both the fluid as well as the solid phase.

The simulation runs were performed in the grand canonical ensemble as described
in ref. [56], fixing the chemical potential p, the volume V' of the pore and the tem-
perature 7. The pore width in the simulation was varied from 2 osf to 15 oyy
accommodating single adsorbed layers to up to 14 confined layers of CCly (see Ta-
ble 3.1), and the rectilinear simulation cell was 100¢ by 100 in the plane parallel
to the pore walls, consistent with a cutoff of 50 for the fluid-fluid interaction. The
system typically had between 200 to 1200 particles, and periodic boundary condi-
tions were employed in the plane parallel to the pore walls. The simulation was
setup such that insertion, deletion and displacement moves were attempted with
equal probability, and the displacement step was adjusted to have a 50% probabil-
ity of acceptance. Thermodynamic properties were averaged over 100-500 million
individual Monte Carlo steps. The length of the simulation was adjusted such that
a minimum of fifty times the average number of particles in the system would be

inserted and deleted during a single simulation run.
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The free energy formalism used here (see chapter 2) is quite general; it is not
necessary to assume any type of crystalline structure in advance. Thus, for the
sake of generality and simplicity, a rectilinear simulation cell was chosen as opposed
to a geometry that is consistent with a particular structure of the confined solid
phase. In order to avoid artifacts in the phase behavior due to small system size
and incommensurable nature of the crystalline phase at the edges of the simulation
cell, we performed a system size scaling study, and chose cell dimension to be large
enough for the edge effects to be negligible (see Appendix) [81]. The conclusion
of this system size study is similar to that of a similar system size study for bulk
systems by Lynden-Bell et. al. [60]. We have used a free energy method that relies
on the calculation of the Landau free energy as a function of an effective bond

orientational order parameter ®, using GCMC simulations described in chapter 2.

3.3 Experimental results

In figure 3.1 is shown the evolution in the DSC patterns of different CCly-ACF
samples obtained during melting and freezing runs. The positions of the peaks in
the DSC spectrum were found to be independent of the temperature scanning rate
in the range 1.0 to 5 Kmin.™". The scan for bulk CCl, is shown as a reference; three
“exothermic” peaks at 242 K, 228 K and 218 K are observed during the freezing run,
and correspond to liquid to metastable fcc-solid phase, fce to rhombohedral phase
and rhombohedral to monoclinic phase respectively. The observed transitions are
systematically shifted by 10 K compared to the values found in the literature because
of supercooling achieved during the freezing run. Freezing/melting in the confined
system occurs at 299 K; the peak positions in each of the DSC scans for melting

and freezing runs corresponding to CCl, confined in ACF’s (P5, P10 and P20) show
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an upward temperature shift of 57 K. Unlike the prediction by the Gibbs-Thomson
equation, the freezing temperature is found to be independent of pore width in the
micropore regime (H = 1.0-1.4 nm); see figure 3.7. The enthalpies of freezing for the
confined system, calculated from the peak areas were reproducible to within 1.0 %,
and were much less than that of the bulk [80]. A similar trend in the shift in freezing
temperature was also observed for the case of benzene confined in ACF fibers [82].
The nature of the solid phase cannot be determined by DSC experiments alone.
However, the peaks corresponding to the solid-solid transitions that take place in

the bulk are absent in the confined system.

3.4 Results from the simulation

The adsorption of CCly in the carbon slit pores of various pore widths was calculated
as a function of temperature, as the system was cooled. The chemical potential of
CCly in the GCMC simulation was always maintained at a value corresponding to
an external bulk pressure of 1 atm.. A Lennard-Jones equation of state was used to
relate the chemical potential to the pressure [62]. For a pore width H = 1.44 nm
(modeled after P20 ACF), the adsorption curve is shown in figure 3.2 along with
pair correlation functions at three different temperatures. The confined phase is
characterized by two layers (see Table 3.1). The g(r) plots represent the in-plane
two-dimensional pair correlation functions within each layer. A sharp increase in the
adsorption is seen to occur on cooling from 380 K to 360 K, and the corresponding
pair correlation functions (at 410 K and 360 K) show that this jump is not due to
a freezing transition, as the structure of the fluid remains isotropic even at 360 K.
However, comparing the rates of decay of g(r) with r, the positional correlations

at 360 K are longer ranged than those at 410 K. Since the system is close to the
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two-dimensional limit, there is the possibility of an orientationaly ordered phase
intervening between the disordered liquid phase and the positionally ordered crystal
phase; such a phase could cause the jump in the adsorption curve (see chapters 2 &
6). The pair correlation function at 340 K represents a 2-d hexagonal crystal phase.

In figure 3.3 is shown the heat capacity of the system as well as the order pa-
rameter ® as a function of temperature. The peak in the heat capacity occurs
simultaneously with a jump in the orientational order parameter ®, in a temper-
ature range where the positional correlations show no long range order (the g(r)
functions remain isotropic). The heat capacity peak and the jump in the orienta-
tional order parameter are reminiscent of the non universal behavior predicted by
the transition from the liquid to an orientationaly ordered phase (see chapters 2 &
6) that occurs at the same temperature at which the jump in the adsorption curve
is seen. Further evidence of such a transition was provided by studying the defect
structures; isolated and bound disclination pairs were observed in the snapshots of
the simulation [83].

The Landau free energy was calculated as a function of the average hexagonal
bond order ® for different temperatures for CCl, confined in the graphite pore of
width, H = 1.44 nm. Each Landau free energy curve at a particular temperature
possessed three minima, corresponding to three phases in the system; a liquid phase
“L” with ® ~ 0 and g¢(r) similar to figure 3.2 (b), an orientationaly ordered hexatic
phase “I” with 0 < ® < 0.85 and g(r) similar to figure 3.2 (c) and a hexagonal crystal
phase “C” with ® ~ 0.85 and g(r) similar to figure 3.2 (d). The grand free energy
was calculated from the Landau free energy curves using equation (2.7). The grand
free energy (2 as a function of temperature for the three phases is shown in figure 3.4.

The weak cross-over of the “L” and the “I” branches represents a transition to the
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Figure 3.2: Molecular simulation results showing amount of adsorption during a

freezing run and structure of confined L.J CCly in a graphite pore of width H =

1.44 nm. Bulk gas phase is at 1 atm. pressure.

The confined phase has two

molecular layers of CCly. The pair correlation functions in (b) and (c) represent an

isotropic fluid-like phase, while the g(r) in (d) corresponds to a hexagonal crystal.
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(7 = 1,2) and the average order parameter ® is equal to ®,.



%)

100.0

= 800 | :
G

>

S 60.0 | :
C

L

)

L%’ 40.0 1
- o——e Crystal Phase

C =—= Hexatic Phase

(% 200 | +—— Liquid Phase i

0.0 ¢ I I I
330.0 340.0 350.0 360.0 370.0 380.0
T/K
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hexatic phase at T = 355 K (see appendix). The freezing transition occurs at
T =342 K.

The Landau free energy calculation was repeated for the different pore sizes de-
scribed in Table 3.1. For pore widths that accommodate one to three confined CCly
layers, it was found that all the layers froze in unison at the freezing temperature,
and that this temperature was much higher than the bulk freezing temperature of
LJ CCly. For pore widths that accommodate four or more layers of adsorbate, an
orientationaly ordered phase was again observed [83]. However, for these larger
pore widths, it was found that the contact layers froze at a higher temperature

than the inner layers which in turn froze at a temperature above the bulk freezing
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temperature. The Landau free energy formulation provided the means to calcu-
late both transition temperatures. Each Landau free energy curve at a particular
temperature showed a triple-well structure (with three minima), corresponding to
(1) a phase with isotropic fluid structure within each layer, (2) a phase with frozen
contact layer (the inner layers being fluid-like) and (3) a phase with all the layers
having the structure of a 2-d hexagonal crystal. The cross-over of the grand free
energy functions for each phase gave the thermodynamic freezing temperature of
the contact layers and the inner layers. The effects of system size on the free energy
results are discussed in appendix. The freezing temperatures of the contact and the
inner layers are summarized in Table 3.3 for the various pore widths used in this
study.

The parameter d in Table 3.3, represents the inter-layer distance (average dis-
tance between the confined layers of CCly), which depends on the pore width H;
for a given H, d is the same for the liquid and solid phases. For the bulk crystal in
the simulation (fcc lattice), d = \/20¢/+/3. The ease with which the fluid freezes
in the pore and the extent of the hysteresis loops depend crucially on the inter-layer
separation d, refs. [47, 83, 84]. For d/os;; > 0.95 the fluid freezes into a defect
free crystal in our simulations, with hysteresis loops observed during adsorption and
desorption spanning 2-10 K. The defects in the crystal structure increase in the
range 0.90 < d/os; < 0.95, with the extent of hysteresis loops increasing to about
10-30 K and the thermodynamic freezing temperature of the inner layers decrease
as d decreases. For d < 0.90, the inner layers of the confined fluid do not undergo
a freezing transition. Figure 3.5 shows the freezing temperature as a function of
pore width for different values of d. The thermodynamic freezing temperature is

not a smooth function of pore width and shows oscillatory behavior because of its



Table 3.3: Freezing Temperatures of Confined CCly

Pore Width | No. of layers Tr/K Tr/K d/ogy
(contact layers) | (inner layers)
0.94 1 410.0 - 0.95
1.44 2 342.0 - 0.95
1.74 3 335.0 - 0.84
1.93 3 333.0 333.0 0.95
2.44 4 320.0 305.0 0.95
2.76 Y 310.0 273.0 0.90
2.93 5 310.0 280.0 0.95
3.68 7 300.0 248.0 0.90
3.87 7 300.0 260.0 0.95
7.25 14 290.0 254.0 0.95
bulk 00 - 250.0 0.82

S7



58

340.0 | ; |
e
\
\\
320.0 | \ |
\
|
¥ 300.0 | i/.\ |
~ N
— \\‘
280.0 | /\\ :
| ed=0950, Ty
240.0 ‘ ‘
1.0 2.0 3.0 4.0

H/nm

Figure 3.5: The thermodynamic freezing temperature of the inner layers calculated
using the Landau free energy method for different pore widths and different values

of d.

crucial dependence on d. There are windows of pore widths where the fluid does
not freeze because of the lower bound in the value of d = 0.900; that supports
freezing. However, we find that the freezing temperatures of the contact layers are
only weakly dependent on d (see Table 3.3). Thus in our study we have chosen
pore widths that have different number of confined layers but all having the same
inter-layer separation. The variation of the freezing temperature of the contact and

the inner layers as a function of pore width is shown in figure 3.6.
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Figure 3.6: Freezing of the contact and the inner layers of L.J CCly as a function
of pore width. The dashed line represents the region in which a linear equation is
valid, consistent with the Gibbs-Thomson equation. The freezing temperatures are

determined using the Landau free energy method.
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3.5 Discussion and Conclusions

The Landau free energy formalism was used to calculate the grand free energy of
the fluid and crystalline states as a function of temperature, for LJ CCly confined in
slit-shaped pores. The free energy difference between the ordered and the disordered
state is directly calculated, thereby eliminating the need to numerically integrate
the free energy, starting from a well characterized reference phase. Thus, unlike
the methods that involve thermodynamic integration, this method is not limited to
repulsive or weakly attractive fluid-wall potentials. In addition to the free energy, a
quantitative estimate of the free energy barrier to nucleation is obtained, although
such a quantity is sensitive to system size effects. However, the absolute value of the
free energy difference is only a weak function of system size, and is estimated to an
accuracy of 1kgT, as shown by Lynden-Bell et. al. [60]. The exact location of the
equilibrium transition temperature by free energy calculation is an improvement over
methods that use the jump in the density to locate the freezing/melting points in
terms of accuracy, as it is independent of the width of the hysteresis loops, thereby al-
lowing a direct consistency check with the Gibbs-Thomson equation, equation (1.1).
A direct comparison with equation (1.1) would involve calculation of surface ten-
sions in the simulation, which we have not attempted in this study. The behavior
of AT vs. 1/H in figure 3.7 is linear in the mesopore range, down to a pore width of
2.44 nm, below which there is a cross over to a “plateau” regime (in the micropore
range). The plateau regime spans pore widths that can accommodate 2-3 layers of
CCly. For pore widths that support only a single layer of CCly a sharp increase
in the freezing temperature is seen. The linear regime in the mesoporous range is
consistent with the Gibbs-Thomson equation. The deviation from linearity (in the

micropore region) is also expected, as the Gibbs-Thomson equation breaks down in
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Figure 3.7: Comparison of the freezing temperatures from simulation and experi-
ment. The results for activated carbons are from this study. The DSC results for

silica are reproduced from [2].

this limit, for reasons that are discussed below.

There are either two or three condensed phases of confined CCly, depending
on the pore width. For pore widths that accommodate four or more layers, there
are three phases; Phase A corresponds to all layers having a liquid-like structure;
phase B corresponds to the contact layers (the layers adjacent to the two pore walls)
being frozen and the rest of the layers being fluid-like; phase C corresponds to all
the layers being frozen. Thus, the contact layers freeze at a higher temperature than
the inner layers. For pore widths that accommodate three layers or less, there are
just two condensed phases, liquid and crystal, i.e., the contact layers freeze at the

same temperature as the inner layers. It is evident from figure 3.6 that the Gibbs-
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Thomson equation is valid when the effect of the contact layers are negligible on the
inner layers, i.e., for pores that accommodate seven molecular layers of CCl, or more.
When the number of inner layers are comparable with the number of contact layers,
a deviation from linear behavior (G-T regime) is observed, followed by a cross-over
to the plateau regime. It is also evident from figure 3.6 that the freezing temperature
in the plateau regime is determined by the freezing of the contact layers. This region
is spanned by pore widths that accommodate two to three layers of CCl,. Based
on energetic considerations alone, it is reasonable to assume that the contact layer
freezing temperature is approximately independent of H in this limit; the depths of
the potential well in which the contact layers are confined are approximately equal
for all pore widths that support more than one layer. As the number of inner layers
increase, the effective fluid-fluid potential between layers as well as entropic effects
have to be taken into consideration, which is why there is a deviation from the
plateau regime; the deviation from the plateau regime is observed for the contact

layers as well as the inner layers.

The comparison of the DSC results and the simulation (figure 3.7) shows that the
simplified model of spherical L.J CCl; and regular slit shaped graphite pore with
smooth walls captures the plateau in the AT(H) function; however it overestimates
the shift in the freezing temperature. In this regime, AT} is 60 K in the exper-
iments (figure 3.1) and is about 90 K in the simulation. We note that the DSC
experiments were at done at a constant pressure equal to the saturated pressure of
CCly at 303 K (0.15atm.), while the pressure in the simulations was set at 1 atm.
This difference in the pressure is expected to have a very small effect on the freezing
temperature [47] (the solid-fluid co-existence line in the P-T phase diagrams have

a slope nearly equal to infinity). We recalculated the freezing temperatures in our
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simulations for the pressure used in the DSC experiments and found the difference
to be less than 2%. It is difficult to see the cross-over behavior in experiments,
due to the lack of availability of well characterized graphitic pores in the mesopore
region. The overestimation of the freezing temperature shift in the simulation is a
reflection of the simplicity of the model used. It is easier for spherical molecules
in slit pores to freeze when compared to five-site LJ tetrahedral molecules (a more
realistic representation of CCly) in a real activated carbon. The confined crystal
phase has perfect in-plane bond orientational order within each layer and, in addi-
tion requires that the phase of the complex order parameter ®; within each layer j
be the same. It is intuitively clear that both the in-plane ordering and the phase
ordering of the layers are easier with spheres compared to tetrahedrons. More re-
alistic fluid-fluid potential models based on site-site LJ interactions [85, 86] could

lead to an improvement in the prediction of the simulation results.

Another simplifying assumption in our simulation is the slit shaped geometry to
represent the ACF. The electron micrograph of graphitic pores points to the need to
include important features like networking, polydispersity, surface corrugation and
irregularities and pore bottlenecks that are ignored in our model [1]; these features
are bound to deter the freezing transition in real porous materials. The typical pore
size distribution in activated carbon fibers is about 10% around the mean pore size of
the sample, and there is a distribution of parallel slit shaped pores and pores having
a wedge geometry. In addition, the presence of active sites (for example, NHa,
CH = O and CH30H) on the adsorbent surface have a strong influence on the
freezing of confined fluids, causing a depression in the freezing temperature [87].
The absence of some of these features in our simulations could possibly account for

the over estimation of the shift in the freezing temperature.
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Kaneko et. al. have reported the enthalpy change on freezing in ACF based on the
DSC scans that are much lower than the enthalpy change in the bulk [80]. Based
on our simulation results there can be more than one reason for freezing in con-
fined systems being weakly first order. Thus, the enthalpy change in the transition
from the orientationaly ordered phase to the crystal phase can be considerably re-
duced when compared with the bulk. The heat capacity plot in figure 3.3 shows
a peak corresponding to the orientational ordering (hexatic phase) of the confined
liquid. It is clear that most of the entropy change occurs during this transition, and
as a result, the orientationaly ordered fluid to crystal phase is weakly first order.
liyama et. al. [88, 89] employed X-ray diffraction to study the structure of confined
CCly in ACF. The authors found extended positional correlations in the confined
liquid phase providing indirect experimental evidence of the possibility of an orien-
tationaly ordered phase. The orientational ordering transition is not captured in the
DSC scans in figure 3.1, possibly because the real porous material has corrugations
in the fluid-wall potential, due to the crystal structure of graphite, that makes it
periodic. This periodicity in the wall potential exerts a hexatic field, that favors
the formation of the orientationaly ordered phase, so that such a transition actually
occurs at a higher temperature in real materials as compared to simulations that use
a smooth wall potential. One possibility is that such a peak is present at tempera-
tures higher than the DSC scans in figure 3.1. However, it is also possible that this
orientational ordering occurs at a temperature higher than the layering transition

temperature, in which case such a peak would be totally absent.

Polydispersity in the real porous material can also account for the low values of
the observed enthalpy change. The pore size distribution could be such that a large

fraction of the pores have a pore width such that the inter layer distance in the
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confined phase is less than the lower bound for d that supports freezing. Thus only
a small fraction of the pores actually support a crystal phase which may cause an
under-estimation of the value of the enthalpy of freezing. Curry et. al. [90] studied
the freezing of simple fluids in a corrugated pore model that consisted of a slit pore
with rectangular grooves carved out of one of the surfaces. Over a range of groove
depths, the confined phase consisted of fluid and solid portions in equilibrium, i.e.,
fluid filled nano-capillaries separated by solid strips, supporting the above theory.
Experiments that measure the structure factor in the confined phase using X-ray
scattering could shed more light on this speculation. If this is indeed the case one

would observe significant liquid-like structure even below the freezing temperature

of the confined CCly.

3.6 Appendix

The free energy results suggest that the orientational ordering transition is weakly
first order (crossing over of the free energy curves for “L” and “I” phases). In order
to show that this transition remains first order in the thermodynamic limit, a finite
size scaling analysis is required. A continuous transition can look like a weakly first
order transition in a finite system. The reason for this is that there is always a non-
zero probability of observing the unstable phase because of interface and boundary

effects in a finite system, that is proportional to

exp (— BN §f), (3.1)

where 0 f is the difference in intrinsic free energy between the two phases. In the
thermodynamic limit, this probability vanishes. The system size scaling study for

the model used here [81], showed that the structure of the hexatic phase (phase “I")
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was sensitive to the linear dimensions of the simulation cell parallel to the plane of
the pore walls, Leey, for Leoy < 150 However according to the Landau free energy
results, the location of the thermodynamic freezing temperature was independent of
system size for L. > 100¢. The absolute free energy differences between phases
were independent of system size; however, the height of the nucleation barrier showed
a strong dependence on system size. The snapshots of molecular configurations
in the confined crystalline phase, showed no evidence of defect structures at the
simulation cell boundaries [83]; thus a cell size of L. = 100 is large enough not

to introduce artifacts in the freezing behavior due to finite system size.



Chapter 4

Experimental Studies of Melting

and Freezing

This chapter primarily deals with experimental measurements. The experimental
studies are for carbon tetrachloride and nitrobenzene in controlled pore glass (CPQG)
and VYCOR. Differential scanning calorimetry (DSC) was used to determine the
melting point in the porous materials. Dielectric spectroscopy (DS) was also used
to determine melting points. Measurements by the two methods were in excellent
agreement. The melting point was found to be depressed relative to the bulk value
for both fluids. With the exception of smallest pores, the melting point depression
was proportional to the reciprocal of the pore diameter, in agreement with the Gibbs-
Thomson equation. Structural information about the different confined phases was

obtained by measuring the dielectric relaxation times using dielectric spectroscopy.

The DSC and DS experiments were performed at the A. Mickiewicz University
at Poznan, Poland. The CCly and nitrobenzene samples were reagent grade chemi-

cals and were twice distilled (nitrobenzene at reduced pressure) prior to use in the

67



68

experiment. Nitrobenzene was further dried over Al,Ogs, centrifuged, and stored
in the absence of light to avoid contamination by photochemical reactions. The
conductivities of the purified CCl; and nitrobenzene samples were found to be less
than 107 ohm 'm ' and 1071 ohm 'm™"! respectively. The porous silica samples
used were the commercially available Controlled Pore Glass (CPG) from CPG Inc.,
with a pore size distribution of about 5% around the mean pore diameter. Different
CPG samples having average pore diameters ranging from 50 nm to 7.5 nm were
used. We have also studied confinement in a Vycor glass from Corning Inc., having
a mean pore size of 4.0 nm. The pore samples were kept under vacuum prior to and

during the introduction of the fluid.

4.1 Differential Scanning Calorimetry

A Perkin-Elmer DSC7 (differential scanning calorimeter) was used to determine the
melting temperatures and latent heats of fusion, by measuring the heat released
in the melting of nitrobenzene. Dupont thermal analyser was used for the mea-
surements involving CCly. The temperature scale of the two DSC machines were
calibrated to the melting temperatures of pure nitrobenzene and CCly respectively.
The background of each raw DSC spectrum was subtracted, based on a second-
order polynomial fit to the measured heat flow away from the signals of interest.
The melting temperatures were determined from the position of the peaks of the
heat flow signals and the latent heats were determined based on the scaled area
under these signals. The melting temperature was reproducible to within 0.5 °C
for larger pores (> 25 nm); uncertainties were larger for the smaller pores. These
uncertainties are a result of the width of the DSC peaks, which derives in part from

variations in pore size, and geometry, and from the existence of metastable states.
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The latent heats were reproducible to within an accuracy of 5%.

4.2 Dielectric Spectroscopy

The permittivity of a medium, €* = ¢ — i€”, is in general a complex quantity whose
real part ¢ is associated with the increase in capacitance due to the introduction
of the dielectric. The imaginary component €’ is associated with mechanisms that
contribute to energy dissipation in the system; these include small but non-zero
conductivity of the dielectric and viscous damping of the rotational motion of the
dipolar molecules in alternating fields. The latter effect is frequency dependent. The
relative permittivity «* is given by the ratio of the permittivity of the medium to

that of free space.
K' =K —ik = — (4.1)

The real part of the relative permittivity, ' = €' /¢, is also known as the dielectric
constant. The experimental setup consisted of a parallel plate capacitor of empty
capacitance C\, = 4.2 pF. The temperature was controlled to an accuracy of 0.1 °C
by a Pt100 platinum resistor using an external K30 Modingen cryostat. The ca-
pacitance, C, and the tangent loss, tan(d), of the capacitor filled with nitrobenzene
between the plates were measured using a Solartron 1260 gain impedance analyzer,
in the frequency range 1 Hz - 10 MHz, for various temperatures [91]. For a given
capacitor, the capacitance, C, is proportional to €, the permittivity of the dielectric
medium between the capacitor plates. The relative permittivity of nitrobenzene as

a function of temperature was calculated using

C tan(9)
c,’ K
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For the case of nitrobenzene in porous silica, the sample was introduced between
the capacitor plates as a suspension of 200 um mesh porous silica particles in pure

nitrobenzene.

The dielectric constant is a natural choice of order parameter to study freezing
of dipolar liquids, because of the large change in the orientational polarizability
between the liquid and solid phases. The melting point was taken to be the temper-
ature at which there was a large increase in the permittivity, as the solid phase was
heated. The frequency range chosen for measurements corresponds to the typical
dielectric relaxation times in the solid phase. The dielectric relaxation time was
calculated by fitting the dispersion spectrum of the complex permittivity near reso-
nance to the Debye model of orientational relaxation. The Debye dispersion relation

is given by [92, 93]

K — K/
_ — 8 "o© 4.3
| o) (4.3)

where w is the frequency of the applied potential and 7 is the orientational (rota-
tional) relaxation time of a dipolar molecule. The subscript s refers to static per-
mittivity (low frequency limit, when the dipoles have sufficient time to be in phase
with the applied field). The subscript oo refers to the optical permittivity (high

frequency limit) and is a measure of the induced component of the permittivity.

4.3 Results from DSC

In figure 4.1 is shown the evolution in the DSC patterns of several different CCl;-CPG
samples obtained during melting runs. The results were found to be independent

of the heating rate in the range 0.5 to 5 °C/min. The relatively large minimum at
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—21.2 °C that is independent of pore size corresponds to the melting of the bulk
CCly in which the porous particles are suspended. In addition, a second minimum
that is dependent on the pore size is also observed. This signal corresponds to the
melting of the CCly in the pores, and shifts to lower temperatures as the pore size is
reduced. The third minimum (at t = —44 °C) that is also independent of pore width
corresponds to a solid-solid phase transition (monoclinic to rhombohedral structure
at —46 °C [94]) in the bulk CCl,. In some cases (figures 4.1(a,c)), a fourth minimum
occurs that may be due to such a solid-solid transition in the pore (this peak is seen
as a shoulder in the solid-solid peak below ¢ = —44 °C); however DSC results alone
are inconclusive in this regard. The size dependence of the melting temperature of
the confined CCly is shown in figure 4.2. The linear relationship between the shift
in the pore melting temperature and the inverse pore diameter is consistent with
the Gibbs-Thomson equation down to the smallest pore size studied (H = 7.5 nm).
A direct test would however involve the independent measurement of the wall-fluid
and the wall-solid interfacial tensions, which we have not attempted.

DSC scans corresponding to melting of nitrobenzene are shown in figure 4.3. The
qualitative behavior is the same as in the case of CCly. The melting point of the
bulk is —5.6 °C (monoclinic crystal phase to liquid [95]). The melting point in the
pore is always depressed and the magnitude of the shift increases with decreasing
pore size. As the pore size become smaller the pore melting peak broadens, and
becomes increasingly asymmetric. Since the signals corresponding to the confined
nitrobenzene are better resolved and separated from the bulk signal than for the
case of CCly, we calculated the latent heat of melting for the bulk and confined
solids. The amounts of nitrobenzene partitioned between the bulk and the pore

were determined by requiring the bulk signal to give the correct bulk latent heat.
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Figure 4.1: Representative DSC scans for melting of CCl, in CPG, after subtrac-
tion of background signal. Results are for mean pore sizes of (a) 100 nm (the
second minimum occurs as a shoulder in the main peak at —21.2 °C); (b) 40 nm;
(c) 20 nm; (d) 7.5 nm (the second minimum occurs as a shoulder in the solid-solid
peak at —44.0 °C). The x-axis measures temperature in degree Celsius and the y-
axis measures the heat flow in 1W/g. Each scan is shifted in vertical scale for the

sake of clarity.
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Figure 4.3: Representative DSC scans for melting of nitrobenzene in CPG, after sub-
traction of background signal. Results are for mean pore sizes of (a) bulk; (b) 50 nm;

(c) 25 nm; (d) 7.5 nm. Each scan is shifted in vertical scale for the sake of clarity.

The values of the melting temperature ¢, and the latent heat of melting A, are
summarized in table 4.1. One possible explanation of the decrease in the latent heat
values with decreasing pore size is that the crystal structure of the confined solid

phase becomes increasingly disorganized as the pore size decreases.

4.4 Results from dielectric spectroscopy

The capacitance C' and tangent loss tan(d) were measured as a function of frequency
and temperature for bulk nitrobenzene and for nitrobenzene adsorbed in CPG and

Vycor glass of different pore sizes ranging from 50 nm to 4.0 nm. The behavior of
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Table 4.1: Heats of Melting for Nitrobenzene

Pore size, H | Latent heat, A, | %,,
nm J/g °C
Bulk 94.5 5.6

50 79.5 3.4

25 50.0 0.4
7.5 43.8 -16.0

k' vs. T is shown in figure 4.4 for nitrobenzene in pores of different widths, calculated
at a typical frequency of 1 MHz using equation (4.2). For pure, bulk nitrobenzene,
there is a sharp increase in € at t = 5.6 °C, corresponding to the melting point of
the pure substance. For nitrobenzene confined in CPG, the sample is introduced
as a suspension of nitrobenzene filled CPG particles in pure nitrobenzene, between
the capacitor plates. Thus capacitance measurement yields an effective relative
permittivity of the suspension of CPG in pure nitrobenzene. Thus ' shows two
sudden changes. The increase that depends on pore size is attributed to melting in
the pores, while that at 5.6 °C corresponds to the bulk melting. It is interesting to
note that the signal corresponding to the melting in pores gets increasingly rounded
as the pore size gets smaller, in much the same way as the broadening of the peaks
in DSC. For smaller pore sizes (H = 7.5 nm and 4.0 nm) the increase in ' is
continuous. Both the melting and freezing signals are shown; the hysteresis loops
grow wider with decreasing pore size. The rounding of the increase in «’ is expected
to be smaller than the width of the peaks in the DSC scans, as the capacitance is

measured at equilibrium. The shifts in the melting temperature are plotted against
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the reciprocal pore width in figure 4.5 for nitrobenzene in CPG obtained using both
DSC and DS measurements. The deviations from linearity, and hence from the
Gibbs-Thomson equation are appreciable at pore widths as small as 4.0 nm.

The spectrum of the complex permittivity (k', k" vs. w) is fit to the dispersion
relation (equation (4.3)), to determine the dielectric relaxation time 7, which gives
valuable information about the structure of the condensed phase. The frequency
range in this study is expected to encompass the resonant frequencies correspond-
ing to the dielectric relaxation in the solid phases. To probe the liquid relaxation
behavior would require a frequency range that is 4 to 5 orders of magnitude higher.
The Debye dispersion relation can be expressed in normalized form [96], using the
normalized variable z is given by z = In (w7) according to which the ' function
shows a point of inflection and the " function goes through a maximum at the value
z = 0. Therefore, from a spectrum plot of &', k" vs. log;y(w), the relaxation time
can be calculated as the reciprocal of the frequency corresponding to a saddle point
of the £’ function or a maximum of the x” function. An alternative graphical repre-
sentation of the modified Debye dispersion equation is through the Cole-Cole plot
[93], in the complex k* plane. From a plot of k" vs. k', T is given by the reciprocal

of the frequency at which " goes through a maximum.

The spectrum plot for nitrobenzene in a 7.5 nm CPG at t = —21 °C is shown in
figure 4.6(a). The solid and dashed curves fit the experimental data points accu-
rately, indicating a Debye type relaxation with a single time scale. The relaxation
time is estimated to be 7 = 1.44 ms. At a different temperature (¢ = —4 °C), the
behavior is significantly different (figure 4.6(b)). The double peak structure of the
k"(w) and the double inflection in the k'(w) curve suggest two different dielectric

relaxation times. There is a shorter relaxation time 7 = 43.6 us, in addition to the
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longer component 7, = 1.7 ms.

4.5 Discussion and Conclusions

The simulation results and the Gibbs-Thomson equation suggest that the fluid-wall
interaction for CCl, and nitrobenzene in CPG is less than the respective fluid-fluid
interaction, and thus the freezing temperature is always depressed. For CCl, in
CPG, this is a reasonable scenario if we realize that the fluid wall potential energy
is proportional to py€fy, (pw being the density of substrate atoms in the pore and
€ being the fluid-wall energy parameter if we assume a LJ potential). The ratio
of the fluid-wall potential energy to the potential energy that would exist if the wall
was made up of the fluid molecules is then py€s,/psers. This ratio is about 0.5
for CCly in CPG. A more accurate estimate would involve the LJ size parameters
0y and a geometrical factor that depends on H/op,, H being the pore diameter.
For nitrobenzene in CPG the situation is further complicated by the longer range

dipolar interaction, which introduces a term in addition to the LJ interaction.

The permittivity measurements (the behavior of " with T') show that the melting
transition in larger pores (H > 25 nm) is abrupt (e.g. figure 4.4(a)) and gets
increasingly rounded in smaller pores (H = 7.5 and 4.0 nm), where it appears
continuous (e.g. figure 4.4(b),4.4(c)). The free energy calculation in chapter 2
clearly shows that the freezing in such narrow pores is also first order. The presence
of a discontinuity in the slope of the free energy curve at the transition point is a
measure of the first order jump in the heat capacity. Thus, in the simulations, the
hysteresis loops in the behavior of the density as a function of temperature is due to

the existence of metastable states. Radhakrishnan and Gubbins [83] have studied
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the origin of these metastable states for methane confined in graphitic carbon. In
a real experiment, however, slow diffusion and pore blocking can also contribute to

the hysteresis behavior.

The typical dielectric relaxation time for a dipolar liquid in the bulk phase is
1079 s. The relaxation time increases to 1072 s when the liquid freezes to a crystal
phase [91]. For dipolar molecules confined in nano-scale silica pores, the typical
liquid phase relaxation time is slightly higher compared to the bulk phase, and is
about 1078 s [97, 98]. In addition, for a heterogeneous system there occurs a relax-
ation mechanism due to interfacial polarization when a slightly conducting liquid
is enclosed in an insulating material. This effect, also called the Maxwell-Wagner-
Sillars (MWS) polarization [99], is known to have a relaxation time of the order of
1073 5 [98, 100]. The CPG and Vycor samples used in this study were dielectrically
neutral, in the sense that, in the temperature and frequency range of our measure-
ments, the dielectric loss (proportional to £”) of the empty pores were negligible
compared to the liquid filled samples. Therefore, there is no background noise due
to the motion of silica molecules. The dielectric relaxation component for nitroben-
zene in CPG at t = —23 °C, with a relaxation time 7 = 1.44 ms (figure 4.6(a)), is
attributed to the crystalline solid phases in the bulk and the pore. At ¢t = —4 °C
the bulk phase is still a crystalline solid, while the confined phase is a liquid. In
this case (figure 4.6(b)), two distinct relaxation times appear, corresponding to two
different relaxation mechanisms. The longer component relaxation, 75 = 1.7 ms,
is attributed to the bulk crystalline phase of nitrobenzene. The shorter relaxation
component, 7, = 43.6 us, is too slow to represent the liquid phase relaxation in the
pore. However, it is known that for dipolar liquids confined in nano-scale pores, the

molecules in the contact layer show a slower relaxation behavior, on the order of
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10755 [98, 100, 101]. Thus, the shorter relaxation component is consistent with such
a behavior of the contact layer. The Landau free energy calculation for methane in
graphite and the NMR study by Overloop and Van Gerven [38] dealing with water
in porous silica also support the view that the molecules in the contact layer behave

differently than the those in the pore interior.

We also observed two relaxation mechanisms for temperatures greater than ¢t =
5.6 °C, one corresponding to the relaxation of the molecules in the contact layer in
the pores and the other (in the range of 1073 s) arising because of MWS polarization.
We note that in this study, we were unable to resolve the MWS relaxation component

from the crystalline phase relaxation.



Chapter 5

Toward the development of a

global phase diagram

Recently, Kaneko et. al. [80, 81] studied freezing of CCl, in activated carbon fibers
using differential scanning calorimetry (DSC), and reported an elevation in T} for
the confined system, thus verifying the prediction made by simulations [47, 83]. The
authors argued that, due to the high density of covalently bonded carbon atoms in
graphite, the fluid-wall interaction is large and hence the observation is consistent
with the previous simulation studies. In a different study, Sliwinska-Bartkowiak
et al. [2] studied the effect of confining CCly in silica-based pores (CPG and VYCOR)
that have a rather weak fluid-wall interaction, and observed a depression of the
melting temperature. These experimental studies provided an overall picture of
the effect of the fluid-wall interaction on the melting of confined CCly, drawing a
parallel with the simulation study of Miyahara and Gubbins [47]. In order to further
elucidate the effect of the pore wall interaction it is necessary to understand the
inhomogeneity of the fluid structure in the confined space. In the free energy study

described in chapter 2, the presence of a thermodynamically stable intermediate
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phase lying between the liquid phase and the solid phase was established in a rigorous
manner. The study led to the conclusion that the contact layers (the layers closest
to the pore walls) freeze at a higher temperature than the inner layers, and thus
the intermediate phase has the structure such that the contact layers are crystalline
while the inner layers are liquid-like. The effect of the freezing of the contact layers at
an elevated temperature compared to the inner layers causes a significant deviation
from the linear behavior predicted by the Gibbs-Thomson equation in the case of

smaller pores [81] (H < 50yy).

Sliwinska-Bartkowiak and co-workers attempted to characterize the melting/freezing
transition for a dipolar fluid, nitrobenzene confined in controlled pore glass of differ-
ent pore sizes, using DSC and dielectric relaxation spectroscopy [2] (see chapter 4).
The depression in the melting temperature followed the Gibbs-Thomson equation
for pore sizes larger than 7.5 nm; however, significant deviation was observed for
a smaller pore width. The results from both experiments were in good agreement.
The authors also made a quantitative estimate of the rotational relaxation time in
the fluid and crystal phases by fitting the complex permittivity €* = €'(w) — i€ (w)
measurements to the Debye dispersion equation. In addition to the liquid and crys-
tal phase relaxation, a third relaxation component was observed, that supported the
existence of a contact layer with dynamic properties that were more liquid like, and

different from the inner layers as found in the previous studies.

The experimental studies involving x-ray diffraction as well as NMR methods,
and the simulation studies involving free energies, establish the presence of a stable
intermediate inhomogeneous confined phase that has important consequences for

the nature of the phase transition, as well as the shift in the freezing temperatures.
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The experiments done on silica based pores (weaker wall-fluid interaction) [2, 102]
conclude that the contact layers freeze at a lower temperature than the inner layers
while the simulation studies involved graphite pores (strong wall-fluid interaction)
predict that the contact layers freeze at an elevated temperature compared to the

inner layers.

In this chapter, our aim is to develop a global phase diagram, that incorporates
the diverse freezing behavior described above, and consolidate our understanding of
the freezing phenomenon in confined systems. We describe an other application of
the Landau free energy method to study the effect of the fluid-wall interaction energy
on the shift of the freezing temperature and on the fluid structure. Corresponding
states theory is used to map out the global freezing behavior of a Lennard-Jones (LJ)
fluid in model slit-shaped pores of varying fluid-wall interaction strengths. Using
LJ parameters fitted to thermophysical property behavior, the qualitative freezing
behavior for a variety of fluids and nano-porous materials is predicted using a global

freezing diagram.

5.1 Simulation method

We performed Grand Canonical Monte Carlo (GCMC) simulations of Lennard-Jones
methane adsorbed in slit shaped pores of width H = 7.50¢, H being defined as
the perpendicular distance between the planes passing through the nuclei of the
first layer of molecules that make up the pore walls of the slit shaped pore. The
interaction between the adsorbed fluid molecules is modeled using the Lennard-
Jones (12,6) potential with size and energy parameters chosen to describe methane

(0ff = 0.381 nm, €77/kp = 148.1 K). The pore walls are modeled as a continuum of
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LJ molecules using the“10-4-3” Steele potential [53, 54] (equation 2.1). For a given
pore width, H, the total potential energy from both walls is given by equation (2.2).

The strength of attraction of the pore walls relative to the fluid-fluid interaction is

pwefwa%wA

determined by the coefficient o = o

in equation 2.1. Throughout the study
the fluid-fluid interaction was kept fixed and the parameters for the wall potential

were varied. Six different sets of parameters were chosen for pore wall interaction

that ranged from a purely repulsive wall to a strongly attractive wall; see table 5.1.

The simulation runs were performed in the grand canonical ensemble, fixing the
chemical potential pu, the volume V of the pore and the temperature 7. The di-
mensions of the rectilinear simulation cell were 100;f x 100 x H for most part
of the study, however we also performed a system size scaling study that involved
system sizes as large as 400y x 400y x H. The system typically contained up to 700
adsorbed molecules (up to 12000 molecules for the case of the largest system used
in the system size scaling analysis). Periodic boundary conditions were employed
in the two dimensions defining the plane of the pore walls. The simulation was
set up such that insertion, deletion and displacement moves were attempted with
equal probability, and the displacement step was adjusted to have a 50% probabil-
ity of acceptance. Thermodynamic properties were averaged over 100-1000 million
individual Monte Carlo steps. The length of the simulation was adjusted such that
a minimum of fifty times the average number of particles in the system would be
inserted and deleted during a single simulation run. We note that the geometry
of the simulation box in our study is not commensurate with the crystal structure
in the confined solid phase. However, it was ensured that the simulation box size
was large enough to avoid any artifacts due to the incommensurability between the

shape of the simulation box and the crystal structure [81]. We have used a free
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energy method that relies on the calculation of the Landau free energy as a function
of an effective bond orientational order parameter, ®, using GCMC simulations as

described in chapter 2.

5.2 Dielectric relaxation spectroscopy

The capacitance, C, and the tangent loss, tan(d), of the capacitor filled with ni-
trobenzene between the plates were measured in the frequency range, w between
1 Hz - 10 MHz, for various temperatures [2]. For the case of nitrobenzene confined
in activated carbon fibers (ACF), the sample was introduced between the capacitor
plates as a suspension of porous particles in pure nitrobenzene. The contributions
to the complex relative permittivity x* = &’ — ix” were determined. The elec-
trodes were blocked using a dielectric (teflon) for samples containing the ACF, as
the suspension was conducting. The Debye dispersion relation for an isolated dipole
rotating in a viscous medium under alternating electric field was used to calculate
the orientational relaxation time from the permittivity dispersion spectrum [2] (see

chapter 4).

5.3 Results

The Landau free energy for the confined methane was calculated as a function of the
order parameter ® for different temperatures and different pore models. The differ-
ent phases are identified by the different minima in the Landau free energy curves.
Each phase is characterized by calculating the average value of the order parameter
and the two-dimensional, in-plane pair correlation functions in each of the molecular

layers by constraining the phase space trajectory such that only configurations whose
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average value of the order parameter lie in the the range @, phase and gz phase Of
the particular phase in consideration, is sampled. The calculated averages and pair
correlation functions are insensitive to the exact values of ®,in phase and Ppaz phase
chosen, as both of them will lie close to the corresponding local maximum in the
Landau free energy function. The region around the local maximum in the Lan-
dau free energy corresponds to low probability configurations that have negligible

contributions to the average value of the thermodynamic property in question.

The systems studied here are summarized in table 5.1. The Landau free energy
functions are plotted for four different models of the pore walls in figure 5.1. The
minimum that occurs at the values of order parameter near zero corresponds to the
liquid phase. The minimum close to an order parameter value of 1.0 corresponds to
the crystalline phase. For certain pore models an intermediate phase lies between
the liquid and the crystalline phase. The temperature in each case is chosen such
that the free energy difference between the intermediate phase and the liquid phase

or the crystalline phase (which ever has a lower free energy) A,,;, is a minimum.

QO = chy if chy < Qliq

QO = Qliq if Qliq < chy

In equation 5.1 “lig”, “cry” and “int” refer to liquid, crystal and intermediate phases
respectively and the function Min { f }r minimizes f with respect to 7.

For repulsive and weakly attractive walls, the intermediate phase is at best
metastable. For strongly attracting walls, the intermediate phase exists as a ther-

modynamically stable phase for a certain range of temperatures. The plot of A,
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versus the relative strength of the fluid-wall to the fluid-fluid interaction « is shown
in figure 5.2. For values of « less than 0.48, A,,;, is always positive, and thus only
two thermodynamically stable phases exist, liquid and crystalline. For values greater
than 0.48, three stable phases exist in the system. For the case of the purely repul-
sive pore, the disordered phase exists as a three dimensional liquid and the ordered
phase is a fcc crystal. The increase in « value for the pore model induces layering in
the system, distinct molecular layers forming parallel to the plane of the pore walls.
In these cases the individual molecular layers exist as a quasi-two-dimensional liquid
in the disordered phase and as two-dimensional hexagonal crystal in the crystalline
phase. The intermediate phase is a partially ordered phase. In the case of a weakly
attractive pore, the contact layers (i.e., the layers adjacent to the two pore walls)
are liquid-like while the inner layers are crystalline (see figure 5.3(a)); thus the con-
tact layers freeze at a lower temperature compared to the inner layers. For the case
of a strongly attractive pore, the intermediate phase is characterized by crystalline
contact layers and liquid-like inner layers; in this case the contact layers freeze at a
higher temperature compared to the inner layers (figure 5.3(b)). The reversal of the
freezing behavior of the contact layers occurs for o values between 0.85 and 1.15.
The crossover of the branches of the grand free energy of the liquid, intermediate
and the crystal phases determines the freezing temperature of the contact layers as
well as the inner layers. The values of the freezing temperature as a function of
the strength of the fluid-wall interaction parameter o are summarized in table 5.1.
The bulk freezing temperature of LJ methane is 101.4 K. It is also observed that for
weakly attractive pores (o < 0.85) there is a depression in the freezing temperature
and for strongly attractive pores (o > 1.15) there is an elevation in the freezing

temperature, when compared to the bulk.
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Table 5.1: Summary of Pore Models & Freezing Temperatures

Pore Wall Model | Wall Strength, o | Ty /K, contact layers | T;/K, inner layers

Bulk - - 101.4
Model 1 0 - 48.0
Model 2 0.34 66.0 74.0
Model 3 0.68 78.0 86.0
Model 4 0.85 109.0 103.0
Model 5 1.65 120.0 109.0
Model 6 2.14 123.0 113.9
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For a L.J fluid confined in a slit pore having a continuum “10-4-3” potential walls,
the configurational partition function in the canonical ensemble Qconﬁg(N, Vv, T),

is given by,

v
1 o

Quontig = || 4 e (= 76 = o) 62)

where the integration is over all 7, i.e., r1, 73, r3 etc., N is the number of molecules

in the system, V is the volume of the system, 7; represents the spatial coordinates

of molecule 7, ‘f’ accounts for the fluid-fluid interaction and ‘g’ accounts for the

fluid-wall interaction. Thus,

Qconﬁg - Qconﬁg[N’ VAT .01, 0 ful (5.3)
Typical fluid and pore systems have similar of¢ and oy, values for small adsorbate
molecules, and for a narrow range of these size parameters, ¢ is a weak function
of off and oyy,. Thus, from the principle of corresponding states [103], to a good

approximation for small adsorbates,
A" =~ N[N, V* H*,T* «] and, (5.4)
T; ~ TF[H", a
For a LJ fluid confined in a model slit pore with ”710-4-3” potential, equation 5.4
implies that the complete phase behavior including the freezing temperature is pre-
dictable from the knowledge of the Landau free energy as a function of the order
parameter and temperature. The value of a together with results such as those in
figure 5.1, in reduced variables, can be used to predict the freezing properties of the
particular LLJ system under consideration.
In order to predict the freezing properties of realistic fluid/pore systems, the

respective fluid-fluid and fluid-wall interactions are approximated using the LJ po-

tential and the slit pore model. The LJ parameters for the fluid are chosen to



Table 5.2: Potential energy parameters for fluid-fluid interactions

Fluid LJ parameters Property fitted
orp/nm, erp/(kpK)
Simple fluids
Ar 3.4, 119.8 ond Viiral Coeff.
Kr 3.6, 171.0 ond Yriral Coeff.
Xe 4.1, 222.0 ond Viiral Coeff.
Ny 3.7, 96.0 ond Viiral Coeff.
CH, 3.8, 148.1 ond Viral Coeff,
CO, 4.4, 192.0 20d Viral Coeff.
CCly 5.1, 366.0 Freezing point
Dipolar fluids
HCI 3.3, 360.0 viscosity
HI 4.1, 324.0 viscosity
CgHsNO, 5.7, 425.0 Freezing point
H-Bonding fluids
NH, 2.6, T11.0 ond Viiral Coeff.
H,0 3.2, 888.0 ond Viral Coeff,

94
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reproduce thermophysical data (second virial coefficients or viscosity) of the bulk
gas. The pore model parameters, oy, €ww, Pu&A, are chosen such that molecular
simulation results of adsorption of LJ nitrogen matches the experimental results at
77 K. Based on the fitted potential parameters, the calculated value of « is used to
predict the freezing temperatures of the contact layers as well as that of the inner
layers, and also the structure of the confined fluid in various phases. Three different
categories of fluids were chosen: simple fluids, dipolar fluids and hydrogen bonding
fluids. The LJ parameters that represent the fluid-fluid interaction for these fluids
are given in table 5.2. For dipolar and hydrogen bonding fluids the approximation of
the fluid-fluid interaction by a LJ potential is a drastic one, however, the predicted
freezing behavior is expected to be qualitatively correct. Two different models of
slit pores are considered: a strongly attractive pore with interaction parameters
chosen to model graphitic carbon pores, and a weakly attractive pore modeled on
silica walls. The size parameter oy, to be used in the 10-4-3 potential is taken
to be (0ff + 0ww)/2. For simple fluids, the energy parameter €y, is calculated as
(€f€ww)”?, consistent with the Lorentz-Berthlot mixing rule. For dipolar and hy-
drogen bonded fluids, the LJ fluid-fluid parameters given in table 5.2 include, in
some approximate, averaged fashion, the effects of direct electrostatic and induction
interactions. The use of the €7y values given in table 5.2 in the Lorentz-Berthelot
rule, (€7€,,)%°, to estimate €y, is therefore not appropriate. We expect direct elec-
trostatic and induction interactions between such fluid molecules and the wall to be
small, and we therefore neglect them. The LJ fluid-wall energy parameter is taken

to be,

ey = ((ISPETSION Y12 (5.5)

where eg;spersmn is the LJ parameter value that represents only the dispersion
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contribution. For HCI, HI, C4H5NO, and NHj3, the values of 6;1f1spers1on fitted to

the Stockmayer potential [104] were used in equation 5.5, while for HyO the value
fitted to the SPC-E model was used. These values are given in table 5.3. Interaction
parameters that characterize the pore walls are given in table 5.4.

The global freezing diagram for typical fluid/pore systems is given in figure 5.4.
Each fluid is placed on the vertical axis depending on the porous material in which
it is confined and the « value. The systems that lie in region 1 (« > 1.15), show
an elevation in the freezing point and are characterized by an intermediate phase
with frozen contact layers and fluid-like inner layers. Systems with larger values of
« have a larger elevation in freezing temperature. The systems that lie in region 2
(0.5 < a < 0.85), show a depression in the freezing point behavior and have an
intermediate phase with fluid-like contact layers and frozen inner layers. The systems
that lie in region 3 (o < 0.5) also show a depression in freezing point but they
are characterized by an intermediate phase that is metastable. Thus, these systems
have only two true thermodynamic phases (liquid and crystalline solid). In regions 2
and 3, smaller values of a lead to larger magnitude of the depression in the freezing
temperature. The dashed line represents the boundary between regions 2 and 3.
The boundary that separates regions 1 and 2 extends between the two dotted lines.
Thus, systems falling in this boundary region can either show a depression or an
elevation in the freezing temperature on confinement but the magnitude of the shift

will be close to zero.
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Table 5.3: Fluid-fluid interaction parameters used to calculate the fluid-wall inter-

actions
Fluid model parameters
Simple fluids off/nm, 6;1}spersive/(kBK)
Ar LJ 3.4, 119.8
Kr LJ 3.6, 171.0
Xe LJ 4.1, 222.0
N, LJ 3.7, 96.0
CH, LJ 3.8, 148.1
COy LJ 4.4, 192.0
CCly LJ 5.1, 366.0
Dipolar fluids ofp/nm, Eg}spersive/(kBK), i/ Debye
HCl Stockmayer 3.3, 327.0, 1.03
HI Stockmayer 4.1, 324.0, 0.1
CgH5NOo Stockmayer 5.7, 265.0, 4.2
H-Bonding fluids
NH; Stockmayer 2.6, 320.0, 1.5
H,O SPC-E 3.2, 75.0, charges
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The different regions in the plot have

different phase behavior. Fluid-pore systems that belong to region 1 (o > 1.15)

show an elevation in freezing temperature when compared to the bulk, while those

in regions 2 (0.5 < o < 0.85) and 3 (o < 0.5) show a depression in freezing tempera-

ture. The pair correlation function plots show the fluid structure of the intermediate

phase corresponding to the particular region.
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Table 5.4: Potential energy parameters for the pore walls

Pore Wall Model | of;/A, €/ (ksK) | psod,,, AJA

Graphite 3.81, 28.0 2.5, 3.3

Silica 2.7, 230.0 0.87,2.2

5.4 Discussion

The global freezing diagram (figure 5.4) predicts the freezing temperatures of the
contact and the inner layers and the confined fluid structure in the different phases
for a variety of fluids in slit pores with model parameters to suit silica and graphite
interactions. It is clear that the strength of the fluid wall interaction relative to the
fluid-fluid interaction («) plays a very important role in determining the freezing
temperature as well as the structure of the confined fluid. The estimates of the
freezing temperature for many systems are to be regarded as approximate, because
of the simplicity of the pore models and the interaction potentials used to predict
the phase diagram. The comparison between simulation and experiment is expected
to be in nearly quantitative agreement for the case of simple fluids in graphite pores,
for which the pore model and interaction potentials are best suited. In the case of
polar and H-bonding fluids, approximating the fluid-fluid potential as LJ can lead to
quantitative differences; however we expect qualitative agreement with experiment.
For the case of silica based pores, the freezing temperature in figure 5.4 is expected to
be an over estimation of the actual experimental values, as most silica based porous
materials (CPG, VYCOR, MCM-41 etc.) have cylindrical pore geometry instead of

slit pore geometry. The additional confinement due to the cylindrical geometry has
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the same effect as reduction in « values, due to additional steric constraints on the

formation of the confined crystal phase [105, 102].

Experimental studies have been reported that confirm the predictions of the global
freezing diagram. Radhakrishnan et al. [80, 81] studied freezing of CCl, in activated
carbon fibers using differential scanning calorimetry, and observed a large increase
(57 K) in the freezing temperature of the confined fluid compared to the bulk,
which is consistent with the predictions of figure 5.4. Other experimental reports
on freezing of CCly in CPG and VYCOR pores (silica glasses) using DSC [2] find a
depression in the freezing temperature when compared to the bulk. These trends are
consistent with the weak potential of interaction experienced by the CCl; molecules
due to the silica walls, and agree qualitatively with the predictions of the global
phase diagram. The authors also studied freezing of nitrobenzene in silica based
pores using dielectric relaxation spectroscopy (DS) [2] and found similar trends on
the depression of the freezing temperature, that again confirms to the predictions of
the global phase diagram. In addition to the freezing temperature, the DS measure-
ments of the rotational relaxation times of the dipolar molecules also showed that
the contact layers have different dynamic and structural properties compared to the
pore interior. The authors found that the freezing temperature of the contact layers
(as measured by the jump in the value of the dielectric relaxation time) was less
than that of the inner layers (as measured by the jump in the value of the dielec-
tric constant [102, 106]). This behavior implies that the structure of the confined
intermediate phase in the silica based pores is the same as that of the intermedi-
ate phase described by figure 5.3(a). Following the study of Sliwinska-Bartkowiak
et al. [2], we performed dielectric relaxation spectroscopy studies on the freezing of

nitrobenzene in activated carbon fibers. Due to the conducting nature of the pore
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material, the electrodes were blocked using a thin film of teflon before studying the
frequency response. The experimental procedure is outlined in section 5.2, and in
more detail in Ref. [2]. A plot of the dielectric relaxation times as a function of
temperature is shown in figure 5.5 for nitrobenzene confined in the micropores of
the ACF material. The bulk melting temperature for nitrobenzene is 5.6 Celsius
and is denoted by the dashed vertical line. For the confined fluid, the correspond-
ing freezing and melting temperatures are 3 Celsius and 8 Celsius respectively, as
seen from the discontinuities in values of the dielectric relaxation times during the
freezing and melting runs. We can therefore conclude that the shift in the freezing
temperature due to confining the nitrobenzene molecules in ACF is nearly zero in
the experiments, which is consistent with the predictions of figure 5.4. Figure 5.4
shows that the nitrobenzene/graphite system lies in the boundary of regions 1 and 2,
and is therefore expected to have a very small shift if any in the freezing temperature
due to confinement. We note that the relaxation times for the liquid in the confined
system is much larger than the typical bulk liquid, because the measured relaxation
time is that of the contact layers of nitrobenzene that experience a deep potential
energy well due to the pore walls and hence are in a orientationaly ordered hexatic
state [83, 107]. The relaxation times for the inner layers in their liquid state are
in the range of nano-seconds, are outside the frequency range of our measurements.
On freezing, the crystalline phase relaxation in the bulk as well as in the pore are
of the order of milli-seconds [2, 102].

Experimental studies performed using the surface force apparatus are the most
suited for direct comparison with the predictions of the global phase diagram. The
surface force apparatus consists of two parallel plates with mica surfaces in which

the spacing between the mica surfaces can be controlled at the scale of an angstrom
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or less. Such a system can be modeled using the slit pore approximation as we
have done in our study. Klein and Kumacheva [44] studied freezing of cyclohexane
between parallel mica surfaces (slit shaped geometry) and observed a significant
increase in the melting temperature on confinement. There has been contradicting
reports on the nature of the shift in the freezing temperature of cyclohexane be-
tween parallel mica surfaces in a surface force apparatus [50]. However, a recent
simulation study [108] based on the experimental system of Klein and Kumacheva,
also predicted an elevation in the freezing temperature. The model parameters used
to mimic the mica interaction in the study [108] yielded an « value of 2.47 for cyclo-
hexane confined between the mica surface, which falls in region 1 in the global phase
diagram (figure. 5.4), consistent with the elevation in the freezing temperature. A
more convincing evidence that supports the verification of the global phase diagram
is based on the experimental study of Watanabe et al. [82], which reported an ele-
vation of freezing temperature for benzene confined in activated carbon fibers. The
« value for a LJ benzene (fitted to reproduce the melting point of benzene in the
bulk) in graphite is 2.15; thus, the freezing temperature elevation is again consistent

with the global phase diagram.

In conclusion we comment on the methodology used to calculate the freezing tem-
perature and characterize the phase behavior. The Landau free energy formalism
was used to calculate the grand free energy of the fluid and crystalline states as a
function of temperature, for LJ CCl, confined in slit-shaped pores. The free energy
difference between the ordered and the disordered state is directly calculated. In
addition to the free energy, a quantitative estimate of the free energy barrier to
nucleation is obtained, although such a quantity is sensitive to system size effects.

However, the absolute value of the free energy difference is only a weak function
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of system size, and is estimated to an accuracy of 1kgT, as shown by Lynden-
Bell et. al. [60] The exact location of the equilibrium transition temperature by
free energy calculation is an improvement over methods that use the jump in the
density to locate the freezing/melting points in terms of accuracy, as it is indepen-
dent of the width of the hysteresis loops. Previously existing methods to calculate
the free energy of a confined solid phase in simulations are all based on thermo-
dynamic integration [51, 52]. This method involves a numerical integration of the
Gibbs free energy starting from a known reference phase (the Einstein crystal for
the solid phase and the ideal gas for the liquid phase) to the state point of inter-
est. It relies on finding a suitable path of integration which is thermodynamically
reversible, i.e., the path does not intersect any phase boundary characterized by a
first order transition. Thus, the free energy study in Ref. [51] was limited to con-
fined systems with repulsive or weakly attractive wall-fluid potentials (pore models
for which o < 0.48 so that the intervening intermediate phase is never a thermo-
dynamically stable phase, hence the path of integration does not run into a first
order phase transition). For the more ubiquitous case of a wall-fluid potential that
is moderately or strongly attractive (a > 0.48), this method breaks down. This is
because the intermediate phase becomes a thermodynamically stable phase. This
makes it impossible to find a reversible path from the ideal gas phase to the fluid
phase, since any such path runs into a first order transition leading to the formation
of the intervening intermediate phase. Thus one should exercise great caution in us-
ing the thermodynamic integration methods in confined systems (or inhomogeneous
systems in general) because of the subtle phase transitions driven by the external
potential that lead to formations of inhomogeneous phases that are thermodynam-

ically stable. Such problems are circumvented by the use of the order parameter
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formulation and the Landau approach.

The level of the Landau theory used in this study is still an approximation as
it does not allow the order parameter to be explicitly spatially inhomogeneous.
Instead, an average order parameter is used that takes into account the spatial fluc-
tuations at a crude level but does not take into account the orientational fluctuations
in the order parameter. In this sense, the field theoretic method used in this study
comes under the general class of mean field approximations. This approximation
is expected to give reliable and quantitative correct results in studying crystalline
phases in which there is a very strong coupling between the phase of the orienta-
tional order parameters in different molecular layers, (since the order parameter ® in
equation 2.12 is a complex number it has a magnitude as well as a phase associated
with it). This prevents spatial variations in the phase of the orientational order
parameter. However, when studying other systems with hexatic order, the level of
mean field theory used here fails to capture the spatial variations in the phase of
the order parameter. In such cases a more generic form of the order parameter
formalism (the Landau-Ginzburg approach) is more appropriate, as the free energy
can be calculated as a function of the spatially varying order parameter [58] (see
also chapter 6). The other main approximation in the methodology is the use of
corresponding states theory in relation to freezing transitions. Although this prin-
ciple is valid for the L.J model systems that we have used in this study, it should be
noted that the global freezing diagram (figure 5.4) is based on equation 5.4, which is
derived on the assumption that the Landau free energy function is a weak function
of the LJ size parameters. Thus, the global freezing diagram is not expected to work
very well for predicting the freezing temperatures of large molecules like butane and

higher alkanes (nor for any other functional derivatives of these large molecules like
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alcohols, amines etc.).

The corresponding states theory is known not to work as well with freezing transi-
tions as with vapor-liquid transitions in real laboratory systems. The primary reason
for the poor performance of the corresponding states theory for freezing transitions
is the importance of three body effects in the formation of the crystalline phase; this
is not captured by simple two-parameter models like Lennard-Jones [109]. However,
the qualitative trends we have obtained from such a principle are still reliable, as

the predictions are consistent with numerous experimental studies.



Chapter 6

On the Existence of a Hexatic

Phase in Confined Systems

This chapter deals with an important extension of the Landau free energy method-
ology to rigorously treat spatial variations in the order parameter. This extension
leads to the Landau-Ginzburg formalism that has been used to understand hexatic

phases in confined systems.

Two- dimensional systems have a special significance for phase transitions in which
continuous symmetry is broken (such as freezing transitions). The Mermin-Wagner
theorem states that true long range order cannot exist in such systems [72]. Halperin
and Nelson proposed the “KTHNY” (Kosterlitz- Thouless- Halperin- Nelson- Young)
mechanism for melting of a crystal in two dimensions [70] which involves two tran-
sitions of the Kosterlitz-Thouless (KT) kind [73]: the first is a transition between
the two- dimensional crystal phase (with quasi-long range positional order and long
range orientational order) and a hexatic phase (with positional disorder and quasi-

long range orientational order); the second transition is between the hexatic phase
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and the liquid phase (having positional and orientational disorder). Each KT transi-
tion is accompanied by a non-universal peak in the specific heat above the transition
temperature, associated with the entropy liberated by the unbinding of the vortex
pairs. The crystal to hexatic transition occurs through the unbinding of disloca-
tion pairs, and the hexatic to liquid transition involves the unbinding of disclination
pairs. The hexatic phase was first observed experimentally in an electron diffraction
experiment on liquid crystalline thin films [75, 77, 110]. In between the smectic-A
phase and the crystal-B phase, a hex-B phase exists that possesses long range ori-
entational order and positional disorder, as a result of which the diffuse electron
intensity pattern displays a sixfold symmetry. The intensity pattern for a smectic-
A phase is a uniform ring and that of the crystal-B phase has six Bragg peaks

corresponding to a two- dimensional hexagonal lattice.

Extensive simulation studies on strictly two- dimensional systems have failed to
provide compelling evidence to support the KTHNY melting scenario [74, 111].
Bladon and Frenkel [111] concluded that for almost all the systems studied in the
simulations, the defect core energies of the vortices lie in a range such that the
two- dimensional crystalline phase melts by a first order mechanism involving the
induction and propagation of grain boundaries [74], rather than by the KTHNY
mechanism. The authors [111] also showed that for systems that show a solid-solid
transition (both the solid phases having the same symmetry and hence a critical
point), the KTHNY mechanism would prevail as the mechanism of melting, in a
finite region near the critical point. Zangi and Rice [112] argue that for quasi-
two- dimensional systems that having a certain degree of out of plane motion, the
conclusions of Frenkel and Bladon need modification. In particular, they point

out that the presence of a solid-solid transition is not a necessity for observing the
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KTHNY mechanism. Their simulation study shows strong evidence of a first order
liquid to hexatic and a first order hexatic to crystal transition in a system without a
solid-solid transition. The study by Zangi and Rice [112] has cast some light on the
role of the out of plane motion (as in the case of a quasi-two- dimensional system

as opposed to a strictly two- dimensional system) in stabilizing the hexatic phase.

Activated carbon fibers posses domains of micro-crystallites (made up of graphene
sheets) that tend to align in similar directions, with slit shaped voids between the
microcrystals. The spontaneous ordering of the molecules adsorbed in these voids
into distinct two- dimensional molecular layers (analogous to the structure of a
smectic-A phase in liquid crystals) makes the adsorbed phase a quasi-two- dimen-
sional system with room for out of plane motions. Radhakrishnan and Gubbins [83]
have studied freezing of Lennard Jones methane in slit-shaped carbon pores, and
have reported the possibility of the existence of a confined hexatic phase of methane.
The authors calculated the heat capacity of the system as a function of temperature
and found KT-like peaks. Further, the two- dimensional in-plane structure factor
I(ky, ky) (equivalent to the intensity pattern in the electron diffraction experiment)
showed a six-fold symmetry in the diffuse intensity pattern for the temperature
range in which the peak in the heat capacity occurred, indicating the the onset of

the hexatic transition.

In this article, we adopt a free energy approach to investigate the occurrence
of the hexatic phase for Lennard Jones (LJ) CCly confined in regular slit-shaped
pores. Carbon tetrachloride is chosen as the adsorbate to make contact with recent
experimental studies of this system. The fluid-wall potential was modeled to be of

the form of the “10-4-3” Steele Potential, with parameters chosen to represent the
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strongly attractive graphite pore [53]. The parameters for LJ CCly were chosen to
reproduce the bulk freezing temperature of CCly at 1 atm. pressure (o7y = 0.514
nm, €;7/kp = 366.1 K). The carbon-CCl, unlike pair parameters were determined
using the Lorentz-Berthlot mixing rules. The pore width H = 20;+0y, = 1.41nm,
(where H represents the shortest distance between the planes passing through the
carbon nuclei on the surface of the opposing pore walls) was chosen so that the
adsorbed phase had 2 molecular layers of CCly. This choice of pore width was made
to enable direct comparison with DSC measurements (that are described later) for
CCly confined in porous activated carbon fiber ACF A-10, of mean pore width
H = 1.4 nm. The extent of the rectilinear simulation cell was 600 X 600, (31 nm
x 31 nm) in the zy plane so that correlations up to 300, can be captured in
the simulations (the z coordinate is perpendicular to the plane of the pore walls).
Periodic boundary conditions were used in the x and y dimensions. We expect
the approximation of a structureless graphite wall to be a good one here, since the
diameter of the LJ molecule (0.514 nm) is much larger than the C-C bond length
in graphite (0.14 nm), so that CCl,; molecules only feel a mild corrugation in the
fluid-wall potential in passing along the surface. We extend the Landau free energy
approach used in earlier studies [83, 60, 59] to incorporate spatial inhomogeneity
in the order parameter, and develop the generalized Landau-Ginzburg approach to

calculate the free energy surface of inhomogeneous fluids.

The Landau-Ginzburg formalism

The Landau-Ginzburg formalism involves choosing a spatially varying order param-
eter ®(7), that is strongly dependent on the phase of the system. The Landau free

energy can be computed by a histogram method combined with umbrella sampling
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that calculates the probability distribution of the system in the order parameter
space. The probability distribution function P[®(7 )] is calculated during a simula-
tion run by collecting statistics of the number of occurrences of a particular form of
® (7). This is accomplished by constructing a histogram with respect to ® values in
different domains obtained by discretizing the spatial coordinates. For the general
case of a spatially varying order parameter ®(7 ), the probability P[®(7 )] is defined

as,

oo

P[o(7)] =

[I]I —

eXp 5/LN (7 = S
R [ Dy@()]3(@() ~ 87 ) exp(~5Hy) (6.1
N 1

= is the partition function in the grand canonical ensemble, N the number of
molecules in the system, 8 = 1/kgT, X is the de Broglie wavelength and Hy is

the Hamiltonian of the system. The path integral notation Dy[®(7)] should be

58],
/DN = lim T, /d@a :/ dir v (6.2)
Vo—> 7 N

Equation (6.2) defines the path integral in terms of a trace over a discrete number

interpreted as [

of sites , and v, represents the volume per site. The Landau free energy A[® (7 )]

is then defined as,

- O ex N) -
p(-PARET) = 5 Pt / Dy[®( )] 6(B(F ) — (7)) exp(—BHy)
(6.3)
From this definition it follows that,
A@(7)] = —kpT In(P[®(7)]) + Constant (6.4)

The grand free energy, Q@ = —kgT In(Z), is then related to the Landau free energy

by,

exp(—59) / D[®(7")] exp(—BA[( ) (6.5)
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We use a two- dimensional bond orientational order parameter to characterize
the orientational order in each of the molecular layers defined as follows:
1 &
Ue,(0) = N, > exp(i66y,)

k=1
g (P ) measures the hexagonal bond order at position p in the zy plane, within
each layer j. The orientation of the nearest neighbor bond is fixed by the # co-
ordinate. The index k£ runs over the total number of nearest neighbor bonds
N, at position p , in layer j. The order parameter EBJ in layer j is given by
Us; = | [ dpWe,;(p)]. The positional pair correlation function is the same as the
familiar radial distribution function. The orientational pair correlation function is
given by G j(p) =< Vg ;(0)¥s ;(p) >. For the case of LJ CCly in slit-shaped pores,
where there is significant ordering into distinct molecular layers, the order parameter

®(7 ) can be reduced to ®(z) and can be represented by,

D(z) = Z Ve 6(2 — %) (6.6)

In equation (6.6), the sum is over the number of adsorbed molecular layers and Z;
is the z coordinate of the plane in which the coordinates of the center of mass of
the adsorbed molecules in layer j are most likely to lie on. It must be recognized
that each of the Wg;’s are variables that can take values in the range [0,1]. The
histograms can be collected to evaluate the probability P[Us 1, Uso, ..., ¥s,] as a
function of the order parameters @6,1,§6,2, ...,ﬁg,n. The grand free energy is then
calculated using the equation,

exp(—49) = ", / 0T, P[T1, Ty, ., U ) (6.7)

j

Grand Canonical Monte Carlo simulations were used to study the freezing behav-

ior of LJ CCly in our model graphite pore. The number of molecules in the system
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varied between 6000 and 7000. The state conditions in the simulations were chosen
such that the confined phase was in equilibrium with bulk LJ CCl at 1 atm. pres-
sure. The simulations were started from a well equilibrated confined liquid phase at
T = 400 K, and in successive simulation runs, the temperature was reduced. The
two- dimensional, in-plane positional and orientational correlation functions (g;(r)
and G ;(r) of layer j), were monitored to keep track of the nature of the confined

phase.

Results

Our results for the positional and orientational pair correlation functions for the
two confined molecular layers of CCly at three different temperatures are given
in figure 6.1. It is evident from figure 6.1 that the high temperature phase at
T = 360 K (isotropic g(r) and exponentially decaying G ;(r)) is a liquid phase with
short-range positional order and short-ranged orientational order. The confined
phase at T' = 340 K is characterized by an isotropic positional pair correlation
function and an algebraically decaying orientational correlation function; this is a
clear signature of the hexatic phase with short range positional order and quasi-long
ranged orientational order. At 7" = 290 K the confined phase is a two- dimensional
hexagonal crystal, with long-range positional order and long range orientational

order.

The Landau free energy surface for this system is a function of two variables,
A/kpT = AW, Uso)/kpT. This function was calculated at two different tem-
peratures, 7' = 335 K and 7" = 290 K, from which the grand free energies of the

liquid (L), hexatic (H) and crystal (C) phases at these different temperatures were
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Figure 6.1: The positional pair correlation function g(r) and the orientational pair
correlation function Gg(r) in the two molecular layers of CCly confined in a graphite
pore of width H = 3oy, at three different temperatures, (a) liquid phase at 7' =

360 K; (b) hexatic phase at T' = 340 K; (c) Crystalline phase at 7" = 290 K.

calculated using equation (6.7). The grand free energy of the three phases at other
temperatures were further calculated using thermodynamic integration [113], using
the temperatures 7' = 335 K and 7" = 290 K as reference. The two grand free
energy functions that were calculated using the two different reference temperatures
were identical, which provided a test for self consistency of this procedure. The first
order distribution function of the Landau free energy function for the first molecu-
lar (layer 1), AM[Wg ] (which is obtained by the taking the functional derivative of
equation (6.7) with respect to the order parameter Wq in layer 1), at T = 335 K

and 7' = 290 K is shown in figure 6.2.
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Figure 6.2: The first order distribution functions of the Landau free energy for

layer 1 at 7' =335 K and 7" = 290 K.

The distribution functions in figure 6.2 are good representations of the three
dimensional Landau free energy surface for the system considered here because the
fluid-wall potential energy is symmetric with respect to the two confined molecular
layers of CCly, causing the matrix A[@G,l, Ee,z] to be symmetric. Further, the lowest
free energy state points that govern the equilibrium thermodynamics of the system

are given by the diagonal elements and the elements near the diagonal of the matrix.

The presence of the three phases ('L, "H’ & 'C’) of the system is clearly seen
in figure 6.2, along with their relative thermodynamic stabilities. It is clear from
figure 6.2 that the hexatic phase is the thermodynamically stable phase at T =
335 K, while T" = 290 K is close to the temperature at which the hexatic and
crystalline phases coexist. The grand free energy function for the three phases ('L’
'H” & ’C’) are given in figure 6.3. The cross-over of the free energy functions at
T =347 K and T = 290 K provide the transition temperatures of the liquid-hexatic

and the hexatic-crystal transitions. The cross-over of the free energy of the different
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Figure 6.3: The Grand free energy as a function of temperature for liquid, hexatic

and crystalline phases.

phases at different slopes at the transition temperatures imply that both transitions
are first order for this particular system size. However, a system size study will
be required in order to predict the order of these transitions in the thermodynamic
limit.

In order to seek experimental evidence for a confined hexatic phase, we performed
DSC measurements for CCl, confined in an activated carbon fiber (ACF A-10)
porous material having a mean pore width of H = 1.4 nm. This carbon material
is known to have slit-shaped pores having a narrow pore size distribution [80]. The
CCly was adsorbed in the porous medium at 1 atm. pressure. Figure 6.4 depicts such
a DSC scan when the system was cooled; two peaks are present, the high temperature

peak at T" = 345 K is consistent with a liquid to hexatic transition in the confined
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Figure 6.4: DSC scan for CCl, confined in activated carbon fiber ACF A-10 at a
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phase and the smaller peak at T' = 290 K is consistent with the hexatic to crystalline
transition in the confined phase of CCly. Both the transition temperatures found in
the DSC experiment lie within 3% of the simulation values. It must be remarked
that the hexatic to crystalline phase transitions has a lower latent heat of transition
when compared to the liquid-hexatic transition because much of the entropy is
lost in the latter transition, which involves the pairing of free disclinations. The
hexatic phase is a low entropy phase with a high degree of orientational ordering.
Thus, a transition to the crystalline phase is accompanied only by a small change
in entropy. Recently, Sliwinska-Bartkowiak has reported a similar behavior for the
case of aniline confined in activated carbon fibers [114]. The DSC results are similar
to figure 6.4, showing evidence of a liquid-hexatic and a hexatic-crystal transition.
In addition, the dielectric permittivity measurements show two anomalies in the
behavior of the dielectric constant vs. temperature at the same temperature range
in which the peaks in the DSC spectrum are found. In conclusion, our simulation
and experimental results are consistent with the KTHNY mechanism of melting. A
final remark about the Landau-Ginzburg formalism is noteworthy. Although this is a
rigorous approach for dealing with inhomogeneous systems, the results are only valid
for a finite system size. Although we have verified that our results do not change
for three system sizes, viz., (100 x 100 x H), (300 x 300 x H), (600 x 600 x H),
the largest system that we have studied contained up to 12000 molecules. Since
the molecules are correlated over large length scales in the hexatic and crystalline
phases, the finite extent of our simulation cell makes this study a mean field theory.
In order to extrapolate our results to the thermodynamic limit requires systematic
system size scaling analysis [78]. The self-consistency of our study can be established

by estimating the Ginzburg parameter [58].



Chapter 7

Melting/freezing behavior in

porous glasses and M CM-41

Sliwinska-Bartkowiak and co-workers [2] attempted to characterize the melting/freezing
transition for a dipolar fluid, nitrobenzene confined in controlled pore glass of dif-
ferent pore sizes, using DSC and dielectric relaxation spectroscopy (DS). The de-
pression in the melting temperature followed the Gibbs-Thomson equation for pore
diameters larger than 7.5 nm; however, significant deviation was observed for a
smaller pore width. The results from both experiments were in good agreement.
The authors also made a quantitative estimate of the rotational relaxation time
in the fluid and crystal phases by fitting the complex valued relative permittivity
k* = Kk'(w) — ik"(w) measurements to the Debye dispersion equation. In addition to
the liquid and crystal phase relaxation, a third relaxation component was observed,
that supported the existence of a contact layer with dynamic properties that were
liquid-like but different from that of the inner layers; in particular the rotational

relaxation times of molecules in the contact layer were about four orders of mag-

nitude slower than molecules in the capillary condensed phase. Slower dynamics
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of molecules in the contact layer were also reported by Takahara et. al. [115], in a

neutron scattering study of water confined in MCM-41.

In an other study, Sliwinska-Bartkowiak et. al. [106] found evidence of a pre-
freezing transition in nitrobenzene confined in a 7.5 nm CPG material that occurs
before the confined fluid freezes into a single crystalline structure. The pre-freezing
produces an intermediate phase, which we term the “contact layer phase”, that is
characterized by a positionally disordered contact layer but crystalline inner layers.
For the system of nitrobenzene in CPG, the contact layer phase is only metastable
because the melting occurs in a single step. This was also theoretically established by
a study of Landau free energy surfaces using molecular simulation [106]. Recently
Morishige and Kawano [116] found evidence of such a pre-freezing transition for
methanol confined in MCM-41, using x-ray diffraction measurements. In a separate
simulation study, Radhakrishnan et. al. [107] examined the thermodynamic stability
of the contact layer phase as a function of the relative strength of the fluid-wall
interaction to the fluid-fluid interaction. The authors concluded that the contact
layer phase is metastable for repulsive and weakly attractive pore walls, and is a

thermodynamically stable phase for strongly attracting pore walls.

The experimental and simulation studies, suggest that there is a need to charac-
terize the structure of confined phases when studying freezing. Experimental studies
involving x-ray diffraction and NMR methods, and the simulation studies involving
free energies, establish the presence of stable inhomogeneous confined phases that
bear important consequences for the nature of the phase transition as well as for the
shift in the freezing temperatures. Although this effect has been understood in the

case of simple fluids freezing in slit shaped pores, the nature of the confined phases
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in the more complicated cases of sub-nanometer size cylindrical pores, and highly

networked pores such as CPG and Vycor are still unknown.

This chapter primarily deals with the experimental measurements. The experi-
mental studies are for carbon tetrachloride and nitrobenzene in controlled pore glass
(CPG), VYCOR, zeolite MCM-41 and microporous activated carbon fibers ACF.
Differential scanning calorimetry (DSC) was used to determine the melting point in
the porous materials. Dielectric spectroscopy was also used to determine melting
points. Structural information about the different confined phases was obtained
by measuring the dielectric relaxation times using dielectric spectroscopy. Monte
Carlo simulations, together with the Landau free energy method, are used to deter-
mine the melting point and fluid structure inside cylindrical pores modeled on silica.
Qualitative comparison between experiment and simulation are made with respect
to the shift in the freezing temperatures and the structure of confined phases. From
the experiments as well as the simulations, it is found that, the confined fluid freezes
into a single crystalline structure for average pore diameters greater than 150, where
o is the diameter of the fluid molecule. For average pore sizes less than 150, part
of the confined fluid freezes into a frustrated crystal structure with the rest forming
an amorphous region. The measurements and calculations show clear evidence of a
novel intermediate “contact layer” phase lying between liquid and crystal; contact
layer is the confined molecular layer adjacent to the pore wall and experiences a
deeper fluid-wall potential energy compared to the inner layers. In addition, there
is a strong evidence of a liquid to “hexatic” transition at high temperatures, in such

a quasi-two-dimensional contact layer.
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7.1 Methods

Liquid nitrobenzene and the CPG [117] and VYCOR [118] samples were treated by
the same method as described in chapter 4. The MCM-41 samples were synthesized
at A. Mickiewicz University at Poznan, Poland and were characterized using x-
ray diffraction and nitrogen adsorption measurements [119]. The characterization
results for the MCM-41 material showed that these crystalline materials consisted
of uniform pores in a hexagonal arrangement with a narrow pore size distribution

(less than 5%) [119].

7.1.1 Dielectric relaxation spectroscopy (DS)

The complex dielectric permittivity x* = k' — ix”, is measured as a function of
temperature and frequency as described in chapter 4. In addition, the rotational
relaxation times of the molecules were determined using the dispersion spectrum

(equation 4.3)

7.1.2 Differential scanning calorimetry (DSC)

A Perkin-Elmer DSC7 (differential scanning calorimeter) was used to determine the
melting temperatures and latent heats of fusion, by measuring the heat released
in the melting of nitrobenzene. The temperature scale of the DSC machine was
calibrated using the melting temperature of pure nitrobenzene from the literature.
The temperature scanning rates used for the melting and freezing runs varied from
0.2K/min to 0.5K/min. The background of each raw DSC spectrum was subtracted,
based on a second-order polynomial fit to the measured heat flow away from the

signals of interest. The melting temperatures in the bulk and confined systems were
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determined from the position of the peaks of the heat flow signals, and the latent
heats were determined based on the scaled area under these signals. The melting
temperature was reproducible to within 0.5 Celsius for larger pores (>25 nm); un-
certainties were larger for the smaller pores. These uncertainties are a result of
the width of the DSC peaks, which derives in part from variations in pore size,
and geometry, and from the existence of metastable states. The latent heats were

reproducible to within 5%.

7.1.3 Simulation

We performed grand canonical Monte Carlo (GCMC) simulations of Lennard-Jones
CCly adsorbed in straight cylindrical pores of different pore diameters. The interac-
tion between the adsorbed fluid molecules is modeled using the Lennard-Jones (12,6)
potential with size and energy parameters chosen to describe CCly (0y; = 0.514 nm,
err/kp = 366.4 K). The pore walls are modeled as a smooth LJ continuum [120]
(the cylindrical equivalent of the“10-4-3” Steele potential). The fluid-wall interac-
tion energy parameters corresponding to a silica pore were taken from Gelb and

Gubbins [121].

The simulation runs were performed in the grand canonical ensemble, fixing the
chemical potential u, the volume V' of the pore and the temperature 7. The system
typically consisted of 600-2000 adsorbed molecules. Periodic boundary conditions
were employed in the axial dimension of the pore. The simulation was set up such
that insertion, deletion and displacement moves were attempted with equal probabil-
ity, and the displacement step was adjusted to have a 50% probability of acceptance.

Thermodynamic properties were averaged over 100-1000 million individual Monte



124

Carlo moves. The length of the simulation was adjusted such that a minimum of
fifty times the average number of particles in the system would be inserted and

deleted during a single simulation run.

The method used to calculate the free energy relies on the calculation of the
Landau free energy as a function of an effective bond orientational order parameter
®, using GCMC simulations as described in chapter 2. Three dimensional bond
orientational order parameters [65] that can differentiate between the isotropic liquid
phase and common crystalline lattices are employed. These order parameters are

defined in chapter 2.

7.2 Experimental results

7.2.1 Dielectric relaxation

The capacitance C' and tangent loss tan(d) were measured as a function of fre-
quency and temperature for bulk nitrobenzene and for nitrobenzene adsorbed in
CPG, VYCOR and MCM-41 materials of different pore sizes, ranging from 50 nm
to 2.4 nm, from which the dielectric constant x'(T,w) and the loss factor " (T, w)
were calculated. The dielectric constant is a natural choice of order parameter to
study freezing of dipolar liquids, because of the large change in the orientational
polarizability between the liquid and solid phases. The melting point can be taken
to be the temperature at which there is a large increase in the permittivity, as the
solid phase is heated. The measurements of s’ as a function of 7" are shown in
figure 7.1(a) for bulk nitrobenzene. There is a sharp increase in £’ at T = 5.6 °C,

corresponding to the melting point of the pure substance. The spectrum of the
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complex permittivity (', " vs. w) is fit to the dispersion relation (equation (4.3)),
to determine the dielectric relaxation time 7. The frequency range in this study
(100 Hz to 10 MHz) is expected to encompass the resonant frequencies correspond-
ing to the dielectric relaxation in the solid phases and glass-like phases. According
to equation (4.3), the £’ function shows a point of inflection and the £” function goes
through a maximum at the resonant frequency. Therefore, from a spectrum plot of
k', k" vs. logyy(w), the relaxation time can be calculated as the reciprocal of the
frequency corresponding to a saddle point of the ' function or a maximum of the "
function. An alternative graphical representation of the Debye dispersion equation
is the Cole-Cole diagram [93], in the complex x* plane. The Cole-Cole diagram falls
on a semi-circle for each relaxation mechanism. From a plot of k" vs. &/, 7 is given
by the reciprocal of the frequency at which " goes through a maximum.

Figure 7.1(b) depicts the variation of the relaxation time with temperature for
bulk nitrobenzene, obtained from fitting the dispersion spectrum to equation (4.3).
The liquid branch of the plot (above 6 °C) has rotational relaxation times of the
order of nano-seconds. This branch lies outside the range of our measurements and
is reproduced from ref. [122]. The relaxation time shows a sharp increase at the

melting temperature and is of the order of 1073 s in the crystal phase.

For nitrobenzene confined in CPG, the sample is introduced between the capaci-
tor plates as a suspension of nitrobenzene filled CPG particles in pure nitrobenzene.
Therefore, the capacitance measurement yields an effective relative permittivity of
the suspension of CPG in pure nitrobenzene. For a CPG sample with average pore
diameter of 25 nm, £’ shows two sudden changes (figure 7.2). The sharp increase at
2 9C is attributed to melting in the pores, while that at 5.6 °C corresponds to the

bulk melting. The frequency spectrum at a particular temperature is used to obtain
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Figure 7.1: (a) The behavior of ' vs. T for bulk nitrobenzene. The sharp increase
at 5.6 °C corresponds to bulk melting. (b) Relaxation time vs. temperature for the

bulk. At each temperature 7 is estimated by fitting the dispersion spectrum to the

Debye dispersion equation.
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the orientational relaxation times in the different phases of the system as described
before. For example, in figure 7.3 the spectrum plot (x', " vs. w) is shown for ni-
trobenzene confined in the 25 nm CPG material at two different temperatures. The
spectrum in figure 7.3(a) at 20 °C shows two relaxation mechanisms (as seen by
the two inflection points in «') with relaxation times of the order of 107 s (which
we refer to as “millisecond relaxation”) and 107> s (which we refer to “microsec-
ond relaxation”). A similar spectrum at —10 °C (figure 7.3(b)) produces just one
relaxation mechanism with a time scale of 1072 s. The corresponding Cole-Cole
diagrams are shown in figure 7.4. The response to each relaxation mechanism falls
on a semi-circle in the Cole-Cole diagram. Therefore figure 7.4(a) confirms the two
relaxation mechanisms at the higher temperature (20 °C) and the single relaxation

mechanism at the lower temperature (—10 ©C) is evident from figure 7.4(b).

7.2.2 Maxwell-Wagner Effect

The behavior of the relaxation times as a function of temperature for nitrobenzene
in CPG of 25 nm pore size are depicted in figure 7.5. For temperatures greater than
2 9°C (melting point inside the pores), there are two different relaxations similar
to figure 7.3(a); they manifest themselves as a double inflection behavior in &' vs.
w, and a double maximum in £” vs. w. The longer component of the relaxation
that is of the order of 5 x 1073 s is because of Maxwell-Wagner-Sillars polarization.
For a heterogeneous system there occurs a relaxation mechanism due to interfacial
polarization, when a slightly conducting liquid is enclosed in an insulating material.
This effect, called the Maxwell-Wagner-Sillars (MWS) polarization [99], is known to
have a relaxation time of the order of 107 s [98, 100]. The CPG and Vycor samples

used in this study were dielectrically neutral, in the sense that, in the temperature
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Figure 7.2: The behavior of k' vs. T for nitrobenzene in a CPG material of average
pore diameter of 25 nm. The sample is introduced as a suspension of porous glass
particles in bulk nitrobenzene. Thus, the signals are for both bulk and confined

nitrobenzene.
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—10 °C. The symbols correspond to experimental measurements and the solid and

the dashed curves are fits to the real and imaginary parts of equation 4.3 respectively.
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and frequency range of our measurements, the dielectric loss (proportional to k")
of the empty pores was negligible compared to that for the liquid-filled samples.
Therefore, there is no background noise due to the motion of silica molecules. The
shorter relaxation component, of the order of 50 x 10 ¢ s, is too slow to represent
the liquid phase relaxation in the pore. However, it is known that for dipolar
liquids confined in nano-scale pores, the molecules in the contact layer show a slower
dynamics, with a relaxation time of the order of 107° s [98, 100, 101]. Thus, the
shorter relaxation component is consistent with such a behavior of the contact layer.
The Landau free energy calculation for methane and CCl, in graphite [83, 81] and
for CCly in silica [107], and the NMR study by Overloop and Van Gerven [38] dealing
with water in porous silica also support the view that the molecules in the contact
layer behave differently than the those in the pore interior. Thus, the 50 x 107% s
branch of the relaxation time that occurs for temperature above 2 °C (figure 7.5),
corresponds to the response of the contact layer. The response of the liquid phase
in the bulk and the inner layers of the pore are not accessible in our experiments
as sub-nanosecond relaxation times are not affected by the frequency range we use
in our experiments. The disappearance of the 50 x 10~¢ s branch of the relaxation
time and the appearance of the 10~® s branch at 2 °C, points to the freezing of
the liquid in the pores. Below this temperature, the millisecond relaxation time
(similar to figure 7.3(b) at —10 °C) corresponds to the crystal phase relaxation in
the bulk and in the pore. The MWS effect disappears because the CPG particles are
arrested in the crystalline matrix of bulk nitrobenzene, thereby preventing interfacial
dispersion. Thus, from figure 7.2 and figure 7.5, the melting temperature of the fluid

inside the pore is determined to be 2 ©C.
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Figure 7.5: The behavior of k' vs. T for nitrobenzene in a CPG material of average
pore diameter of 25 nm. The sample is introduced as a suspension of porous glass

particles in bulk nitrobenzene. Thus, the signals are for both bulk and confined

nitrobenzene.
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7.2.3 Contact Layer Phase

For fluid molecules such as nitrobenzene that wet the pore walls, the adsorbate
molecules in the contact layer, layer next to the pore walls, feel a large attractive
potential energy due to the combined interactions with all the molecules of the
porous material. The density of the adsorbed molecules in the contact layer, is
much higher than the bulk liquid density or the average density of the confined
fluid phase. In addition, the locus of the surface defining this attractive potential
energy is approximately a cylindrical shell, as the pores in CPG, Vycor and MCM-
41 have a cylindrical shape. Such a cylindrical shell is quasi-two-dimensional in
nature, (a cylindrical shell of radius R and length L, that is cut along a single
line parallel to the axis, forms a rectangular two-dimensional plane of dimensions
2 x 1 x R by L). Due to the high density of the adsorbed nitrobenzene molecules
in the quasi-two-dimensional contact layer, there is a possibility that the contact
layer exists as a hexatic phase with a high degree of orientational ordering. In
two-dimensional systems such a hexatic phase lies in between the disordered liquid
phase and ordered crystalline phase. The hexatic phase is a manifestation of the fact
that, in a continuous symmetry breaking transition such as the freezing transition,
the translational symmetry and the rotational symmetry can break at two different
temperatures [75]. Thus, in the liquid to hexatic phase transition, the rotational
symmetry is broken and in the hexatic to crystalline transition the translational
symmetry is broken. According to theory [69, 123, 70, 124], the hexatic phase occurs
only for an infinite two-dimensional system, but finite systems such as the contact
layer phase can show behavior reminiscent of infinite systems. The slower dynamics
of the contact layer phase (with 7 of the order of 10 x 107% s can be an attribute

of its hexatic nature. Such a hexatic phase is predicted by computer simulation for
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fluids confined in graphitic micropores such as activated carbon fibers, and verified
by experiments [107, 83, 81]. For nitrobenzene confined in activated carbon fibers,
Radhakrishnan et. al. [107] found that the nitrobenzene molecules in the hexatic

phase have a dielectric relaxation time of the order of 1 x 1075 s.

Surface heterogeneity can also play a significant role in governing the dynamics
of the contact layer. Surface characterization studies of CPG, Vycor and MCM-
41 [101, 125, 126] have reported that the silica surface is energetically heterogeneous
in such materials. In particular, there is a large concentration of silanol (Si-O-H) on
the pore surface, as large as 3 groups per nm? in silicious MCM materials [125]. This
implies that among the nitrobenzene molecules that are present in the contact layer,
a large fraction (as large as 75 %) can be weakly hydrogen bonded to the surface
silanol groups. The difference in the dielectric relaxation times of the contact layer
phase in the ACF micro pores (7 ~ 1 x 107°% s) and that of the contact layer
phase in CPG, Vycor and MCM-41 (7 ~ 10 x 107% s) is one order of magnitude.
The additional H-bonding with the surface silanol groups in the silica based pores
(CPG, Vycor and MCM-41) can explain the slower dynamics of the contact layer

when compared to the ACF micropores, in which H-bonding is absent.

7.2.4 Effect of Pore-Size

In figure 7.6 is shown x’ and 7 for the freezing of nitrobenzene in a 8.5 nm CPG
material. The trends are qualitatively similar to that observed for the 25 nm pore.
Figure 7.6(a) shows that the increase in £’ corresponding to the melting of nitroben-
zene in the pores is much more rounded and occurs at a lower temperature compared

to the bigger pores. From the relaxation time behavior in figure 7.6(b), we estimate
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the melting temperature inside the pores to be -23 °C (the temperature below which
the microsecond relaxation disappears). The 1073 s branch of the relaxation time
in figure 7.6(b) is divided into three regions. The response in the region, T' > 6 °C
is due to MWS polarization; —23 < T < 6 °C corresponds to the relaxation of the
bulk crystal and T < —23 °C is due to the combined relaxation of the bulk crystal

and the crystal inside the pores.

For average pore diameter H > 8.5 nm, the behavior of the relaxation time with
temperature suggests that the crystalline phase in the pore is a homogeneous phase;
i.e., molecules have a single relaxation component throughout the confined crys-
talline phase. For smaller pores however, e.g. Vycor with H = 4.5 nm, the behavior
is quite different. Figure 7.7(a) shows that the increase in ' with temperature is
much more gradual and rounded for the melting of nitrobenzene in the pores. The
bulk signal shows the usual sharp increase at 5.6 °C and is outside the range of
the plot in figure 7.7(a). In figure 7.7(b) is plotted the corresponding relaxation
times for nitrobenzene melting in Vycor glass. The microsecond branch of the re-
laxation time shows a sharp increase at 7' = —40 °C, which can be taken to be the
melting temperature inside the pores. The millisecond branch is again divided into
three regions, T' > 5.6 °C (MWS polarization), —40 < T < 5.6 °C (bulk crystal
phase) and T < —40 °C corresponding to the crystalline phase relaxations in the
bulk and in the pore. However, there is a new branch of relaxation times of the
order of a few hundred nanoseconds which occurs below the melting temperature of
nitrobenzene in the pores (I < —40 ©C). This strongly suggests that the confined
crystalline phase in not homogeneous, but that there are regions that are glass-like
(amorphous), having a relaxation component of the order of a few hundred nanosec-

onds. Thus for pore diameters as small as 4.5 nm, the confinement poses a serious
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constraint on the formation of a homogeneous crystalline phase in the pore. The
exact structure of the confined crystalline phase cannot be determined from dielec-
tric relaxation spectroscopy experiments alone. One would need to resort to more
direct methods, such as x-ray diffraction or molecular simulation, in order to obtain
the fluid structure of the inhomogeneous crystalline phase.

In figures 7.8(a) and 7.8(b) the melting behavior of nitrobenzene in a MCM-
41 porous material having an average pore diameter of 2.8 nm are shown. The
qualitative behavior is different from the behavior in Vycor. The freezing transition
at low temperature is absent as the microsecond branch of the relaxation time does
not show any discontinuity. Once again there is a branch of relaxation times of the
order of a few hundred nanoseconds, suggesting the presence of amorphous regions.
We conclude that the pore size of 2.8 nm is too small so that partial crystallization
does not occur. The contact layer remains in the orientationaly ordered “hexatic”
phase, while the inner region undergoes a glass transition. A very similar behavior is
observed for the case of nitrobenzene inside an MCM-41 material of pore diameter
2.4 nm. Table 7.1 summarizes the melting behavior of nitrobenzene for a range
of pore sizes in various silica-based pores. Nitrobenzene freezes to a crystalline
structure when confined in pore sizes H > 8.5 nm (H > 1704). For a pore size of
4.5 nm, only part of the fluid freezes, with the rest forming an amorphous phase.
Morishige and Kawano [127] reached similar conclusions in their x-ray diffraction
study of freezing of Ny, CO and Kr in MCM-41 materials of varying pore diameter.
For these fluids, the x-ray structure indicated a homogeneous crystalline phase for
pore diameters greater than 6 nm (H > 160;7). For smaller pore sizes, the x-ray
diffraction patterns were consistent with a partially crystalline confined phase co-

existing with an amorphous phase. For pore sizes smaller than 2.8 nm, the confined
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Figure 7.6: (a) x’ vs. T for nitrobenzene in CPG with average pore size of 8.5 nm.

(b) 7 vs. T for nitrobenzene in CPG with average pore size of 8.5 nm.
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Table 7.1: Freezing Temperatures: experimental measurement

H/nm H/o;; | T/ °C | ordered phase

Bulk - 5.8 crystal

25 (CPG) 50 2.0 crystal

8.5 (CPQG) 17 -25 crystal
4.5 (Vycor) 9 -40 | crystal + glass
2.8 (MCM-41, Si) | 5.6 -50 | hexatic + glass
2.8 (MCM-41, Al) | 5.6 -65 | hexatic + glass
2.4 (MCM-41, Si) | 4.8 -65 | hexatic + glass

fluid does not undergo a freezing transition, however a glass transition is observed.

7.2.5 The Hexatic Transition

The proposition that the quasi-two dimensional contact layer exists as a hexatic
phase implies that at higher temperatures, the “hexatic” contact layer can undergo
a transition to a orientationaly disordered, liquid-like contact layer. In figures 7.7(b)
and 7.8(b), the disappearance of the microsecond branch of the relaxation time at
high temperatures (100 °C), strongly suggests such a transition from a hexatic
contact layer phase with a relaxation time 7 = 10 x 107% s to a liquid-like contact
layer with nanosecond relaxation time. The transition from hexatic to liquid phase
is a Kosterlitz-Thouless (KT) type transition [73, 128], and involves a large entropy
change. In two-dimensions, the specific heat shows a non-universal peak at the KT
transition. We performed DSC measurements for the case of nitrobenzene adsorbed

in Vycor and MCM-41 (figures 7.9(a) and 7.9(b)). The DSC scan in figure 7.9(a0
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shows a large peak at 5.6 °C corresponding to the melting of bulk nitrobenzene.
In addition, there is a small peak at lower temperature (—35 °C) corresponding
to melting of nitrobenzene confined inside the pores of Vycor. A magnified view
of the high temperature region (70-100 °C) shows an additional peak which is
consistent with the KT behavior (i.e., hexatic to liquid transition). This peak occurs
at a temperature that is well below the capillary condensation transition; capillary
condensation occurs above 250 ©C for nitrobenzene in Vycor at 1 atm. pressure.
Nitrobenzene in MCM-41 (figure 7.9(b)) shows a similar evidence of the hexatic to

liquid transition about 100 °C.

Thus, for nitrobenzene in Vycor and MCM-41 materials, there is strong evidence
that the contact layer phase exists as a hexatic phase until a temperature of 100 °C,
above which it transforms into a liquid phase. This transition could either be a
transition between an orientationaly ordered phase of dipoles (see cartoon in fig-
ure 7.10(a)), to a phase with random orientation of dipoles, or a transition between
a phase in which the centers of the molecules (or the nearest neighbor bonds) are
orientationaly ordered (see cartoon in figure 7.10(b)) to a disordered liquid like
phase. Figure 7.10(a) represents a hexatic phase of dipole orientations (the dipole
orientations for a vortex pattern) and figure 7.10 representations a hexatic phase of
nearest neighbor bonds (bound pairs of five and seven coordinations are found as
depicted by the dashed bonds) and a hexatic to liquid transition for both cases is
expected to show a peak in the heat capacity. Conclusive evidence on the nature of
the transition can only be obtained by careful study of the specific heat and x-ray

diffraction coupled with molecular simulations.
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Figure 7.10: Cartoon showing the possible hexatic phases in the “unwrapped”, quasi
two dimensional contact layer. (a) Hexatic phase involving dipole orientations;
the configuration corresponds to a vortex with its core at the center of the box.
(b) Hexatic phase involving the orientation of nearest-neighbor bonds; the nearest
neighbor bonds are orientationaly ordered, there is a coordination of six nearest
neighbors for every molecule, with an ocassional five-seven bound pair indicated by

the dashed bonds.
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7.3 Simulation

The molecular simulations were performed for a spherical LJ fluid (with param-
eters chosen to mimic CCly) freezing in smooth silica cylinders of different pore
diameters. Qualitative comparison is made with the DS and DSC experiments.
Such a simplified model is expected to capture the high temperature hexatic to
liquid transition and to elucidate the effect of varying pore diameter on the struc-
ture of the confined fluid and crystalline phases. Four different pore diameters
(H = 907,120,150 5, &2005) were chosen to model the pores in MCM-41, Vy-
cor, CPG (7.5 nm) and CPG (10 nm) respectively. The confined fluid structure was
monitored by calculating the local density profile and pair correlation functions and
by viewing snapshots of molecular configurations. The freezing temperature was cal-
culated by using the Landau free energy methodology as outlined in section 7.1.3.
We also calculated the two-dimensional, in-plane pair correlation function (2-d ¢(r))
and the two-point orientational correlation functions in the unwrapped contact layer
to look for the possibility of a hexatic to liquid transition in the contact layer at

high temperatures.

In order to calculate the two-point orientational correlation function, we invoked

the hexatic order parameter [69] defined as

U = — Y exp(i6f;) = (exp(i60y)) (7.1)

W4 measures the hexagonal bond order in the unwrapped contact layer. Each nearest
neighbor bond (as defined in section 7.1.3) has a particular orientation in the plane
of the unwrapped contact layer, with respect to a reference axis, and is described by
the polar coordinate . The index k runs over the total number of nearest neighbor

bonds NNV, in the contact layer. We expect W = 0 when the contact layer has the
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structure of a two-dimensional liquid, ¥4 = 1 in the crystalline phase and 0 < Ug < 1
in the orientationaly ordered hexatic phase. The two-point orientational correlation
function in the unwrapped contact layer is defined as < W§(0)Wg(r) >. The decay
of the < W§(0)Ws(r) > function with increasing r is different in liquid, hexatic
and crystalline phases; the correlation function shows an exponential decay in the
isotropic liquid phase, algebraic decay (1/r behavior) in the hexatic phase, and is
a constant in the crystalline phase. The liquid to hexatic transition temperature in
the contact layer is estimated by monitoring the change in behavior of the two-point

orientational correlation function with temperature.

7.3.1 Freezing of the Confined Phase

The Landau free energy function for LJ CCly in a cylindrical silica pore of diameter
200 at kgT/es; = 0.4 is shown in figure 7.11. The order parameter ® is equal to
Q¢ defined in equation 2.10. The minimum centered around ® = 0 corresponds to
liquid phase and that centered around ® = 0.35 corresponds to an fcc crystalline
phase. The grand free energy of the liquid and crystalline phases at 7% = 0.38
using equation 2.7 are equal; therefore the freezing temperature for this system is
T* = 0.38. A snapshot from the simulation of the fcc crystalline phase at T* =
0.38 is shown in figure 7.12(a). It is evident from the simulations that for a pore
diameter of 200, the fluid freezes into a fcc crystalline phase inside the cylinder.
For pore diameters smaller than 200;¢, the minimum in the landau free energy
function corresponding to the fcc crystalline phase did not exist. The pair correlation
functions and the snapshots from the molecular simulations strongly indicate a glass
transition instead. A snapshot from the simulations for LJ CCly in a cylindrical pore

of diameter H = 120 is shown in figure 7.12(b); the temperature corresponds to
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Figure 7.11: The Landau free energy function as a function of the order parameter
® = Qg at T* = 0.4 showing two minima; The minimum corresponding to the liquid
phase is close to ® = 0 and the fcc crystalline phase is represented by the minimum

centered around ® = 0.35.

T* = 0.34 and the snapshot is consistent with the amorphous nature of the confined

phase.

7.3.2 Hexatic Transition in the Contact Layer

The two-dimensional, in-plane pair correlation functions (positional pair correlation
function, g(r) and orientational correlation function < W§(0)Ws(r) > where Wg(r) is
given by equation 7.1) were monitored as a function temperature in the unwrapped
contact layer shell. The correlation functions for the contact layer shell confined in a
cylinder of diameter 150, are shown in figure 7.13 at three different temperatures.

At a high temperature of 7* = 0.64, the pair correlation is isotropic and the ori-
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Figure 7.12: Snapshot from molecular simulation showing the confined fcc crystalline
phase of LJ CCly in a silica cylinder. (a) Confined crystalline (fcc) phase in a pore
of diameter 200, at temperature, 7% = 0.38. (b) The confined phase consists of a
hexatic contact layer and an amorphous inner region in a pore of diameter 120, at

temperature, 7" = 0.34.
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entational correlation function decays to zero exponentially, suggesting a liquid like
contact layer. As the temperature is lowered to T = 0.52, the pair correlation func-
tion is isotropic but displays long range correlations. The orientational correlation
function decays algebraically (1/r behavior), which is a clear signature of a hexatic
(orientationaly ordered) contact layer phase. On further reducing the temperature
to T = 0.48, the contact layers freezes to a hexagonal crystal. This is manifested as
split peaks in the pair correlation function and no decay in the orientational corre-
lation function. On further lowering the temperature, there is partial crystallization
in the inner regions of the confined fluid phase with the rest forming an amorphous
phase, as discussed in section 7.3.1. It is clear from the simulations that the hexatic
transition in the contact layer is a transition involving nearest neighbor bonds as

spherical LJ molecules are orientationaly isotropic.

The behavior of the contact layer phase in a smaller cylinder (H = 1204y, fig-
ure 7.14) is significantly different. At high temperature, 7* = 0.64, the contact layer
correlation functions are typical of the liquid phase, and at 7" = 0.48, there is a
clear signature of a hexatic phase behavior (compare with figure 7.13 at 7* = 0.52).
There is a significant difference in the behavior of the contact layer phase at low
temperature. The correlation functions at 7 = 0.38 indicate that even at such a
low temperature, the contact layer does not undergo a freezing transition. This is
consistent with the fact that, the Landau free energy functions as well as the pair
correlation functions and the snapshots, did not support any evidence of a crys-
talline or a partially crystalline confined phase for cylinders with diameters smaller
than 120, (see section 7.3.1). The simulation results of the freezing behavior of

LJ CCly in silica-based cylinders are summarized in table 7.2.
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Figure 7.13: Two-dimensional, in-plane positional correlation functions (g(r)) and

orientational correlation functions (o(r) =< W§(0)Ws(r) >) for three different tem-

peratures in the unwrapped contact layer shell. The plots are for L.J CCl, in a silica

cylinder of diameter 150, showing the liquid, hexatic and crystalline phases in the

contact layer at 7" = 0.64, T

Table 7.2: Freezing Temperatures:

Hfogg

keT/egy

ordered phase

> 20 (large pores)
20
15

12

9

f
0.4

0.38
0.36

0.35

crystal

crystal
crystal + glass
hexatic + glass

hexatic + glass

T Gibbs-Thomson equation is valid

0.52 and T™ = 0.48 respectively.

molecular simulation
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Figure 7.14: Two-dimensional, in-plane positional correlation functions (¢g(r)) and

orientational correlation functions (o(r) =< W§(0)Ws(r) >) for three different tem-

peratures in the unwrapped contact layer shell. The plots are for L.J CCl, in a silica

cylinder of diameter 120, showing the liquid and hexatic phases in the contact

layer at 7" = 0.64, T* = 0.48 and T™ = 0.38.
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7.4 Conclusion

Recently, the freezing behavior in slit shaped pores have been understood in con-
siderable detail [107]. In the case of freezing in cylindrical geometry, the qualitative
behavior is similar to that of slit-shaped pores. However, there are two important
differences. Firstly, the freezing temperatures in a cylindrical pore are in general
lower than a slit pore of the same porous material and pore size [105]. Secondly,
a freezing transition is observed (resulting in a homogeneous crystalline confined
phase) in the case of slit pores for all pore sizes up to the smallest pore size, that
accommodates only one molecular layer of adsorbed molecules [83, 81]. In the case
of cylinders, however, our experiments as well as simulations clearly show that, a
homogeneous crystalline confined phase results only for cylindrical pores with aver-
age diameters larger than 200¢. For cylindrical pores with diameters in the range
12 < H/oy; < 20, the confined phase at low temperature is an inhomogeneous
phase with partially crystalline domains interspersed with amorphous regions. For
cylindrical pores with H < 120, the confined phase at low temperature consists

of a hexatic contact layer and an amorphous inner region.

Our experiments and simulations provide a very clear evidence of a contact layer
hexatic phase that undergoes a hexatic to liquid transition at higher temperatures
(the presence of a hexatic contact layer phase is established in the case of slit-shaped
pores [83, 129]). It is also clear from the simulations that the hexatic transition
is a transition involving nearest neighbor bonds. In addition, for cylinders with
diameters H > 150, the contact layer hexatic phase undergo a freezing transi-
tion at lower temperature. For the case of the large cylinders, it is clear from our

simulations that the freezing transition of the contact layer is different from the
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freezing transition in the inner layers. Thus, for a narrow range of temperatures
Tt innerregion < T < T} contactiayer, the confined phase consists of crystalline con-
tact layers with liquid-like inner region (the presence of such a frozen contact layer
phase is very well established in strongly attractive slit-pores [107]). Although,
it is not apparent from our experimental measurements that the contact layers
freeze at a temperature different from the inner layers, some earlier experimental
studies have reported “pre-freezing” of the contact layer phase that results in a
metastable phase characterized by crystalline contact layer and liquid-like inner re-
gion [106, 127]. Theoretical justification of the metastable contact layer phase was

provided by Sliwinska-Bartkowiak et al., using Landau free energy surfaces [106].



Chapter 8

Conclusions and future direction

Amidst the controversy over the nature of the shift nature of the freezing point in
the experiments [44, 2], the study by Miyahara and Gubbins [47] provided the first
clear picture on the nature of the shift in the freezing temperature on confinement
using molecular simulation of the confined phases. Attempts to verify the results
of Miyahara and Gubbins, using free energy calculations (based on thermodynamic
integration methods [130]) were faced with serious constraints [51]. Therefore, we
invoked the Landau free energy method (chapter 2) to circumvent the obstacles
in calculating the free energy change across a phase boundary, for confined sys-
tems. This methodology was successfully used to understand the freezing behavior
in slit-shaped pores. The free energy results clearly established a first order phase
transition despite the absence of a sharp change in the density across the solid-fluid
phase boundary. True long range order exists in the confined crystalline phase, and
was verified by calculating the positional and orientational pair correlation functions
over large length scales (see figure 6.1 in chapter 6). A spectrum of freezing behavior
was observed as the relative strength of the fluid-wall interaction to the fluid-fluid

interaction was varied, i.e., by adjusting the value of the parameter « (see figure 5.4

153
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GLOBAL PHASE DIAGRAM

LJ fluid in slit pore, H = 7.5, simulation
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Figure 8.1: Global phase diagram for a Lennard-Jones fluid in a slit shaped pore
of width H = 7.505¢. Five different phases are observed: liquid, contact-hexatic,
contact-crystal, contact-liquid and crystalline. The different phases are character-

ized by the positional and orientational correlation functions as depicted in figure 8.2.

in chapter 5). The existence of the contact layer phase and the hexatic phase was
established established in the simulations. A summary of the phase behavior of a
Lennard-Jones fluid in slit shaped pores is given in figure 8.1.

The reduced freezing temperature of bulk Lennard-Jones fluid (under ambient
pressures) is 0.682 as depicted by the horizontal dashed line in figure 8.1 The freezing
temperature shifts upwards on confinement for values of « greater than 0.9 (strongly
attractive pores), and shifts downwards for values of « less than 0.8. The contact
layers (layers adjacent to the pore walls) freeze at a different temperature compared

to the inner layers. For strongly attractive pores, the freezing of the contact layers
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occur at a temperature higher than the inner layers, while for weakly attractive
walls the freezing of the contact layers occur at a temperature lower than the inner
layers; this leads to the formation of two new phases that we term as contact-
crystalline and contact-liquid phases respectively. The hatched regions in figure 8.2
are the regions where the two contact layer phases are thermodynamically stable.
For strongly attractive pores, the contact layers undergo a liquid-hexatic phase
transition, that leads to the formation of another new phase that we term “contact-
hexatic”. The stable regions of the contact-hexatic phase are between the lines
marked by the diamonds and the squares in figure 8.2. The crystal phase boundary
is marked by the circles, below which the crystalline phase is stable. The different
phases are distinguished on the basis of the behavior of the two-dimensional, in-plane
pair correlation function (g(r)) and orientational correlation function, Gg ;(p) =<
g 1(0)Ws;(p) > (see chapter 6) in the confined molecular layers, a summary is
provided in figure 8.2: In the figure, the pair correlation functions in the liquid
phase are isotropic and those in the crystalline phase correspond to a 2-d hexagonal
crystal, in each of the confined layers. In addition, the behavior of the orientational
correlation functions in the liquid phase show an exponential decay. The contact-
crystalline phase consists of a crystalline contact layer and liquid like inner layers,
while the contact-liquid phase consists of a liquid-like contact layer and crystalline
inner layers. The 2-d ¢(r) in the contact-hexatic phase is liquid like in all the
confined layers, however the orientaional correlation function in the contact layer
shows an algebraic (1/r) decay while those in the inner layers show an exponential

decay.

The global phase diagram for a different pore width (H = 30yy) is shown in

figure 8.3. For this choice of pore width, there are no “contact” phases as only
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Figure 8.3: Global phase diagram of a fluid in slit pore of width H = 30 (a) from

simulation, (b) from experiment.
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two confined molecular layers are present, both of which are contact layers. The
phase boundaries from the simulations and experiments for this system are in ex-
cellent agreement (to within 10 %) despite the simplicity of the model used in the

simulations.

The effect of pore width on the freezing temperature was understood in the slit
shaped activated carbon fibers and cylindrical shaped pores of porous glasses and
MCM-41 using simulation and experiment (chapters 3,4,7). The macroscopic equa-
tions like the Gibbs-Thomson equation (equation 1.1) were found to be valid in the
large pore limit (H > 60y for slits-shaped pores and H > 200 for cylindrical
pores). For smaller pores, the deviation from the classical behavior are primarily

caused by the spatial inhomogeneity in the fluid structure (chapters 3,7).

There are two important differences in the freezing behavior of fluids confined in
slit pores when compared to that in cylindrical pores. Firstly, the freezing temper-
atures in a cylindrical pore are in general lower than a slit pore of the same porous
material and pore size [105]. Secondly, a freezing transition is observed (resulting in
a homogeneous crystalline confined phase) in the case of slit pores for all pore sizes
up to the smallest pore size, that accommodates only one molecular layer of adsorbed
molecules, (chapters 3,6). In the case of cylinders, however, our experiments as well
as simulations (chapter 7) clearly show that, a homogeneous crystalline confined
phase results only for cylindrical pores with average diameters larger than 200;.
For cylindrical pores with diameters in the range 12 < H/os; < 20, the confined
phase at low temperature is an inhomogeneous phase with partially crystalline do-
mains interspersed with amorphous regions. For cylindrical pores with H < 120,

the confined phase at low temperature consists of a hexatic contact layer and an
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amorphous inner region.

Numerous extensions to these studies can prove to be effective. Fluid behavior in
complex pore geometries from a free energy perspective can provide more accurate
predictions so that a quantitative comparison with experimental measurements are
feasible. Recently more realistic models of porous glasses and activated carbon fibers
have been developed [121, 131], that include dispersions in pore size, networking
and connectivity found in the real porous materials. Some of the possibilities were
described in Chapters 3 and 4. In addition, the use of more realistic interaction

potentials would be a necessity.

The effect of pressure on the freezing behavior in confined systems have on been
dealt with in our study. There have been some experimental studies by Duffy
et al [32, 132] that deal with a P-T diagram of CO, confined in Vycor glass. More
recently, Morishige and Kawano [127] have also studied the P-T diagram of methanol
confined in MCM-41 using neutron scattering experiments. Miyahara et al. have
constructed the P-T diagram of methane in a graphite slit prore using molecular
dynamics [133]. An interesting attribute of their study is that the slope of the solid-
liquid co-existence line near the triple point of the P-T diagram of the confined
system is not a constant, which is very unlike the scenario in the bulk. The effect
of confinement on the triple point in confined systems still remains an open ques-
tion. On the experimental front, more sophisticated measurements involving x-ray
diffraction, neutron scattering and EXAFS can lead to a better understanding of

the structure of the confined phases.
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Finally, I wish to bring to consideration a close but different class of phase transi-
tions which are glass transitions. In general, one must exercise care in interpreting
freezing inside pores. Experiments such as differential scanning calorimetry do not
give any information on the structure of the confined phase. It is also difficult to use
diffraction methods to characterize the structure of the confined phase, because of
the presence of the additional signal due to the adsorbent molecules. Spectroscopic
methods such as NMR and dielectric relaxation spectroscopy are useful under these
circumstances, as they yield information about the translational and orientational
relaxation time of the molecules in the confined phase. For example, in the study of
freezing of O in sol-gel glasses [25], the orientational relaxation time 7 of molecules
was measured as a function of 7" and a sharp drop in 7 (about four orders of magni-
tude) was observed at the transition. A similar measurement for a glass transition

would show a continuous change from liquid phase to glass phase relaxation times.

In computer simulation studies of freezing in confined geometries, it is possible
to directly measure the pair correlation function to monitor the freezing process.
However, for finite system size even a glassy phase can display extended positional
correlations [134]. An additional measure of the self-diffusion coefficient often pro-
vides a distinction between a freezing transition and a glass transition. Free energy
calculations are very useful, as the nature of the phase transition can be inferred
directly. The order parameter provides a direct measure of the difference in bond
orientational order between the ordered and disordered phase. Thus, for the case of
a glass transition, the minimum in the Landau free energy curve at the value of the
order parameter corresponding to the crystalline phase would be absent. In addi-
tion the calculations of the positional and orientational correlation functions over a

large length scale (e.g., see chapter 6) often provides the distinction between ordered
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crystalline and glassy phases in a computer simulation. The long range behavior of
the orientational correlation functions of the crystal phase are very different from

that of the glass phase.

The glass transition in a porous medium is an interesting topic in its own right.
There have been a number of studies that have investigated the effect of confinement
on glass-forming organic liquids [97, 100, 135, 98]. It is well established that the glass
transition temperature 7} of a liquid inside a porous glass is shifted by AT}, the sign
and extent of which is material-specific, just as for the case of freezing. Dielectric
relaxation studies have indicated a slower relaxation process in the confined liquid
as compared to the bulk, and the appearance of an additional relaxation component
due to the contact layer, consistent with the studies on freezing. However, unlike

freezing, there seems to be no general basis to explain the nature of the shift in ATj.

Although the effectiveness of the Landau free energy approach to study phase
behavior in confined systems was described in the previous chapters, I wish to remark
that the approach is generic and can be used to study a large class of problems. For
example, the key to understanding many biological phenomena hinges on a clear
understanding of the crystalline phase of water. Water has a very complex phase
diagram in the solid region, in that it has eleven known crystalline phases and
also some amorphous phases. The time scales needed to nucleate the ice phase is
not currently accessible by computer simulations. There has been some success in
freezing the water by applying strong homogeneous electric field, a process known as
electro-freezing [136]. One can use the order parameter formulation to calculate the
free energy change across the phase transition. The Landau free energy formulation

allows for calculation of the free energies in the zero electric field limit through
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Legendre transformation and a clever choice of the field variables. The Landau
free energy method is not limited to electro-freezing that only accesses the highly
polarized cubic ice form. The more common hexagonal ice form can be studied by

choosing a different order parameter and field variables.

On a larger perspective, a different class of problems involving chemical reactions
can be tackled by the Landau free energy formalism, by drawing a parallel be-
tween the order parameter and the reaction coordinate. The definite advantage of
this approach in combination with path integral simulations [137] or Car-Parrinello
molecular dynamics [138] over transition state theories is that, the entropic effects
are taken into account accurately; for instance, the effect of pressure on a chemical
reaction can be estimated precisely. Such methods can then be applied to prob-
lems involving homogeneous and heterogeneous catalysis, that are widespread in
the chemical industry. The Landau free energy formalism also provides a natural
framework in constructing the free energy surfaces of the molecular conformations
of proteins. A better understanding of the folding mechanisms of protein molecules

key to finding a cure for many genetic disorders.
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