Network Design for Controllability Metrics

Victor Preciado
with
Cassiano Becker, Sergio Pequito and George Pappas

Department of Electrical and Systems Engineering
University of Pennsylvania

presented at the
56th IEEE Conference on Decision and Control

December 14, 2017
Control performance of a dynamical system can be characterized in terms of its controllability Gramian.

We consider the design of a structural perturbation on the system’s state transition matrix in order to improve the system’s control performance.
We formulate and solve a system design problem.

Improve worst-case controllability:

Minimum energy to transfer state in the least favorable direction.

- Minimum energy is proportional to eigenvalue $\lambda_1(W_c^\infty)$
- Worst direction is aligned with eigenvector $v_1(W_c^\infty)$
- Gramian W_c^∞ is given by Lyapunov Equation
- A **bilinear** problem, addressed by a sequence of convex programs

We illustrate the problem on an example multi-agent network.
1 Introduction

2 Problem Formulation

3 Solution to \mathcal{P}_1 (worst-case controllability)

4 Numerical Example
Consider the system (network) dynamics described by
\[\dot{x}(t) = A(G)x(t) + Bu(t), \]
(1)
where \(x(t) \in \mathbb{R}^n \) denotes the state, and \(u(t) \in \mathbb{R}^p \) is the input signal.

The dynamics \(A(G) \in \mathbb{R}^{n \times n} \) is induced by a directed interdependency graph \(G = (V, E) \) given by a set of nodes \(V \) and a set of edges \(E \).

The input matrix \(B \in \mathbb{R}^{n \times m} \) is such that \([B]_{ik} \neq 0\) if the external input signal \(k \) is available to state \(i \), and \([B]_{ik} = 0\) otherwise.
Consider an input control law $u(t)$ for $t \in [0, t_f]$. Also, let $x_0 = 0$ be the initial state and x_f be the state at the final time.

It is known that the **minimum control energy** to steer the system to x_f is

$$\int_0^{t_f} \|u(\tau)\|^2 d\tau = x_f^T \left[W_{\infty}^{t_f}(\mathcal{G}) \right]^{-1} x_f,$$

where $W_{\infty}^{t_f}(\mathcal{G})$. The ‘infinite’ controllability Gramian

$$W_{\infty} \equiv W_{\infty}(\mathcal{G}) = \int_0^{\infty} e^{A(\mathcal{G}) \tau} BB^T e^{A(\mathcal{G})^T \tau} d\tau$$

is positive definite if and only if $(A(\mathcal{G}), B)$ is controllable.

Then, W_{∞} can be computed as the unique solution to:

$$A(\mathcal{G}) W_{\infty} + W_{\infty} A(\mathcal{G})^T + BB^T = 0.$$
Worst-case direction

Because W_c^∞ is positive definite when $(A(G), B)$ is controllable, it can be described as

$$W_c^\infty = V \text{diag}(\lambda_1, \ldots, \lambda_n) V^T, \quad V = [v_1 | \ldots | v_n],$$

where $\{(\lambda_i, v_i)\}_{i=1}^n$ are eigenvalue-eigenvector pairs associated with W_c^∞.

We assume that $0 < \lambda_1 \leq \ldots \leq \lambda_n$, where $\lambda_{\min} = \lambda_1$ and $\lambda_{\max} = \lambda_n$.

Therefore, it follows that the total energy incurred by the minimum energy control in a specific final state $x_f = cv_i$ is $c^2 \lambda_i^{-1}$.

In the worst case, the most energy-consuming states are those in the direction of v_1, i.e., the eigenvector associated with $\lambda_{\min}(W_c^\infty(G))$.
We propose a scenario where we **re-design** the corresponding dynamics, while **satisfying the interdependency graph constraints**.

Subsequently, equation (1) becomes as follows:

\[
\dot{x}(t) = [A(G) + \Delta(G)]x(t) + Bu(t),
\]

(2)

where \([\Delta(G)]_{ij} \in [\nu_{ij}, \mu_{ij}] \subset \mathbb{R}\) for \((j, i) \in \mathcal{E}\), and \([\Delta(G)]_{ij} = 0\) otherwise.

Simply speaking, we perform a **finite additive structural perturbation** on the dynamics to ensure desirable control properties measured by spectral properties of the ‘infinite’ controllability Gramian.
P_1 (Worst-case controllability)

Given the interdependency graph G and $(A(G), B)$ controllable, find $\Delta(G)$, with $[\Delta(G)]_{ij} \in [\nu_{ij}, \mu_{ij}] \subseteq \mathbb{R}$ for $(j, i) \in E$ and $[\Delta(G)]_{ij} = 0$ otherwise, such that $(A(G) + \Delta(G), B)$ is controllable and

$$\max_{\Delta(G), W_c^\infty \in \mathbb{S}_+} \lambda_{\text{min}}(W_c^\infty)$$

subject to

$$(A(G) + \Delta(G))W_c^\infty + W_c^\infty(A(G) + \Delta(G))^\top + BB^\top = 0.$$
1 Introduction

2 Problem Formulation

3 Solution to \(P_1 \) (worst-case controllability)

4 Numerical Example
Let $A \equiv A(G)$ and notice that the structural perturbation $\Delta \equiv \Delta(G)$ and the infinite controllability Gramian $W_c^\infty \in \mathbb{S}^n_+$ are related by

$$(A + \Delta)W_c^\infty + W_c^\infty(A + \Delta)^T + BB^T = 0,$$

which involves a sum of bilinear terms in Δ and W_c^∞.

In particular, let the matrices $M \in \mathbb{R}^{n \times 2n}$, $N \in \mathbb{R}^{2n \times n}$, and $Q \in \mathbb{R}^{n \times n}$ be such that $Q := -BB^T$,

$$M \equiv M(\Delta, W_c^\infty) := \begin{bmatrix} A + \Delta & W_c^\infty \end{bmatrix}, \text{ and}$$
$$N \equiv N(\Delta, W_c^\infty) := \begin{bmatrix} W_c^\infty & A + \Delta \end{bmatrix}^T.$$

Thus, we have that (3) can be rewritten as the BME

$$MN = Q,$$

which is also satisfied when

$$QM - N = 0_{n \times n} \iff \text{rank}(Q - MN) = 0.$$
Following a similar strategy to [Doelman and Verhaegen, 2016], we consider the structured matrix \(Z \in \mathbb{R}^{3n \times 3n} \), defined as

\[
Z = \left[
\begin{array}{cc}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}
\right] = \left[
\begin{array}{cc}
Q + XY + MY + XN & M + X \\
N + Y & I_{2n}
\end{array}
\right],
\]

which is parameterized by the matrices \(X \in \mathbb{R}^{n \times 2n} \) and \(Y \in \mathbb{R}^{2n \times n} \).

By the Schur complement of \(Z_{22} \), from rank additivity, we have

\[
\text{rank}(Z) = \text{rank}(Z_{22}) + \text{rank}(Z_{11} - Z_{12}Z_{22}^{-1}Z_{21})
= \text{rank}(I_{2n}) + \text{rank}(Z_{11} - (M + X)(N + Y))
= 2n + \text{rank}(Q - MN).
\]

The minimum is when \(\text{rank}(Q - MN) = 0 \), which implies \(MN = Q \).

The matrix \(Z \) has affine dependency on \(\Delta \) and \(W_c^\infty \) (through \(M \) and \(N \)).
Convex Relaxation

Given X and Y, the **rank minimization problem** in $Z(\Delta, W_c^\infty; X, Y)$ can be further relaxed to a convex problem.

We consider the **nuclear norm**, denoted by $\|Z(\Delta, W_c^\infty; X, Y)\|_*$, which can be formulated as an SDP [Fazel, 2002], including structural constraints on allowable perturbations.

As shown in [Doelman and Verhaegen, 2016], by relying on sequential convex programming, one can produce a converging sequence

$$\{\Delta^{(k)}, W_c^\infty(k)\}_k$$

(or, equivalently,$$\{M^{(k)}, N^{(k)}\}_k$$),

parametrized by $\{X^{(k)}, Y^{(k)}\}_k$, that will satisfy

$$(A + \Delta^{(k)})W_c^\infty(k) + W_c^\infty(k)(A + \Delta^{(k)})^T + BB^T = 0,$$

if $\text{rank} \left[Z(\Delta^{(k)}, W_c^\infty(k); X^{(k)}, Y^{(k)}) \right] = 2n.$
Perturbation and Target Controllability Constraints

The convex formulation allows semidefinite and affine constraints in \mathcal{P}_1.

The affine constraints encapsulate allowable structural perturbations
\[
\nu_{ij} \leq [\Delta]_{ij} \leq \mu_{ij}, \quad (j, i) \in \mathcal{E}
\]
\[
[\Delta]_{ij} = 0, \quad (j, i) \in \mathcal{E}^c.
\]

The controllability objective in \mathcal{P}_1 can be written as an SDP in epigraph form
\[
\max_{W_c^\infty \in \mathbb{S}_+^n} \lambda_{\min}(W_c^\infty) \iff \max_{\delta \in \mathbb{R}, W_c^\infty \in \mathbb{S}_+^n} \delta
\]
\[
s.t. \quad W_c^\infty - \delta I_n \succeq 0.
\]

We consider a target improvement $\delta = \overline{\lambda}$, which is feasible for \mathcal{P}_1 if there exist Δ and W_c^∞ such that
\[
W_c^\infty - \overline{\lambda} I_n \preceq 0.
\]
Thus, we propose a sequence of convex optimization problems $C_1^{(k)}(X^{(k)}, Y^{(k)}, \bar{\lambda})$ that are described as follows.

$$C_1(X, Y, \bar{\lambda})$$

Given a pair (X, Y) and a target $\bar{\lambda}$, find a solution to

$$\min_{\Delta \in \mathbb{R}^{n \times n}, W_c^\infty \in \mathbb{S}_+^n} \|Z(\Delta, W_c^\infty; X, Y)\|_* \quad (8)$$

subject to

$$\text{(5), (6), (7)}$$

where the objective seeks to enforce the Lyapunov BME.

Also, following the above reasoning, the following result holds.

Theorem

*The solution to \mathcal{P}_1 is given by the solution to $C_1(X, Y, \bar{\lambda})$ for the maximum value $\bar{\lambda}$, as well as some X and Y, such that $MN = Q$.***
In summary, we propose to solve feasibility problems associated with P_1 for increasing values of $\bar{\lambda}$, by invoking Algorithm 1, which consists of solving consecutive convex relaxations $C_1(X, Y, \bar{\lambda})$.

We start by considering the initial points $X^{(1)} = -[A \ W_c^\infty]$, and $Y^{(1)} = -[W_c^\infty \ A]^T$, corresponding to $\Delta = 0$, and W_c^∞ as a solution to $AW_c^\infty + W_c^\infty A^T = -BB^T$.

The numerical stopping condition is given by the relative residual of the bilinear inequality constraint, i.e., $\|M^{(k)}N^{(k)} - Q\|_*/\|Q\|_* < \epsilon \ll 1$.

Algorithm 1 Feasibility sequence for P_1

1. given $X^{(1)}, Y^{(1)}, \bar{\lambda}$
2. while $\|M^{(k)}N^{(k)} - Q\|_*/\|Q\|_* > \epsilon$ do
3. solve $C_1(X^{(k)}, Y^{(k)}, \bar{\lambda})$
4. let $X^{(k+1)} = -M^{(k)}$, $Y^{(k+1)} = -N^{(k)}$
5. end while
1. Introduction

2. Problem Formulation

3. Solution to P_1 (worst-case controllability)

4. Numerical Example
Figure: Multi-agent network considered, with agents 2 and 3 selected as leaders.
The example network is described in terms of the system matrix

\[A = \begin{bmatrix}
-1.393 & 0.559 & 0 & 0 & 0 \\
0.732 & -0.781 & 0.581 & 0.071 & 0.374 \\
0 & 0.034 & -0.987 & 0.658 & 0 \\
0.575 & 0 & 0.976 & -1.393 & 0 \\
0.442 & 0.778 & 0.569 & 0 & -1.372
\end{bmatrix}. \]

The input matrix is given by

\[B = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\end{bmatrix}^T. \]

The infinite controllability Gramian described by

<table>
<thead>
<tr>
<th>(\lambda_1)</th>
<th>(\lambda_2)</th>
<th>(\lambda_3)</th>
<th>(\lambda_4)</th>
<th>(\lambda_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.08 \times 10^{-5}</td>
<td>0.031</td>
<td>0.131</td>
<td>0.635</td>
<td>633.666</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(v_1)</th>
<th>(v_2)</th>
<th>(v_3)</th>
<th>(v_4)</th>
<th>(v_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.798</td>
<td>0.442</td>
<td>-0.260</td>
<td>-0.146</td>
<td>0.282</td>
</tr>
<tr>
<td>-0.009</td>
<td>-0.150</td>
<td>0.637</td>
<td>-0.276</td>
<td>0.704</td>
</tr>
<tr>
<td>-0.001</td>
<td>0.322</td>
<td>0.250</td>
<td>0.893</td>
<td>0.192</td>
</tr>
<tr>
<td>0.307</td>
<td>-0.797</td>
<td>-0.320</td>
<td>0.323</td>
<td>0.251</td>
</tr>
<tr>
<td>-0.519</td>
<td>0.209</td>
<td>-0.601</td>
<td>-0.030</td>
<td>0.570</td>
</tr>
</tbody>
</table>

we note the low value of \(\lambda_1 \).
We set target $\bar{\lambda} = 0.1$, and perturbation bounds $\nu_{ij} = -1$, $\mu_{ij} = 1$.

Figure: Sequence of values of the relative residual of the bilinear equality constraint $\|M^{(k)}N^{(k)} - Q\|_*/\|Q\|_*$ (top) and $\log_{10}(\lambda_1^{(k)}/\bar{\lambda})$ (bottom), obtained from Algorithm 1 for problem \mathcal{P}_1.
Resulting Perturbation and Gramian

The solution Δp_1 obtained is

$$
\Delta p_1 = \begin{bmatrix}
1.00 & -0.400 & 0 & 0 & 0 \\
-1.00 & 0.435 & 0.172 & 0.165 & -0.174 \\
0 & 0 & 0.301 & -0.184 & 0 \\
-0.447 & 0 & 0.040 & 0.469 & 0 \\
-1.00 & 0 & -0.544 & 0 & 0.675
\end{bmatrix}.
$$

with active constraints in bold.

The resulting controllability Gramian is described by

<table>
<thead>
<tr>
<th>λ_1</th>
<th>λ_2</th>
<th>λ_3</th>
<th>λ_4</th>
<th>λ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.100</td>
<td>0.100</td>
<td>0.308</td>
<td>1.191</td>
<td>633.666</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v1</th>
<th>v2</th>
<th>v3</th>
<th>v4</th>
<th>v5</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.427</td>
<td>-0.475</td>
<td>0.660</td>
<td>0.278</td>
<td>0.282</td>
</tr>
<tr>
<td>-0.191</td>
<td>-0.276</td>
<td>-0.626</td>
<td>0.006</td>
<td>0.704</td>
</tr>
<tr>
<td>0.407</td>
<td>-0.365</td>
<td>0.245</td>
<td>-0.777</td>
<td>0.192</td>
</tr>
<tr>
<td>-0.554</td>
<td>0.619</td>
<td>0.175</td>
<td>-0.464</td>
<td>0.251</td>
</tr>
<tr>
<td>0.555</td>
<td>0.426</td>
<td>0.286</td>
<td>0.322</td>
<td>0.570</td>
</tr>
</tbody>
</table>

with a many-fold improvement ($> 10^4$) in worst-case controllability.
Conclusion and Future Work

- We addressed **constrained design of system dynamics** to improve performance as a function of the **controllability Gramian**.

- The **worst-case performance** problem can be cast as an optimization problem with **bilinear matrix equality** constraints.

- We validated our approach in the context of multi-agent networks.
Conclusion and Future Work

- We addressed **constrained design of system dynamics** to improve performance as a function of the **controllability Gramian**.

- The **worst-case performance** problem can be cast as an optimization problem with **bilinear matrix equality** constraints.

- We validated our approach in the context of multi-agent networks.

As **future work**, we intend to address the following aspects:

- Other objectives (e.g. trace, sum of r eigenvalues, etc.);
- Discrete-time dynamics;
- Specific optimization, convergence guarantees;
- Large-scale systems;
- Decentralized solution;
- Other application domains.
Becker, C., Pequito, S., Pappas, G., and Preciado, V.
Network design for controllability metrics.

Sequential convex relaxation for convex optimization with bilinear matrix equalities.

Matrix rank minimization with applications.
Thank you.

Any questions?