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Abstract

We examine adjective-noun (AN) compo-
sition in the task of recognizing textual en-
tailment (RTE). We analyze behavior of
ANs in large corpora and show that, de-
spite conventional wisdom, adjectives do
not always restrict the denotation of the
nouns they modify. We use natural logic
to characterize the variety of entailment
relations that can result from AN compo-
sition. Predicting these relations depends
on context and on common-sense knowl-
edge, making AN composition especially
challenging for current RTE systems. We
demonstrate the inability of current state-
of-the-art systems to handle AN compo-
sition in a simplified RTE task which in-
volves the insertion of only a single word.

1 Overview

The ability to perform inference over utterances
is a necessary component of natural language un-
derstanding (NLU). Determining whether one sen-
tence reasonably implies another is a complex
task, often requiring a combination of logical de-
duction and simple common-sense. NLU tasks
are made more complicated by the fact that lan-
guage is compositional: understanding the mean-
ing of a sentence requires understanding not only
the meanings of the individual words, but also un-
derstanding how those meanings combine.
Adjectival modification is one of the most basic
types of composition in natural language. Most
existing work in NLU makes a simplifying as-
sumption that adjectives tend to be restrictive—
i.e. adding an adjective modifier limits the set of
things to which the noun phrase can refer. For ex-
ample, the set of little dogs is a subset of the set of
dogs, and we cannot in general say that dog entails
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little dog. This assumption has been exploited by
high-performing RTE systems (MacCartney and
Manning, 2008; Stern and Dagan, 2012), as well
as used as the basis for learning new entailment
rules (Baroni et al., 2012; Young et al., 2014).

However, this simplified view of adjectival
modification often breaks down in practice. Con-
sider the question of whether laugh entails bitter
laugh in the following sentences:

1. Again his laugh echoed in the gorge.
2. Her laugh was rather derisive.

In (1), we have no reason to believe the man’s
laugh is bitter. In (2), however, it seems clear from
context that we are dealing with an unpleasant per-
son for whom laugh entails bitter laugh. Auto-
matic NLU should be capable of similar reason-
ing, taking both context and common sense into
account when making inferences.

This work aims to deepen our understanding of
AN composition in relation to automated NLU.
The contributions of this paper are as follows:

e We conduct an empirical analysis of ANs and
their entailment properties.

o We define a task for directly evaluating a sys-
tem’s ability to predict compositional entail-
ment of ANs in context.

e We benchmark several state-of-the-art RTE
systems on this task.

2 Recognizing Textual Entailment

The task of recognizing textual entailment
(RTE) (Dagan et al., 2006) is commonly used
to evaluate the state-of-the-art of automatic
NLU. The RTE task is: given two utterances,
a premise (p) and a hypothesis (h), would
a human reading p typically infer that h is



(1) FraCas p No delegate finished the report on time. Quantifiers
h  Some Scandinavian delegate finished the report on time. (no — —some)
(2) RTE2 p  Trade between China and India is expected to touch $20 bn this year...  Definitions
h  There is a profitable trade between China and India. ($20 bn — profitable)
3) NA p  Some delegates finished the report on time. Implicature
h  Not all of the delegates finished the report on time. (some — —all)
4) SICK p A couple of white dogs are running along a beach. Common Sense
h  Two dogs are playing on the beach. (running — playing)

Table 1: Examples of sentence pairs coming from various RTE datasets, and the types of inference
highlighted by each. While linguistic phenomena like implicature (3) have yet to be explicitly included
in RTE tasks, common-sense inferences like those in (4) (from the SICK dataset) have become a common
part of NLU tasks like RTE, question answering, and image labeling.

most likely true?  Systems are expected to
produce either a binary (YES/NO) or trinary
(ENTAILMENT/CONTRADICTION/UNKNOWN)
output.

The type of knowledge tested in the RTE task
has shifted in recent years. While older datasets
mostly captured logical reasoning (Cooper et al.,
1996) and lexical knowledge (Giampiccolo et al.,
2007) (see Examples (1) and (2) in Table 1), the
recent datasets have become increasingly reliant
on common-sense knowledge of scenes and events
(Marelli et al., 2014). In Example (4) in Table 1,
for which the gold label is ENTAILMENT, it is per-
fectly reasonable to assume the dogs are playing.
However, this is not necessarily true that running
entails playing— maybe the dogs are being chased
by a bear and are running for their lives! Example
(4) is just one of many RTE problems which rely
on intuition rather than strict logical inference.

Transformation-based RTE. There have been
an enormous range of approaches to automatic
RTE- from those based on theorem proving
(Bjerva et al., 2014) to those based on vec-
tor space models of semantics (Bowman et al.,
2015a). Transformation-based RTE systems at-
tempt to solve the RTE problem by identifying
a sequence of atomic edits (MacCartney, 2009)
which can be applied, one by one, in order to trans-
form p into h. Each edit can be associated with
some entailment relation. Then, the entailment re-
lation that holds between p and h overall is a func-
tion of the entailment relations associated with
each atomic edit. This approach is appealing in
that it breaks potentially complex p/h pairs into a
series of bite-sized pieces. Transformation-based
RTE is widely used, not only in rule-based ap-
proaches (MacCartney and Manning, 2008; Young
et al., 2014), but also in statistical RTE systems
(Stern and Dagan, 2012; Pad¢ et al., 2014).

MacCartney (2009) defines an atomic edit ap-
plied to a linguistic expression as the deletion
DEL, insertion INS, or substitution SUB of a
subexpression. If x is a linguistic expression and e
is an atomic edit, than e(x) is the result of apply-
ing the edit e to the expression x. For example:

ay girls in3 a4 reds dressg
DEL(red, 5)
ay girls in3 a4 dresss

™
|

e(x)

We say that the entailment relation that holds be-
tween x and e(x) is generated by the edit e. In the
above example, we would say that e generates a
forward entailment (C) since a girl in a red dress
entails a girl in a dress.

3 Natural Logic Entailment Relations

Natural logic (MacCartney, 2009) is a formal-
ism that describes entailment relationships be-
tween natural language strings, rather than operat-
ing over mathematical formulae. Natural logic en-
ables both light-weight representation and robust
inference, and is an increasingly popular choice
for NLU tasks (Angeli and Manning, 2014; Bow-
man et al., 2015b; Pavlick et al., 2015). There
are seven “basic entailment relations” described
by natural logic, five of which we explore here.!
These five relations, as they might hold between
an AN and the head N, are summarized in Fig-
ure 1. The forward entailment relation is the re-
strictive case, in which the AN (brown dog) is a
subset of (and thus entails) the N (dog) but the N

"We omit two relationships: negation and cover. These
relations require that the sets denoted by the strings being
compared are “exhaustive.” In this work, this requirement
would be met when everything in the universe is either an in-
stance of the noun or it is an instance of the adjective-noun
(or possibly both). This is a hard constraint to meet, and we
believe that the interesting relations that result from AN com-
position are adequately captured by the remaining 5 relations.



does not entail the AN (dog does not entail brown
dog). The symmetric reverse entailment can also
occur, in which the N is a subset of the set denoted
by the AN. An example of this is the AN possi-
ble solution: i.e. all actual solutions are possible
solutions, but there are an abundance of possible
solutions that are not and will never be actual so-
lutions. In the equivalence relation, AN and N de-
note the same set (e.g. the entire universe is the
same as the universe), whereas in the alternation
relation, AN and N denote disjoint sets (e.g. a for-
mer senator is not a senator). In the independence
relation, the AN has no determinable entailment
relationship to the N (e.g. an alleged criminal may
or may not be a criminal).

N does not entail AN N entails AN

Alternation (AN | N)

TN A former Reverse Entailment (AN 1 N)
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Figure 1: Different entailment relations that can
exist between an adjective-noun and the head
noun. The best-known case is that of forward en-
tailment, in which the AN denotes a subset of the
N (e.g. brown dog). However, many other rela-
tionships may exist, as modeled by natural logic.

Equivalence (AN = N)

entire
universe
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4 Simplified RTE Task

The focus of this work is to determine the entail-
ment relation that exists between an AN and its
head N in a given context. To do this, we define a
simplified entailment task identical to the normal
RTE task, with the constraint that p and A differ
only by one atomic edit e as defined in Section
2. We look only at insertion INS(A) and deletion
DEL(A), where A must be a single adjective.

We use a 3-way entailment classification where
the possible labels are ENTAILMENT, CONTRA-
DICTION, and UNKNOWN. This allows us to re-
cover the basic entailment relation from Section 3:
by determining the labels associated with the INS
operation and the DEL operation, we can uniquely
identify each of the five relations (Table 2).

INS DEL
Equivalence ENTAILMENT ENTAILMENT
Forward Entail. ENTAILMENT UNKNOWN
Reverse Entail. UNKNOWN ENTAILMENT
Independence UNKNOWN UNKNOWN
Alternation CONTRADICTION  CONTRADICTION

Table 2: Entailment generated by INS(A) or
DEL(A) for possible relations holding between
AN and N. Both INS and DEL are required to dis-
tinguish all five entailment relations.

4.1 Limitations

Modeling denotations of ANs and N. We note
that this task design does not directly ask about
the relationship between the sets denoted by the
AN and by the N (as shown in Figure 1). Rather
than asking “Is this instance of AN an instance
of N?” we ask “Is this statement that is true of
AN also true of N?” While these are not the same
question, they are often conflated in NLP, for ex-
ample, in information extraction, when we use
statements about ANs as justification for extract-
ing facts about the head N (Angeli et al., 2015).
We focus on the latter question and accept that
this prevents us from drawing conclusions about
the actual set theoretic relation between the deno-
tation of AN and the denotation of N. However,
we are able to draw conclusions about the practi-
cal entailment relation between statements about
the AN and statements about the N.

Monotonicity. In this simplified RTE task, we
assume that the entailment relation that holds over-
all between p and h is attributable wholly to the
atomic edit (i.e. the inserted or deleted adjective).
This is an over-simplification. In practice, sev-
eral factors can cause the entailment relation that
holds between the sentences overall to differ from
the relation that holds between the AN and the
N. For example, quantifiers and other downward-
monotone operators can block or reverse entail-
ments (brown dog — dog, but no brown dog 4 no
dog). While we make some effort to avoid select-
ing such sentences for our analysis (Section 5.3),
fully identifying and handling such cases is be-
yond the scope of this paper. We acknowledge that
monotone operators and other complicating fac-
tors (e.g. multiword expressions) might be present
in our data, but we believe, based on manual in-
spection, that they not frequent enough to substan-
tially effect our analyses.



S Experimental Design

To build an intuition about the behavior of ANs in
practice, we collect human judgments of the en-
tailments generated by inserting and deleting ad-
jectives from sentences drawn from large corpora.
In this section, we motivate our design decisions,
before carrying out our full analysis in Section 6.

5.1 Human judgments of entailment

People often draw conclusions based on “assump-
tions that seem plausible, rather than assumptions
that are known to be true” (Kadmon, 2001). We
therefore collect annotations on a 5-point scale,
ranging from 1 (definite contradiction) to 5 (def-
inite entailment), with 2 and 4 capturing likely
(but not certain) contradiction/entailment respec-
tively. We recruit annotators on Amazon Mechani-
cal Turk. We tell each annotator to assume that the
premise “is true, or describes a real scenario” and
then, using their best judgement, to indicate how
likely it is, on a scale of 1 to 5, that the hypothesis
“is also true, or describes the same scenario.” They
are given short descriptions and several examples
of sentence pairs that constitute each score along
the 1 to 5 scale. They are also given the option
to say that “the sentence does not make sense,” to
account for poorly constructed p/h pairs, or errors
in our parsing. We use the mean score of the three
annotators as the true score for each sentence pair.

Inter-annotator agreement. To ensure that our
judgements are reproducible, we re-annotate a ran-
dom 10% of our pairs, using the same annota-
tion setup but a different set of annotators. We
compute the intra-class correlation (ICC) between
the scores received on the first round of annota-
tion, and those received in the second pass. ICC
is related to Pearson correlation, and is used to
measure consistency among annotations when the
group of annotators measuring each observation
is not fixed, as opposed to metrics like Fleiss’s &
which assume a fixed set of annotators. On our
data, the ICC is 0.77 (95% CI 0.73 - 0.81) indicat-
ing very high agreement. These twice-annotated
pairs will become our test set in Section 7.

5.2 Data

Selecting contexts. We first investigate whether,
in naturally occurring data, there is a difference
between contexts in which the author uses the AN
and contexts in which the author uses only the (un-
modified) N. In other words, in order to study the

effect of an A (e.g. financial) on the denotation of
an N (e.g. system), is it better to look at contexts
like (a) below, in which the author originally used
the AN financial system, or to use contexts like (b),
in which the author used only the N system?

(a) The TED spread is an indication of investor
confidence in the U.S. financial system.

(b) Wellers hopes the system will be fully opera-
tional by 2015.

We will refer to contexts like (a) as natural con-
texts, and those like (b) as artificial. We take sam-
ple of 500 ANs from the Annotated Gigaword cor-
pus (Napoles et al., 2012), and choose three natu-
ral and three artificial contexts for each. We gen-
erate p/h pairs by deleting/inserting the A for the
natural/artificial contexts, respectively, and collect
human judgements on the effect of the INS(A) op-
eration for both cases.

Figure 2 displays the results of this pilot study.
In sentences which contain the AN naturally, there
is a clear bias toward judgements of “entailment.”
That is, in contexts when an AN appears, it is often
the case that this A is superfluous: the information
carried by the A is sufficiently entailed by the con-
text that removing it does not remove information.
Sentences (a) and (b) above provide intuition: in
the case of sentence (a), trigger phrases like in-
vestor confidence make it clear that the system we
are discussing is the financial system, whether or
not the adjective financial actually appears. No
such triggers exist in sentence (b).
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Figure 2: p/h pairs derived from natural contexts
result in a notable bias toward judgements of “en-
tailment” for the INS(A) operation, compared to
p/h pairs derived from artificial contexts.



Selecting ANs. We next investigate whether the
frequency with which an AN is used effects its ten-
dency to entail/be entailed by the head N. Again,
we run a small pilot study. We choose 500 ANs
stratified across different levels of frequency of
occurrence in order to determine if sampling the
most frequent ANs introduces bias into our anno-
tation. We see no significant relationship between
the frequency with which an AN appears and the
entailment judgements we received.

5.3 Final design decisions

As aresult of the above pilot experiments, we pro-
ceed with our study as follows. First, we use only
artificial contexts, as we believe this will result in
a greater variety of entailment relations and will
avoid systematically biasing our judgements to-
ward entailments. Second, we use the most fre-
quent AN pairs, as these will better represent the
types of ANs that NLU systems are likely to en-
counter in practice.

We look at four different corpora capturing four
different genres: Annotated Gigaword (Napoles et
al., 2012) (News), image captions (Young et al.,
2014) (Image Captions), the Internet Argument
Corpus (Walker et al., 2012) (Forums), and the
prose fiction subset of GutenTag dataset (Brooke
et al., 2015) (Literature). From each corpus, we
select the 100 nouns which occur with the largest
number of unique adjectives. Then, for each noun,
we take the 10 adjectives with which the noun
occurs most often. For each AN, we choose 3
contexts> in which the N appears unmodified, and
generate p/h pairs by inserting the A into each.

We collect 3 judgements for each p/h pair.
Since this task is subjective, and we want to fo-
cus our analysis on clean instances on which hu-
man agreement is high, we remove pairs for which
one or more of the annotators chose the “does not
make sense” option and pairs for which we do not
have at least 2 out of 3 agreement (i.e. at least two
workers must have chosen the same score on the
5-point scale). In the end, we have a total of 5,560
annotated p/h pairs® coming roughly evenly from
our 4 genres.

2As a heuristic, we skip sentences containing obvious
downward-monotone operators, e.g. not, every (Section 4).

30ur data is available at http: //www.seas.upenn.
edu/~nlp/resources/AN-composition.tgz

6 Empirical Analysis

Figure 3 shows how the entailment relations are
distributed in each genre. In Image Captions, the
vast majority of ANs are in a forward entailment
(restrictive) relation with their head N. In the other
genres, however, a substantial fraction (36% for
Forums) are in equivalence relations: i.e. the AN
denotes the same set as is denoted by the N alone.

Image Captions

[ AN<N (e.g. "red apple") [ AN>N (e.g. "possible solution")

[ AN=N (e.g. "entire word") [ ANIN (e.g. "former senator")
1 AN#N (e.g. "alleged criminal") EE N/A

Figure 3: Basic entailment relations assigned to
ANSs according to the 5,560 p/h pairs our data.

When does N entail AN? If it is possible to in-
sert adjectives into a sentence without adding new
information, when does this happen? When is ad-
jectival modification not restrictive? Based on our
qualitative analysis, two clear patterns stand out:

1) When the adjective is prototypical of the
noun it modifies. In general, we see that adding
adjectives which are seen as attributes of the “pro-
totypical” instance of the noun tend to generate en-
tailments. E.g. people are generally comfortable
concluding that beach—sandy beach. The same
adjective may be prototypical and thus entailed in
the context of one noun, but generate a contradic-
tion in the context of another. E.g. if someone has
a baby, it is probably fine to say they have a little
baby, but if someone has control, it would be a lie
to say they have little control (Figure 4).4

2) When the adjective invokes a sense of
salience or importance. Nouns are assumed to
be salient and relevant. E.g. answers are assumed
(perhaps naively) to be correct, and problems are

“These curves show the distribution over entailment
scores associated with the INS(A) operation. Yellow curves
show, for a single N, the distribution over all the As that mod-
ify it. Blue curves show, for a single A, the distribution over
all the Ns it modifies.
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Figure 4: Inserting adjectives that are seen as “pro-
totypical” of the noun tends to generate entail-
ments. E.g., beach generally entails sandy beach.

assumed (perhaps melodramatically) to be current
and huge. Inserting adjectives like false or empty
tend to generate contradictions (Figure 5).
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Figure 5: Unless otherwise specified, nouns are
considered to be salient and relevant. Answers are
assumed to be correct, and problems to be current.

What do the different natural logic relations
look like in practice? Table 3 shows examples
of ANs and contexts exhibiting each of the basic
entailment relations. Some entailment inferences
depend entirely on contextual information (Exam-
ple 2a) while others arise from common-sense in-
ference (Example 2b). Many of the most interest-
ing examples fall into the independence relation.
Recall from Section 3 that independence, in the-
ory, covers ANs such as alleged criminal, in which
the AN may or may not entail the N. In practice,
the cases we observe falling into the independence
relation tend to be those which are especially ef-
fected by world knowledge. In Example 3, local
economy is considered to be independent of econ-
omy when used in the context of President Obama:
i.e. the assumption that the president would be
discussing the national economy is so strong that
even when the president says the local economy is
improving, people do not take this to mean that he
has said the economy is improving.

Undefined entailment relations. Our annota-
tion methodology— i.e. inferring entailment rela-

tions based on the entailments generated by INS
and DEL edits— does not enforce that all of the
ANs fit into one of the five entailment relations
defined by natural logic. Specifically, we observe
many instances (~5% of p/h pairs) in which INS
is determined to generate a contradiction, while
DEL is said to generate an entailment. In terms of
set theory, this is equivalent to the (non-sensical)
setting in which “every AN is an instance of N,
but no N is an instance of AN.” On inspection,
these again represent cases in which common-
sense assumptions dominate the inference. In Ex-
ample 6, when given the premise Bush travels
to Michigan to discuss the economy, annotators
are confident enough that economy does not en-
tail Japanese economy (why on earth would Bush
travel to Michigan to discuss the Japanese econ-
omy?) that they label the insertion of Japanese as
generating a contradiction. However, when pre-
sented with the p/h in the opposite direction, an-
notators agree that the Japanese economy does in-
deed entail the economy. These examples high-
light the flexibility with which humans perform
natural language inference, and the need for au-
tomated systems to be equally flexible.

Take aways. Our analysis in this section re-
sults in three key conclusions about AN compo-
sition. 1) Despite common assumptions, adjec-
tives do not always restrict the denotation of a
noun. Rather, adjectival modification can result in
a range of entailment relations, including equiv-
alence and contradiction. 2) There are patterns
to when the insertion of an adjective is or is not
entailment-preserving, but recognizing these pat-
terns requires common-sense and a notion of “pro-
totypical” instances of nouns. 3) The entailment
relation that holds between an AN and the head N
is highly context dependent. These observations
describe sizable obstacles for automatic NLU sys-
tems. Common-sense reasoning is still a major
challenge for computers, both in terms of how to
learn world knowledge and in how to represent it.
In addition, context-sensitivity means that entail-
ment properties of ANs cannot be simply stored in
a lexicon and looked-up at run time. Such proper-
ties make AN composition an important problem
on which to focus NLU research.

7 Benchmarking Current SOTA

We have highlighted why AN composition is an
interesting and likely challenging phenomenon for



He underwent a [successful] operation on his leg at a Lisbon hospital in December.

President Obama cited the data as evidence that the [local] economy is improving.

(1) ANCN

(2a) AN =N The [deadly] attack killed at least 12 civilians.

(2b) AN =N The [entire] bill is now subject to approval by the parliament.

3) AN#N

(4) AN ON The [militant] movement was crushed by the People’s Liberation Army.
(5 AN|N Red numbers spelled out their [perfect] record: 9-2.

(6) AN?N

Bush travels Monday to Michigan to make remarks on the [Japanese] economy.

Table 3: Examples of ANs in context exhibiting each of the different entailment relations. Note that these
are “artificial” contexts (Section 5.2), meaning the adjective was not originally a part of the sentence.

automated NLU systems. We now turn our inves-
tigation to the performance of state-of-the-art RTE
systems, in order to quantify how well AN compo-
sition is currently handled.

The Add-One Entailment Task. We define the
“Add-One Entailment” task to be identical to the
normal RTE task, except with the constraint that
the premise p and the hypothesis h differ only
by the atomic insertion of an adjective: h =
e(p) where e=INS(A) and A is a single adjec-
tive. To provide a consistent interface with a
range of RTE systems, we use a binary label
set: NON-ENTAILMENT (which encompasses both
CONTRADICTION and UNKNOWN) and ENTAIL-
MENT. We want to test on only straightforward
examples, so as not to punish systems for fail-
ing to classify examples which humans themselves
find difficult to judge. In our test set, therefore,
we label pairs with mean human scores < 3 as
NON-ENTAILMENT, pairs with scores > 4 as EN-
TAILMENT, and throw away the pairs which fall
into the ambiguous range in between.> Our re-
sulting train, dev, and test sets contain 4,481, 510,
and 387 pairs, respectively. These splits cover
disjoint sets of ANs— i.e. none of the ANs ap-
pearing in test were seen in train. Individual
adjectives and/or nouns can appear in both train
and test. The dataset consists of roughly 85%
NON-ENTAILMENT and 15% ENTAILMENT. Inter-
annotator agreement achieves 93% accuracy.

7.1 RTE Systems

We test a variety of state-of-the-art RTE sys-
tems, covering several popular approaches to RTE.
These systems are described in more detail below.

3For our training and dev sets, we include all pairs, con-
sidering scores < 3.5 as NON-ENTAILMENT and scores >
3.5 as ENTAILMENT. We tried removing “ambiguous” pairs
from the training and dev sets as well, but it did not improve
the systems’ performances on the test set.

Classifier-based. The Excitement Open RTE
platform (Magnini et al., 2014) includes a suite of
RTE systems, including baseline systems as well
as feature-rich supervised systems which provide
state-of-the-art performance on the RTE3 datasets
(Giampiccolo et al., 2007). We test two systems
from Excitement: the simple Maximum Entropy
(MaxEnt) model which uses a suite of dense,
similarity-based features (e.g. word overlap, co-
sine similarity), and the more sophisticated Max-
imum Entropy model (MaxEnt+LR) which uses
the same similarity-based features but addition-
ally incorporates features from external lexical re-
sources such as WordNet (Miller, 1995) and Ver-
bOcean (Chklovski and Pantel, 2004). We also
train a standard unigram model (BOW).

Transformation-based. The Excitement plat-
form also includes a transformation-based RTE
system called BIUTEE (Stern and Dagan, 2012).
The BIUTEE system derives a sequence of edits
that can be used to transform the premise into the
hypothesis. These edits are represented using fea-
ture vectors, and the system searches over edit se-
quences for the lowest cost “proof” of either en-
tailment or non-entailment. The feature weights
are set by logistic regression during training.

Deep learning. Bowman et al. (2015a) recently
reported very promising results using deep learn-
ing architectures and large training data for the
RTE task. We test the performance of those same
implementations on our Add-One task. Specifi-
cally, we test the following models: a basic Sum-
of-words model (Sum), which represents both p
and h as the sum of their word embeddings, an
RNN model, and an LSTM model. We also train
a bag-of-vectors model (BOV), which is simply a
logistic regression whose features are the concate-
nated averaged word embeddings of p and h.

For the LSTM, in addition to the normal train-




ing setting— i.e. training only on the 5K Add-One
training pairs— we test a transfer-learning setting
(Transfer). In transfer learning, the model trains
first on a large general dataset before fine-tuning
its parameters on the smaller set of target-domain
training data. For our Transfer model, we train
first on the S00K pair SNLI dataset (Bowman et
al., 2015a) until convergence, and then fine-tune
on the 5K Add-One pairs. This setup enabled
Bowman et al. (2015a) to train a high-performance
LSTM for the SICK dataset, which is of similar
size to our Add-One dataset (~5K training pairs).

7.2 Results

Out of the box performances. To calibrate ex-
pectations, we first report the performance of each
of the systems on the datasets for which they were
originally designed. For the Excitement systems,
this is the RTE3 dataset (Table 6a). For the deep
learning systems, this is the SNLI dataset (Table
6b). For the deep learning systems, in addition to
reporting performance when trained on the SNLI
corpus (500K p/h pairs), we report the perfor-
mance in a reduced training setting in which sys-
tems only have access to 5K p/h pairs. This is
equivalent to the amount of data we have available
for the Add-One task, and is intended to give a
sense of the performance improvements we should
expect from these systems given the size of the
training data.

| RTE3 | SNLI 500K / 5K
Majority 51.3 Majority | 65.7
BOW 51.0 BOV 74.4/71.5
Edit Dist. 61.9 RNN 82.1/67.0
MaxEnt+LR | 63.6 Sum 85.3/69.2
BIUTEE 65.6 LSTM 86.2/68.0

(a) Systems from Magnini (b) Systems from Bowman
et al. (2014) on RTES3. et al. (2015a) on SNLI.

Figure 6: Performance of SOTA systems on the
datasets for which they were originally developed.

7.3 Performance on Add-One RTE.

Finally, we train each of the systems on the 5,000
Add-One p/h pairs in our dataset and test on our
held-out set of 387 pairs. Figure 7 reports the re-
sults in terms of accuracy and precision/recall for
the ENTAILMENT class. The baseline strategy of
predicting the majority class for each adjective,
based on the training data, reaches close to human
performance (92% accuracy). Given the simplic-
ity of the task (p and h differ by a single word),

this baseline strategy should be achievable. How-
ever, none of the systems tested come close to this
level of performance, suggesting that they fail to
learn even the most-likely entailment generated by
adjectives (e.g. that INS(brown) probably gener-
ates NON-ENTAILMENT and INS(possible) proba-
bly generates ENTAILMENT). The best perform-
ing system is the RNN, which achieves 87% accu-
racy, only two points above the baseline of always
guessing NON-ENTAILMENT.
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Figure 7: Performances of all systems on AddOne
RTE task. The strategy of predicting the major-
ity class for each adjective— based on the training
data— reaches near human performance. None of
the systems tested come close to human levels, in-
dicating that the systems fail even to memorize the
most-likely class for each adjective in training.

8 Related Work

Past work, both in linguistics and in NLP, has ex-
plored different classes of adjectives (e.g. pri-
vative, intensional) as they relate to entailment
(Kamp and Partee, 1995; Partee, 2007; Boleda et
al., 2013; Nayak et al., 2014). In general, prior
studies have focused on modeling properties of the
adjectives alone, ignoring the context-dependent
nature of AN/N entailments— i.e. in prior work
little is always restrictive, whether it is modify-
ing baby or control. Pustejovsky (2013) offer a
preliminary analysis of the contextual complexi-
ties surrounding adjective inference, which rein-



forces many of the observations we have made
here. Hartung and Frank (2011) analyze adjec-
tives in terms of the properties they modify but
don’t address them from an entailment perspec-
tive. Tien Nguyen et al. (2014) look at the adjec-
tives in the restricted domain of computer vision.
Other past work has employed first-order logic
and other formal representations of adjectives in
order to provide compositional entailment predic-
tions (Amoia and Gardent, 2006; Amoia and Gar-
dent, 2007; McCrae et al., 2014). Although theo-
retically appealing, such rigid logics are unlikely
to provide the flexibility needed to handle the type
of common-sense inferences we have discussed
here. Distributional representations provide much
greater flexibility in terms of representation (Ba-
roni and Zamparelli, 2010; Guevara, 2010; Boleda
et al., 2013). However, work on distributional AN
composition has so far remained out-of-context,
and has mostly been evaluated in terms of overall
“similarity” rather than directly addressing the en-
tailment properties associated with composition.

9 Conclusion

We have investigated the problem of adjective-
noun composition, specifically in relation to the
task of RTE. AN composition is capable of pro-
ducing a range of natural logic entailment re-
lationship, at odds with commonly-used heuris-
tics which treat all adjectives a restrictive. We
have shown that predicting these entailment re-
lations is dependent on context and on world
knowledge, making it a difficult problem for cur-
rent NLU technologies. When tested, state-of-
the-art RTE systems fail to learn to differenti-
ate entailment-preserving insertions of adjectives
from non-entailing ones. This is an important
distinction for carrying out human-like reasoning,
and our results reveal important weaknesses in the
representations and algorithms employed by cur-
rent NLU systems. The Add-One Entailment task
we have introduced will allow ongoing RTE re-
search to better diagnose systems’ abilities to cap-
ture these subtleties of ANs, which that have prac-
tical effects on natural language inference.
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