
12/11/2012 

1 

5.  The TOY Machine II 

Laboratory Instrument Computer (LINC) 

Introduction to Computer Science:  An Interdisciplinary Approach     ·     Robert Sedgewick and Kevin Wayne     ·     Copyright © 2002–2011     ·     12/11/2012 11:19:46 

What We've Learned About TOY 

TOY machine. 

 Box with switches and lights. 

 16-bit memory locations, 16-bit registers, 8-bit pc. 

 4,328 bits  =  (255  16)  +  (15  16)  + (8)  =  541 bytes! 

 von Neumann architecture. 

 

TOY programming.  

 TOY instruction set architecture:  16 instruction types. 

 Variables, arithmetic, loops. 

 

2 

What We Do Today 

Data representation.  Negative numbers. 

 

Input and output.  Standard input, standard output. 

 

Manipulate addresses.  References (pointers) and arrays. 

 

TOY simulator in Java. 

3 4 

Data Representation 

Digital World 

Data is a sequence of bits.  (interpreted in different ways) 

 Integers, real numbers, characters, strings, … 

 Documents, pictures, sounds, movies, Java programs, … 

 

Ex.   01110101 

 As binary integer:  1 + 4 + 16 + 32 + 64 = 11710.  

 As character:  117th Unicode character = 'u'. 

 As music:  117/256 position of speaker. 

 As grayscale value:  45.7% black. 

5 

Adding and Subtracting Binary Numbers 

Decimal and binary addition. 

 

 

 

 

 

 

 

 

 

Subtraction.  Add a negative integer. 

 

 

 

 

Q.  How to represent negative integers? 

6 

  1               1 1  

  013            0 0 0 0 1 1 0 1 

+ 092          + 0 1 0 1 1 1 0 0 

  105            0 1 1 0 1 0 0 1 

carries 

e.g., 6 - 4 = 6 + (-4)) 



12/11/2012 

2 

Representing Negative Integers 

TOY words are 16 bits each. 

 We could use 16 bits to represent 0 to 216 - 1. 

 We want negative integers too. 

 Reserving half the possible bit-patterns for negative seems fair. 

 

Highly desirable property.  If x is an integer, then the representation 

of -x, when added to x, is zero. 

7 

   x     0 0 1 1 0 1 0 0 

+(-x)   + ? ? ? ? ? ? ? ? 

   0     0 0 0 0 0 0 0 0 

   x     0 0 1 1 0 1 0 0 

       + 1 1 0 0 1 0 1 1 

+(-x)     1 1 1 1 1 1 1 1 

        +               1 

   0     0 0 0 0 0 0 0 0   

flip bits and add 1 

Two's Complement Integers 

To compute -x from x: 

 

 Start with x.  

 

 

 

 Flip bits. 

 

 

 

 Add one. 

8 

-5 

-4 

1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 0 1 

1 1 1 1 1 1 1 ? 1 1 1 1 0 0 1 1 1 

0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 1 0 +4 

leading bit 

Two's Complement Integers 

9 

1 1 1 1 0 1 1 ? 1 1 1 1 1 1 1 1 1 

13 12 11 10 15 14 7 9 8 6 4 1 0 3 2 5 

0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 ? 0 0 0 0 1 1 0 0 0 

0 0 0 0 0 0 0 ? 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 ? 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 ? 1 1 1 1 1 0 1 1 1 

1 1 1 1 1 1 1 ? 1 1 1 1 0 1 1 1 1 

1 1 1 1 1 1 1 ? 1 1 1 1 0 0 1 1 1 

0 0 0 0 1 0 0 ? 0 0 0 0 0 0 0 0 0 

7FFF 

0004 

0003 

0002 

0001 

0000 

FFFF 

FFFE 

FFFD 

FFFC 

8000 

+32767 

+4 

+3 

+2 

+1 

+0 

-1 

-2 

-3 

-4 

-32768 

hex dec binary 

Properties of Two's Complement Integers 

Properties. 

 Leading bit (bit 15) signifies sign. 

 Addition and subtraction are easy. 

 0000000000000000 represents zero. 

 Checking for arithmetic overflow is easy. 

 Negative integer -x represented by 216 - x. 

 Not symmetric:  can represent -32,768 but not 32,768. 

 

Java.  Java's int data type is a 32-bit two's complement integer. 

Ex.  2147483647 + 1 equals -2147483648. 

10 

http://xkcd.com/571 

Representing Other Primitive Data Types in TOY 

Bigger integers.  Use two 16-bit TOY words per 32-bit Java int. 

 

Real numbers. 

 Use IEEE floating point (like scientific notation). 

 Use four 16-bit TOY words per 64-bit Java double. 

 

Characters.  Use one 16-bit TOY word per 16-bit Java Unicode char. 

 

 

 

 

 

 

 

 

Note.  Real microprocessors add hardware support for int and double. 

11 

M = 010011012 = 4D16 
O = 010011112 = 4F16 

M = 010011012 = 4D16 

12 

Standard Input and Output 



12/11/2012 

3 

Standard Output 

Standard output. 

 Writing to memory location FF sends one word to TOY stdout. 

 Ex.  9AFF writes the integer in register A to stdout. 

 

 

13 

00: 0000   0 

01: 0001   1 

 

10: 8A00   RA  mem[00]          a = 0 

11: 8B01   RB  mem[01]          b = 1 

                                  do { 

12: 9AFF   write RA to stdout        print a 

13: 1AAB   RA  RA + RB             a = a + b 

14: 2BAB   RB  RA - RB             b = a - b 

15: DA12   if (RA > 0) goto 12    } while (a > 0) 

16: 0000   halt 

0000 

0001 

0001 

0002 

0003 

0005 

0008 

000D 

0015 

0022 

0037 

0059 

0090 

00E9 

0179 

0262 

03DB 

063D 

0A18 

1055 

1A6D 

2AC2 

452F 

6FF1 

fibonacci.toy 

Standard Input 

Standard input. 

 Loading from memory address FF loads one word from TOY stdin. 

 Ex.  8AFF reads an integer from stdin and store it in register A. 

 

Ex:  read in a sequence of integers and print their sum. 

 In Java, stop reading when EOF. 

 In TOY, stop reading when user enters 0000. 

14 

while (!StdIn.isEmpty()) { 

   a = StdIn.readInt(); 

   sum = sum + a; 

} 

StdOut.println(sum);  

00: 0000   0 

 

10: 8C00   RC <- mem[00]  

11: 8AFF   read RA from stdin 

12: CA15   if (RA == 0) pc  15 

13: 1CCA   RC  RC + RA 

14: C011   pc  11      

15: 9CFF   write RC 

16: 0000   halt 

00AE 

0046 

0003 

0000 

00F7 

Standard Input and Output:  Implications 

Standard input and output enable you to: 

 Get information out of machine. 

 Put information from real world into machine. 

 Process more information than fits in memory. 

 Interact with the computer while it is running. 

15 

by default:  LED redirected to 
punchcard 

by default: flip switch, 
press button 

redirected from 
punchcard 

16 

Pointers 

Load Address (a.k.a. Load Constant) 

Load address.  [opcode  7] 

 Loads an 8-bit integer into a register. 

 7A30 means load the value 30 into register A. 

 

Applications. 

 Load a small constant into a register. 

 Load a 8-bit memory address into a register. 

17 

addr 

1 

13 

1 

12 

1 

11 

0 

10 

0 

15 

1 

14 

0 

7 

? 

6 

1 

9 

0 

8 

0 

6 

1 

4 

0 

1 

0 

0 

0 

3 

0 

2 

1 

5 

716 A16 316 016 

opcode dest d 

a = 0x30; 

Java code 

register stores "pointer" to a memory cell 

Arrays in TOY 

TOY main memory is a giant array. 

 Can access memory cell 30 using load and store. 

 8C30 means load mem[30] into register C. 

 Goal:  access memory cell i where i is a variable. 

 

 

Load indirect.  [opcode  A] 

 AC06 means load mem[R6] into register C. 

 

Store indirect.  [opcode  B] 

 BC06 means store contents of register C into  mem[R6]. 

 

18 

for (int i = 0; i < N; i++) 
   a[i] = StdIn.readInt(); 

 

for (int i = 0; i < N; i++) 

   StdOut.println(a[N-i-1]); 

a variable index 

30 

31 

32 

33 

34 

35 

36 

37 

… 

… 

0000 

0001 

0001 

0002 

0003 

0005 

0008 

000D 

… 

… 

TOY memory 

a variable index 



12/11/2012 

4 

TOY Implementation of Reverse 

TOY implementation of reverse. 

 Read in a sequence of integers and store in memory 30, 31, 32, … 

until reading 0000.  

 Print sequence in reverse order. 

19 

10: 7101  R1  0001      constant 1 

11: 7A30  RA  0030      a[] 

12: 7B00  RB  0000      n 

 

     while(true) { 

13: 8CFF  read RC      c = StdIn.readInt(); 

14: CC19  if (RC == 0) goto 19    if (c == 0) break; 

15: 16AB  R6  RA + RB     memory address of 

a[n] 

16: BC06  mem[R6]  RC     a[n] = c; 

17: 1BB1  RB  RB + R1      n++; 

18: C013  goto 13   } 

read in the data 

TOY Implementation of Reverse 

TOY implementation of reverse. 

 Read in a sequence of integers and store in memory 30, 31, 32, … 

until reading 0000.   

 Print sequence in reverse order. 

20 

19: CB20  if (RB == 0) goto 20 while (n > 0) { 

1A: 16AB  R6  RA + RB     address of a[n] 

1B: 2661  R6  R6 – R1     address of a[n-1] 

1C: AC06  RC  mem[R6]     c = a[n-1]; 

1D: 9CFF  write RC      StdOut.println(c); 

1E: 2BB1  RB  RB – R1     n--; 

1F: C019  goto 19   } 

20: 0000  halt 

print in reverse order 

Unsafe Code at any Speed 

Q.  What happens if we make array start at 00 instead of 30? 

A.  Self modifying program; can overflow buffer and run arbitrary code! 

21 

10: 7101  R1  0001      constant 1 

11: 7A00  RA  0000      a[] 

12: 7B00  RB  0000      n 

 

     while(true) { 

13: 8CFF  read RC      c = StdIn.readInt(); 

14: CC19  if (RC == 0) goto 19    if (c == 0) break; 

15: 16AB  R6  RA + RB     address of a[n] 

16: BC06  mem[R6]  RC     a[n] = c; 

17: 1BB1  RB  RB + R1      n++; 

18: C013  goto 13   } 

 

 

% more crazy8.txt 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1  

8888 8810 

98FF C011 

What Can Happen When We Lose Control (in C or C++)? 

Buffer overflow. 

 Array buffer[] has size 100. 

 User might enter 200 characters. 

 Might lose control of machine behavior. 

 

Consequences.  Viruses and worms. 

 

 

 

Java enforces security. 

 Type safety. 

 Array bounds checking. 

 Not foolproof.  

22 

#include <stdio.h> 

int main(void) { 

   char buffer[100]; 

   scanf("%s", buffer); 

   printf("%s\n", buffer); 

   return 0; 

} 

unsafe C program 

shine 50W bulb at DRAM 
[Appel-Govindavajhala '03] 

Buffer Overflow Attacks 

Stuxnet worm.  [July 2010] 

 Step 1.  Natanz centrifuge fuel-refining plant 

employee plugs in USB flash drive. 

 Step 2.  Data becomes code by exploiting Window 

buffer overflow; machine is 0wned. 

 Step 3.  Uranium enrichment in Iran stalled. 

 

 

More buffer overflow attacks:  Morris worm, Code Red, SQL Slammer,  

iPhone unlocking, Xbox softmod, JPEG of death, … 

 

Lesson. 

 Not easy to write error-free software. 

 Embrace Java security features. 

 Keep your OS patched. 

23 

Buffer Overflow Example:  JPEG of Death 

Microsoft Windows JPEG bug.  [September, 2004] 

 Step 1.  User views malicious JPEG in IE or Outlook. 

 Step 2.  Machine is 0wned. 

 Data becomes code by exploiting buffer overrun in GDI+ library. 

 

 

 

Fix.  Update old library with patched one. 

 

 

 

Moral. 

 Not easy to write error-free software. 

 Embrace Java security features. 

 Don't try to maintain several copies of the same file. 

 Keep your OS patched. 

24 

but many applications install independent copies of GDI library 

file://localhost/Users/wayne/Documents/cos126-s11/5toy-crazy8.ppt


12/11/2012 

5 

Dumping 

Q.  Work all day to develop operating system in mem[10] to mem[FF]. 

How to save it? 

 

A.  Write short program dump.toy and run it to dump contents of 

memory onto tape. 

25 

00: 7001   R1  0001                    

01: 7210   R2  0010   i = 10 

02: 73FF   R3  00FF 

          do { 

03: AA02   RA  mem[R2]     a = mem[i] 

04: 9AFF   write RA           print a 

05: 1221   R2  R2 + R1      i++ 

06: 2432   R4  R3 - R2  

07: D403   if (R4 > 0) goto 03 } while (i < 255) 

08: 0000   halt 

dump.toy 

Booting 

Q.  How do you get it back? 

 

A.  Write short program boot.toy and run it to read contents of 

mem[10] to mem[FF] from tape. 

26 

00: 7001   R1  0001                    

01: 7210   R2  0010   i = 10 

02: 73FF   R3  00FF 

          do { 

03: 8AFF   read RA        read a 

04: BA02   mem[R2]  RA      mem[i] = a 

05: 1221   R2  R2 + R1      i++ 

06: 2432   R4  R3 - R2  

07: D403   if (R4 > 0) goto 03 } while (i < 255) 

08: 0000   halt 

boot.toy 

40 

Extra Slides 

Two's Complement Arithmetic 

Addition is carried out as if all integers were positive. 

 It usually works. 

41 

1 1 1 1 1 1 1 ? 1 1 1 1 0 1 1 1 1 -3 

0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 1 0 4 

+ 

= 

0 0 0 0 0 0 0 ? 0 0 0 0 0 1 0 0 0 1 

Two's Complement Arithmetic 

Addition is carried out as if all integers were positive. 

 It usually works. 

 But overflow can occur. 

42 

1 1 1 1 0 1 1 ? 1 1 1 1 1 1 1 1 1 +32,767 

0 0 0 0 0 0 0 ? 0 0 0 0 1 0 0 0 0 2 

0 0 0 0 1 0 0 ? 0 0 0 0 0 1 0 0 0 -32,767 

+ 

= 

carry into sign (left most) bit with no carry out 
or carry out out of sign bit with no carry in 

Java and TOY 

Correspondence between Java constructs and TOY mechanisms. 

 

43 

arithmetic expressions 

Java 

add, subtract 

TOY 

logical expressions xor, and, shifts 

loops (for, while) jump absolute, branch 

branches (if-else, switch)  branch if zero, positive 

arrays, linked lists indirect addressing 

function call jump and link, jump indirect 

assignment load, store 

recursion implement stack with arrays 

whitespace no-op 1000 

. . . . . . 


