
  

CIS   110   Fall   2020   Midterm   2   Questions   
  

Note:   This   exam   had   multiple   versions.   We   have   selected   a   subset   of   those   versions   to   simulate   
the   length   of   the   exam.   The   questions   we   have   redacted   covered   no   different   material.   
However,   the   T/F   section   had   a   random   subset   given   to   students,   but   we   are   leaving   all   the   
questions   in   here   for   extra   practice.   Therefore   this   practice   exam   is   slightly   longer   than   the   
actual   administered   exam.   
  

True/False   
1a.   You   cannot   overload   constructors   in   Java   
1b.   The   following   code   prints   Shivin   
public   class   Student   {   

private   String   name;   
public   Student(String   name)   {   

name   =   name;   
}   
  
public   static   void   main(String[]   args)   {   

Student   shivin   =   new   Student(“Shivin”);   
System.out.println(shivin.name);   

}   
}   

1c.   The   following   code   prints   a   memory   address   
public   class   Student   {   

private   String   name;   
public   Student(String   name)   {   

name   =   name;   
}   
  
public   String   toString()   {   

return   name;   
}   
public   static   void   main(String[]   args)   {   

Student   shivin   =   new   Student(“Shivin”);   
System.out.println(shivin);   

}   
}   

1d.   The   following   code   compiles   
public   class   Student   {   

private   String   name;   
private   Student[]   friends;   
    



  

public   Student(String   student)   {   
name   =   student;   
friends[0]   =   this;   

}   
}   

1e.   The   following   code   correctly   removes   the   first   Node   in   a   Linked   List.   
public   void   removeFirstNode()   {   
   headNode.next   =   headNode;   

}   

1f.   The   following   code   snippet   adds   a   node   after   the   first   node   
public   void   mystery(int   value)   

     {   

         Node   newNode   =   new   Node(value);   

         newNode.next   =   head;   
         head   =   newNode;   

     }   

  
1g.   This   code   snippet   prints   “j”   
LinkedList   sandwich   =   new   LinkedList   ();     
sandwich.append("j");     

sandwich.append("pb");     

sandwich.insert(1,   "j");     

sandwich.insert(1,   "pb");   
sandwich.remove(1);     

System.out.print(test.get(2));   
  

1h.   ArrayLists   and   LinkedLists   are   dynamically   sized   
  

1i.   The   above   template   for   the   list   Gifts   correctly   implements   the   GiftList   interface   
public   interface   GiftList   {   
     public   void   add(Gift   a);   
     public   void   gift(Gift   b);   
}   
  
public   class   Gifts   implements   GiftList   {   
    public   void   addGift(Gift   a)   {   

*code   to   add   a   present   to   the   list*   
    }   
    public   void   giveGift(Gift   b)   {   
        *code   to   gift   a   present   from   the   list*   
    }   
}   
  

1j.   You   cannot   add   an   object   to   a   list   at   a   position   greater   than   the   size   of   the   list   



  

  
1k.   The   below   tests   display   the   same   results   
public   void   testIsMammal()   {   
String   animal   =   “cat”;   

boolean   expected   =   true;   

boolean   actual   =   isMammal(animal);   

assertEquals(expected,   actual);     
}   

  

And     
  
public   void   testIsMammal()   {   
Boolean   actual   =   isMammal(“cat”);   

assertTrue(actual);     

}   

  
1l.   You   write   a   test   case   for   a   function   called   countAttendance.   The   test   case   fails.   True   or   false:   
there   must   be   a   bug   in   countAttendance.   
  

1m.   If   an   IllegalArgumentException   is   thrown,   this   test   under   this   header   would    pass   
@Test   (expected   =   IllegalArgumentException.class)  
  

1n.   This   is   a   file   called   Buzz.java   
public   class   Buzz   {   

private   int   fizz;   

public   Buzz()   {   

fizz   =   int   (Math.random()   *   10);   
}   

}   
The   following   lines   will   cause   a   compilation   issue   when   written   in   a   separate   class   
TestBuzz.java .   

Buzz   b   =   new   Buzz();   

System.out.println(b.fizz);   
  

1o.   This   is   a   file   called    Buzz.java .   
public   class   Buzz   {   

private   int   fizz;   
public   Buzz()   {   

fizz   =   int   (Math.random()   *   10);   

}   

}   



  

The   following   lines   will   cause   a   compilation   issue   when   written   in   a   separate   class   
TestBuzz.java .   

Buzz   b   =   new   Buzz();   

System.out.println(b);   
  

1p.   If    a.equals(b)    is    true ,   then    a   ==   b    is    true    always.   

1q.   If    a   ==   b    is    true ,   then    a.equals(b)    is    true    always.   

1r.   If   a   class    Novel    has   a   method    public   static   void   printSummary() ,   and   if    book    is   
an   instance   of   class    Novel ,   then   calling    book.printSummary()    will   cause   an   error.   

1s.   If   TV   is   an   interface,   the   following   code   will   compile:    TV   tv   =   new   TV();   

1t.   An   interface   must   be   implemented   by   some   class   to   compile   

1u.   If   Grape   &   Blueberry   implement   a   Fruit   interface,   we   can   do   the   following   

Fruit   g   =   new   Grape();   
Fruit   b   =   new   Blueberry();   
Fruit[]   fruits   =   {g,   b};  

   



  

  

Short   Fill   in   the   blank   
1. A   _____   field   is   associated   with   the   class   rather   than   any   object.   That   means   that   there   is   

only   one   instance   of   that   field   in   memory.   
2. If   the   visibility    modifier   of   a   field   is   ______,   then   accessing   its   value   outside   of   its   class   

definition   requires   the   use   of   a   getter.   
3. The   _______   is   a   special   method   of   a   class   that   creates   a   new   object   from   that   class.   It   is   

easy   to   identify   because   it   shares   a   name   with   the   class   itself.   
4. Math.random()   and   PennDraw.advance()   are   ________   functions,   which   explains   why   each   

function   can   be   invoked   without   creating   an   instance   of   their   respective   classes.   

   



  

Fill   in   the   blank   Functions   

Problem   1   -   Linked   Lists   

Version   1:   Holiday   Party   
  

3a:   The   TAs   are   throwing   a   holiday   party   and   are   stringing   up   lights   to   celebrate.   As   they   
removed   each   bulb   from   the   box,   they   gave   it   a   random   brightness   value.   They   then   connected   
the   lights   randomly   to   each   other,   either   on   the   bottom   of   or   to   the   right   of   each   previous   light.   
They   need   your   help   extending   the   chain   of   lights   by   providing   an   array   that   lists   the   lights’   
brightness   value   from   left   to   right,   first   going   down   as   far   as   possible   for   each   bulb.   For   
example,   you   should   return   [10,   15,   16,   17,   25,   1,   2,   0,   7]   from   the   diagram   below.   

  
Assume   that   the   function   is   initially   called   with    linkTheLights(head,    0 ,   arr);     

Where   head   is   the   top-left   node   and   arr   is   an   integer   array   with   size   of   the   number   of   lights.   Also   
assume   that   only   bulbs   in   the   top   row   (10,   15,   1,   and   0)   can   point   to   another   bulb   to   its   right.   For   
example,   bulb   16   would   never   be   able   to   point   to   a   bulb   to   its   right.   Do   not   worry   about   the   
syntax   of   the   PartyLight   class   (i.e.   public   static   class   PartyLight).   Even   though   you   should   not   
worry   about   this   syntax,    please   do   not   change   it   for   compilation   purposes.   
  
      public     static     class     PartyLight    {   

         PartyLight   right;   //pointer   to   right   PartyLight   

         PartyLight   down;   //pointer   to   down   partyLight   

          int    brightness;   //value   of   light’s   brightness   

  

         //constructor   with   right   and   down   pointers   +   brightness   parameter   

         PartyLight(PartyLight   r,   PartyLight   d,    int    v){   

              this .right   =   r;   

              this .down   =   d;   

              this .brightness   =   v;   

         }   



  

  

  
  

  

  

         //constructor   with   just   brightness   parameter   

         PartyLight( int    v)   {   

              this .brightness   =   v;   

         }   

     }   

  

      public     static     void     linkTheLights (PartyLight   curr,    int    index,    int []   arr){   

          if (___(1)___){   
              return ;   
         }   

         arr[index]   =   ___(2)___;   
         index++;   

  
         PartyLight   n   =   curr;   
  

          while (___(3)___){   
             n   =   ___(4)___;   
             arr[index]   =   ___(5)___;   

             index++;   
         }   
  

         linkTheLights(___(6a)___,   ___(6b)___,   ___(6c)___);   
  

     }   
  

  

      public     static     void     linkTheLights (PartyLight   curr,    int    index,    int []   arr){   

          if (_______){   //#1   curr   ==   null   
              return ;   
         }   

         arr[index]   =   ____________;   //#2   curr.brightness   
         index++;   
  

         PartyLight   n   =   curr;   
  

          while (_________){   //#3   n.down   !=   null   

             n   =   _____;   //#4   n.down   
             arr[index]   =   _________;   //#5   n.brightness   

             index++;   
         }   
  

         linkTheLights(_______________);   
         //   #6a   curr.right,   #6b   index,   #6c   arr   
     }   
  



  

Problem   2   -   2D   arrays   

Version   2:   Schedule   Filler   
4b:   Michelle   is   trying   to   set   up   her   schedule   for   next   semester.   She   is   representing   her   schedule   
as   a   2D   array   of   integers,   with   each   row   representing   a   day.   Each   int   in   a   row   represents   an  
hour:   0   if   she   has   no   class   then   or   a   positive   course   number   if   she   has   class.   However,   when   
she   tried   to   download   her   schedule,   it   only   included   the   beginning   and   end   of   each   class!   Help   
Michelle   write   a   function   to   fill   in   the   gaps   in   her   schedule   with   the   proper   course   numbers.   
  

The   input   comes   in   the   following   format:     
  

int[][]   schedule   =   {  
{0,   1,   0,   1,   0},   
{0,   14,    0,    0,   0,   0,   14},   
{0,   0,   1,   0,   0,   1},   
{0,   0,   3,   0}   
{0,   0,   44,   0,   44}   

}   
  

Each   row   in   our   schedule   contains   either   1   positive   integer   or   2   positive   identical   integers   
representing   courses.    She   only   has   one   class   in   a   day.   If   there   is   only   one   integer   in   the   row,  
we   do   not   have   to   change   anything.   If   there   are   2   integers   however,   then   we   have   to   fill   in   the   
space   between   the   2   with   the   same   integer   value.   Thus,   the   output   looks   like   this:   
  

int[][]   schedule   =   {  
{0,   1,   1,   1,   0},   
{0,   14,    14,    14,   14,   14,   14},   
{0,   0,   1,1,   1,   1},   
{0,   0,   3,   0}   
{0,   0,   44,   44,   44}   

}   
  

Notice   that   the   rows   are   not   of   the   same   length:   the   input   may   be   a   ragged   matrix.   Fill   in   the   
blanks   of   the   following   function:   
  
  

public     static     void     scheduleFiller ( int [][]   schedule)   {   

for    ( int    row   =    0 ;   row   <   schedule.length;   row++)   {   

int    numCounter   =    0 ;   

int    class   =    0 ;   
for    ( int    col   =    0 ;   _____;   col++)   {   

if    (schedule[row][col]   >   ___)   {   



  

  
  
  

Long   Coding   

Problem   2   -   Feeding   Time   
  

5b:   During   quarantine,   Gian   adopted   dozens   of   cats   to   keep   him   company.   He   has   to   feed   these   
cats   2   servings   of   food   every   night.   He   has   both   salmon   and   tuna   food   at   his   disposal.   To   
prevent   a   feeding   frenzy,   Gian   has   trained   his   cats   to   line   up   in   two   queues,   one   for   each   type   of   
food,   each   modeled   as   a   List.   
  

Each   Cat   must   receive   2   servings   of   food   -    this   can   be   both   salmon,   both   tuna   or   1   salmon   +   
1   tuna   (the   fish   doesn’t   matter   as   long   as   they   get   2   servings).   With   both   queues,   Gian   gives   out  
only   1   serving   at   a   time.   At   a   given   point   of   time,   a   Cat   can   be   in   both   queues    but   cannot   
appear   multiple   times   in   the   same   queue .    And   at   no   point   should   a   Cat   who   has   already   
received   2   servings   be   in   a   queue.     
  

Here   are   the   List   interface   methods   you   may   use   for   a   List   where   Cat   is   the   object   type   the   List   
is   storing.   We've   covered   these   in   class,   so   it   is   expected   you   know   what   they   do.   You   don’t   
need   to   worry   about   import   statements.   

numCounter++;   
class   =   schedule[row][col];   

}   

}   

if    (________)   {   
continue ;   

}   

boolean    inClass   =    false ;   

for    ( int    col   =    0 ;   col   <   schedule[row].length;   col++)   {   
if    (______   &&   !inClass)   {   

inClass   =    true ;   

}    else     if    (schedule[row][col]   ==    0    &&   inClass)   {   

__________   =   class;   
}    else     if     ____________    {   

break ;   

}   

}   
}   

}   



  

  
  

We   have   also   given   you   the   Cat   API   below.   You   will   find   the   functions   in   this   class   helpful.   

  
  

boolean     add (Cat   c);   
void     add ( int    index,   Cat   c);     

boolean     remove (Cat   c);     

boolean     contains (Cat   c);     

boolean     isEmpty ();   
Cat    get ( int    index);   

int     size ();   

Cat   {   

  
     /***   

     *   constructor   which   takes   in   an   animal   ID   number   and   
     *   initializes   their   servings   of   food   to   be   0   

     **/   
    Cat(int   id);   

  
    /***   

     *   method   which   increases   the   number   of   servings   
     *   a   Cat   has   received   

     **/   

     void   feed();   
  

    /***   
     *   getter   method   for   number   of   servings     

     *   a   Cat   has   received   
     **/   

    int   getNumServings();   
  

    /***   
     *   determines   if   two   Cat   objects   are   equal   

     *   (every   Cat   has   a   unique   animal   ID   identifier)   
     **/   

    boolean   equals(Object   o);   

}   



  

Before    implementing   the   FeedingQueues   class,   we   will   write   a   few   test   cases.   We   highly   
recommend   you   paste   the   following   code   into   your   Codio   environment,   and   then   copy   and   paste   
the   code   for   both   classes   in   the   essay   textbox   following   this   question.   
  
  

  
Testing   
The   fields   in   FeedingQueues   have   been   made   public   for   testing   convenience.   You   do   NOT   need   
to   test   for    unintended    side   effects,   just   what   is   specified   in   the   function   headers.   A   test   for   the  
constructor   has   been   completed   for   you   as   an   example.   Please   write   tests   for   the   following   
cases   and   name   them   appropriately:  
  

● A   test   for   joinSalmon()   where   the   input   Cat   is   already   in   the   salmon   queue  
● A   test   for   joinSalmon()   where   the   input   Cat   is   not   already   in   the   salmon   queue   and   has   

received   fewer   than   2   servings   
● A   test   for   feedSalmon()   where   the   Cat   at   the   head   of   the   queue   should   be   receiving   their   

second   serving   
  

  
  

import    java.util.*;   

import     static    org.junit.Assert.*;   
import    org.junit.*;   

  

public     class     FeedingQueuesTest    {   

  
      @Test   

      public     void     constructorTest ()   {   

         FeedingQueues   q   =    new    FeedingQueues();   

         assertTrue(q.salmon.isEmpty());   
         assertTrue(q.tuna.isEmpty());   

         assertEquals( 0 ,   q.totalFed);   

     }   

  
  

  

}   

  



  

Implementation   
Once   you   have   completed   your   tests,   implement   the   FeedingQueues   class   as   described.   (Note:   
we   will   not   ask   you   to   implement   joinTuna()   and   feedTuna()   as   they   are   symmetric   to   the   salmon   
functions).   
  

import    java.util.*;   
  

public     class     FeedingQueues    {   

      public     int    totalFed;    //   total   number   of   cats   fed   

      public    List   salmon;    //   the   salmon   queue   
      public    List   tuna;    //   the   Tuna   queue   

    

      /*   Both   Lists   should   be   initially   empty   and   the   total   number   of   cats   

fed   should   be   0.     
     */   

      public     FeedingQueues ()   {   

          //TODO   

     }   
    

      /*   Add   the   Cat   c   to   the   end   of   the   salmon   queue.   However,   you   must   

throw   an   IllegalArgumentException   with   the   relevant   error   messages   if   the   

Cat   c   has   already   received   2   servings   of   food   or   if   the   Cat   c   is   already   in   
the   salmon   queue.   You   can   assume   that   Cat   c   is   not   null.   

     */   

      public     void     joinSalmon (Cat   c)   {   

          //TODO   
     }   

    

/*   

You   should   remove   the   Cat   at   the   front   of   the   salmon   queue   (which   is   index   
0)   &   "feed"   them   (see   the   feed()   function   in   the   Cat   class).   After   getting   

fed,   if   that   Cat   has   already   received   2   servings,   remove   them   from   the   Tuna   

queue   as   well   (if   they   are   in   it)   and   update   the   total   number   of   cats   fed.   

If   that   Cat   still   hasn't   received   the   2   servings,   you   should   add   them   back   
to   the   end   of   the   salmon   queue.   If   there   is   no   one   in   the   queue,   you   should   

do   nothing.     

*/   

      public     void     feedSalmon()    {   
          //TODO   

     }   

}   

  



  

  

  

  


