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True/False

1a. You cannot overload constructors in Java. (False)

1b. The following code prints "Shivin" : (False)

public class Student { 
    private String name; 
    public Student(String name) { 
        name = name; 
    } 

    public static void main(String[] args) { 
        Student shivin = new Student(“Shivin”); 
        System.out.println(shivin.name); 
    } 
}

1c. The following code prints a memory address: (False)

public class Student { 
    private String name; 
    public Student(String name) { 
        name = name; 
    } 



    public String toString() { 
        return name; 
    } 
    public static void main(String[] args) { 
        Student shivin = new Student(“Shivin”); 
        System.out.println(shivin); 
    } 
}

1d. The following code compiles: (True)

public class Student { 
    private String name; 
    private Student[] friends; 
     
    public Student(String student) { 
        name = student; 
        friends[0] = this; 
    } 
}

1e. The following code correctly removes the first Node in a Linked List: (False)

public void removeFirstNode() { 
    headNode.next = headNode; 
}

1f. The following code snippet adds a node after the first node: (False)

public void mystery(int value) {
    Node newNode = new Node(value); 
    newNode.next = head; 
    head = newNode; 
}

1g. This code snippet prints "j" : (False)

LinkedList sandwich = new LinkedList ();  
sandwich.append("j");  
sandwich.append("pb");  
sandwich.insert(1, "j");  
sandwich.insert(1, "pb"); 
sandwich.remove(1);  
System.out.print(test.get(2));

1h. ArrayLists and LinkedLists are dynamically sized. (True)

1i. The above template for the list Gifts correctly implements the GiftList interface. (False)

public interface GiftList { 
    public void add(Gift a); 
    public void gift(Gift b); 
} 

public class Gifts implements GiftList { 
    public void addGift(Gift a) { 
        // *code to add a present to the list* 
    } 
    public void giveGift(Gift b) { 
        // *code to gift a present from the list* 
    } 
}



1j. You cannot add an object to a list at a position greater than the size of the list. (True)

1k. The below tests display the same results: (True)

public void testIsMammal() { 
    String animal = “cat”; 
    boolean expected = true; 
    boolean actual = isMammal(animal); 
    assertEquals(expected, actual);  
} 

public void testIsMammal() { 
    Boolean actual = isMammal(“cat”); 
    assertTrue(actual);  
} 

1l. You write a test case for a function called countAttendance. The test case fails. True or false: there must be a bug in

countAttendance. (False)

1m. If an IllegalArgumentException  is thrown, this test under this header would pass. (True)

@Test (expected = IllegalArgumentException.class)

1n. This is a file called Buzz.java .

public class Buzz { 
    private int fizz; 
    public Buzz() { 
        fizz = int (Math.random() * 10); 
    } 
}

The following lines will cause a compilation issue when written in a separate class TestBuzz.java . (True)

Buzz b = new Buzz(); 
System.out.println(b.fizz);

1o. This is a file called Buzz.java .

public class Buzz { 
    private int fizz; 
    public Buzz() { 
        fizz = int (Math.random() * 10); 
    } 
}

The following lines will cause a compilation issue when written in a separate class TestBuzz.java . (False)

Buzz b = new Buzz(); 
System.out.println(b);

N.B. 1n and 1o are presented as they appeared in the exam, including a typo in Buzz.java. The typo does not change the answer of

the question, as the lines in question from TestBuzz.java are written as intended both times. In the case of 1n, accessing b.fizz

would be a compiler error. For 1o, neither line from TestBuzz.java would cause an error.

1p. If a.equals(b)  is true , then a == b  is true  always. (False)

1q. If a == b  is true , then a.equals(b)  is true  always. (True)

1r. If a class Novel  has a method public static void printSummary() , and if book  is an instance of class Novel , then calling
book.printSummary()  will cause an error. (False)

1s. If TV  is an interface, the following code will compile: TV tv = new TV(); (False)

1t. An interface must be implemented by some class to compile. (False)



1u. If Grape  & Blueberry  implement a Fruit  interface, we can do the following: (True)

Fruit g = new Grape(); 
Fruit b = new Blueberry(); 
Fruit[] fruits = {g, b};

Short Fill in the Blank

2a. A static field is associated with the class rather than any object. That means that there is only one instance of that field in

memory.

2b. If the visibility modifier of a field is private, then accessing its value outside of its class definition requires the use of a getter.

2c. The constructor is a special method of a class that creates a new object from that class. It is easy to identify because it shares

a name with the class itself.

2d. Math.random() and PennDraw.advance() are static functions, which explains why each function can be invoked without

creating an instance of their respective classes.

Other reasonable answers were accepted for 2d.

Fill in the Blank Functions

3a:

The TAs are throwing a holiday party and are stringing up lights to celebrate. As they removed each bulb from the box, they gave it a

random brightness value. They then connected the lights randomly to each other, either on the bottom of or to the right of each

previous light. They need your help extending the chain of lights by providing an array that lists the lightsʼ brightness value from left to

right, first going down as far as possible for each bulb. For example, you should return [10, 15, 16, 17, 25, 1, 2, 0, 7]  from the

diagram below.

Assume that the function is initially called with linkTheLights(head, 0, arr);  Where head  is the top-left node and arr  is an

integer array with size of the number of lights. Also assume that only bulbs in the top row (10, 15, 1, and 0) can point to another bulb to

its right. For example, bulb 16 would never be able to point to a bulb to its right. Do not worry about the syntax of the PartyLight  class

(i.e. public static class PartyLight ). Even though you should not worry about this syntax, please do not change it for compilation
purposes.

public static class PartyLight {
    PartyLight right; //pointer to right PartyLight 
    PartyLight down; //pointer to down partyLight 
    int brightness; //value of light’s brightness 

    //constructor with right and down pointers + brightness parameter 
    PartyLight(PartyLight r, PartyLight d, int v){ 
        this.right = r; 
        this.down = d; 
        this.brightness = v; 
    } 
    //constructor with just brightness parameter 
    PartyLight(int v) { 
        this.brightness = v; 
    } 
}

public static void linkTheLights(PartyLight curr, int index, int[] arr){ 
    if(___(1)___){ 
        return; 
    } 
    arr[index] = ___(2)___; 



    index++; 

    PartyLight n = curr; 

    while(___(3)___){ 
        n = ___(4)___; 
        arr[index] = ___(5)___; 
        index++;
    } 

    linkTheLights(___(6a)___, ___(6b)___, ___(6c)___); 

} 

Solutions:

�. curr == null

�. curr.brightness

�. n.down != null

�. n.down

�. n.brightness

�. a: curr.right , b: index , c: arr

On Gradescope, these answers appear in the following order to account for a scrambled output from Canvas: 5, 1, 2, 3, 4, 6c, 6a,

6b. We have accounted for this in grading.

3b:

3b: Michael, the president of UPenn Mathletes, is playing a game with his club. In order to play the game, each mathlete lines up in

such a way that there is either a person to their right, or a person down below them. For the sake of this game, every person is

identified by their favorite number. The mathletes are great at math, but need your help with a coding problem. They would like to write

a function that takes in an array and populates it with the mathletesʼ favorite numbers from left to right, first going down as far as

possible for each mathlete. For example, you should return [10, 15, 16, 17, 25, 1, 2, 0, 7]  from the diagram below.

Assume that the function is initially called with findFavNumbers(head, 0, arr);  Where head  is the top-left mathlete and arr  is an

integer array with size of the number of mathletes playing the game. Also assume that only mathletes in the top row (10, 15, 1, and 0)

can point to another mathlete to their right. For example, mathlete 16 would never be able to point to a mathlete to their right. Do not

worry about the syntax of the Mathlete  class (i.e. public static class Mathlete ). Even though you should not worry about this
syntax, please do not change it for compilation purposes.

public static class Mathlete { 
    Mathlete right; //pointer to right Mathlete 
    Mathlete down; //pointer to down Mathlete 
    int favNumber; //value of Mathlete’s favorite number 

    //constructor with right and down pointers + value of favNumber parameter 
    Mathlete(Mathlete r, Mathlete d, int v){ 
        this.right = r; 
        this.down = d; 
        this.favNumber = v; 
    } 
     
    //constructor with just value parameter 
    Mathlete(int v) { 
        this.favNumber = v; 
    } 
}



public static void findFavNumbers(Mathlete curr, int index, int[] arr){ 
    if(___1____){ 
        return; 
    } 
    arr[index] = _______2_____; 
    index++; 

    Mathlete n = curr; 

    while(_____3____){ 
        n = ___4__; 
        arr[index] = _____5____;
        index++;
    } 

    findFavNumbers(__6a__, __6b__, __6c__); 
} 

Solutions:

�. curr == null

�. curr.favNumber

�. n.down != null

�. n.down

�. n.favNumber

�. a: curr.right , b: index , c: arr

On Gradescope, these answers appear in the following order to account for a scrambled output from Canvas: 1, 2, 3, 4, 5, 6a, 6c,

6b. We have accounted for this in grading.

3c:

When not TAing CIS 110, Jules likes to spend her free time searching for buried treasure. In Denver, she came across a huge field with

treasure everywhere! However, she noticed that the treasure chests were arranged in such a way that for every chest, there is either a

chest to the right, or a chest down below it. On top of every chest is a number etched into the wood that denotes how many jewels

Jules will find in the chest. Jules would like to write a function that takes in an array and populates it with the number of jewels in the

chests from left to right, first going down as far as possible for each chest. For example, you should return [10, 15, 16, 17, 25, 1,
2, 0, 7]  from the diagram below.

Assume that the function is initially called with treasureHunt(head, 0, arr);  Where head  is the top-left treasure chest and arr  is

an integer array with size of the number of treasure chests on the field. Also assume that only chests in the top row (10, 15, 1, and 0)

can point to another chest to its right. For example, chest 16 would never be able to point to a chest to its right. Do not worry about the

syntax of the TreasureChest  class (i.e. public static class TreasureChest ). Even though you should not worry about this syntax,
please do not change it for compilation purposes.

public static class TreasureChest { 
    TreasureChest right; //pointer to right treasure chest 
    TreasureChest down; //pointer to down treasure chest 
    int jewels; //value of jewels in treasure chest 

    //constructor with right and down pointers + jewel value 
    TreasureChest(TreasureChest r, TreasureChest d, int v){ 
        this.right = r; 
        this.down = d; 
        this.jewels = v; 
    } 

    //constructor with just jewel value parameter 
    TreasureChest(int v) { 



        this.jewels = v; 
    } 
}

public static void treasureHunt(TreasureChest curr, int index, int[] arr){ 
    if(____1___){ 
        return; 
    } 
    arr[index] = ______2______; 
    index++; 

    TreasureChest n = curr; 

    while(_____3____){ 
        n = __4___; 
        arr[index] = ______5___;
        index++;
    } 

    treasureHunt(__6a__, __6b__, __6c__); 
} 

Solutions:

�. curr == null

�. curr.jewels

�. n.down != null

�. n.down

�. n.jewels

�. a: curr.right , b: index , c: arr

4a:

Rasterization is a technique in computer graphics used to color in polygons. Nick would love to build his own rasterizer that takes in a

2D int[][]  array representing a polygon, and modify the input array so that the polygon is fully colored in. The input comes in the

following format:

int[][] polygon = { 
    {0, 1, 0, 1, 0}, 
    {0, 14,  0,  0, 0, 0, 14}, 
    {0, 0, 1, 0, 0, 1}, 
    {0, 0, 3, 0}
    {0, 0, 44, 0, 44} 
}

Each row in our polygon contains either 1 positive integer or 2 positive identical integers representing colors. There is only one color in

a row. If there is only one integer in the row, we do not have to change anything. If there are 2 integers however, then we have to fill in

the space between the 2 with the same integer value. Thus, the output looks like this:

int[][] polygon = { 
    {0, 1, 1, 1, 0}, 
    {0, 14,  14,  14, 14, 14, 14}, 
    {0, 0, 1,1, 1, 1}, 
    {0, 0, 3, 0}
    {0, 0, 44, 44, 44} 
}

Notice that the rows are not of the same length: the input may be a ragged matrix. Fill in the blanks of the following function:



public static void rasterizer(int[][] polygon) {
 for (int row = 0; row < polygon.length; row++) { 
  int numCounter = 0; 
  int color = 0; 
  for (int col = 0; __1___; col++) { 
   if (polygon[row][col] > _2__) { 
    numCounter++; 
    color = polygon[row][col]; 
   } 
  } 
  if (____3____) {
   continue; 
  } 
  boolean colorIn = false; 
  for (int col = 0; col < polygon[row].length; col++) { 
   if (__4____ && !colorIn) { 
    colorIn = true; 
   } else if (polygon[row][col] == 0 && colorIn) { 
    ____5______ = color; 
   } else if _____6_______ { 
    break; 
   } 
  } 
 } 
}

Solution:

�. col < polygon[row].length

�. 0

�. numCounter < 2

�. polygon[row][col] > 0  (also, != 0  works too).

�. polygon[row][col]

�. polygon[row][col] > 0 && colorIn

4b:

Michelle is trying to set up her schedule for next semester. She is representing her schedule as a 2D array of integers, with each row

representing a day. Each int  in a row represents an hour: 0 if she has no class then or a positive course number if she has class.

However, when she tried to download her schedule, it only included the beginning and end of each class! Help Michelle write a function

to fill in the gaps in her schedule with the proper course numbers.

The input comes in the following format:

int[][] schedule = { 
    {0, 1, 0, 1, 0}, 
    {0, 14,  0,  0, 0, 0, 14}, 
    {0, 0, 1, 0, 0, 1}, 
    {0, 0, 3, 0}
    {0, 0, 44, 0, 44} 
}

Each row in our schedule contains either 1 positive integer or 2 positive identical integers representing courses. She only has one class

in a day. If there is only one integer in the row, we do not have to change anything. If there are 2 integers however, then we have to fill in

the space between the 2 with the same integer value. Thus, the output looks like this:

int[][] schedule = { 
    {0, 1, 1, 1, 0}, 
    {0, 14,  14,  14, 14, 14, 14}, 



    {0, 0, 1,1, 1, 1}, 
    {0, 0, 3, 0}
    {0, 0, 44, 44, 44} 
}

Notice that the rows are not of the same length: the input may be a ragged matrix. Fill in the blanks of the following function:

public static void scheduleFiller(int[][] schedule) { 
 for (int row = 0; row < schedule.length; row++) { 
  int numCounter = 0; 
  int class = 0; 
  for (int col = 0; __1___; col++) { 
   if (schedule[row][col] > _2__) { 
    numCounter++; 
    class = schedule[row][col]; 
   } 
  } 
  if (____3____) {
   continue; 
  } 
  boolean inClass = false; 
  for (int col = 0; col < schedule[row].length; col++) { 
   if (___4___ && !inClass) { 
    inClass = true; 
   } else if (schedule[row][col] == 0 && inClass) { 
    ____5______ = class; 
   } else if _____6_______ { 
    break; 
   } 
  } 
 } 
}

Solution:

�. col < schedule[row].length

�. 0

�. numCounter < 2

�. schedule[row][col] > 0  (also, != 0  works too).

�. schedule[row][col]

�. schedule[row][col] > 0 && inClass

4c:

4c: Liam is trying to arrange a piece of music for an a cappella performance. The song he is working on is represented as a 2D array of

integers, with each row representing a different vocalist s̓ part. Each int  in a row represents a beat: a rest (0) if the vocalist does not

sing at that beat or a note (positive number) if the vocalist sings at that beat. However, Liam wants the song to be smoother, so he

wants to fill in the gaps between notes if they are the same. Help him write a function to accomplish this!

The input comes in the following format:

int[][] song = {
    {0, 1, 0, 1, 0}, 
    {0, 14,  0,  0, 0, 0, 14}, 
    {0, 0, 1, 0, 0, 1}, 
    {0, 0, 3, 0}
    {0, 0, 44, 0, 44} 
}



Each row in our song contains either 1 positive integer or 2 positive identical integers representing notes. There is only one note in a

row. If there is only one integer in the row, we do not have to change anything. If there are 2 integers however, then we have to fill in the

space between the 2 with the same integer value. Thus, the output looks like this:

int[][] song = {
    {0, 1, 1, 1, 0}, 
    {0, 14,  14,  14, 14, 14, 14}, 
    {0, 0, 1, 1, 1, 1}, 
    {0, 0, 3, 0}
    {0, 0, 44, 44, 44} 
}

Notice that the rows are not of the same length: the input may be a ragged matrix. Fill in the blanks of the following function:

public static void songSmoother(int[][] song) { 
 for (int row = 0; row < song.length; row++) { 
  int numCounter = 0; 
  int note = 0; 
  for (int col = 0; __1___; col++) { 
   if (song[row][col] > _2__) { 
    numCounter++; 
    note = song[row][col]; 
   } 
  } 
  if (____3____) {
   continue; 
  } 
  boolean betweenNotes = false; 
  for (int col = 0; col < song[row].length; col++) { 
   if (___4___ && !betweenNotes) { 
    betweenNotes = true; 
   } else if (song[row][col] == 0 && betweenNotes) { 
    ___5_______ = note; 
   } else if _____6_______ { 
    break; 
   } 
  } 
 } 
}

Solution:

�. col < song[row].length

�. 0

�. numCounter < 2

�. song[row][col] > 0  (also, != 0  works too).

�. song[row][col]

�. song[row][col] > 0 && betweenNotes

Long Coding

5a: Vaccination for the Nation

Pfizer & Moderna have both developed COVID-19 vaccines that are ready for distribution. Due to the lack of coordination, both

companies are maintaining separate queues that are both modelled as List.



Each person must receive 2 shots of a COVID-19 vaccine - this can be both Moderna, both Pfizer or 1 Moderna + 1 Pfizer (company

doesnʼt matter as long as they get 2 shots of a vaccine). Both companies administer only 1 shot at a time. At a given point of time, a

Person can be in both queues but cannot appear multiple times in the same queue. And at no point should a Person who has

already received 2 shots be in a queue.

Here are the List  interface methods you may use for a List  where Person  is the object type the List  is storing. We've covered

these in class, so it is expected you know what they do. You donʼt need to worry about import statements.

boolean add(Person p); 
void add(int index, Person p); 
boolean remove(Person p);  
boolean contains(Person p);  
boolean isEmpty(); 
Person get(int index); 
int size();

We have also given you the Person API below. You will find the functions in this class helpful.

Before implementing the VaccineQueues  class, we will write a few test cases. We highly recommend you paste the following code into

your Codio environment, and then copy and paste the code for both classes in the essay textbox following this question.

Testing

The fields in VaccineQueues  have been made public for testing convenience. You do NOT need to test for unintended side effects, just

what is specified in the function headers. A test for the constructor has been completed for you as an example. Please write tests for

the following cases and name them appropriately:

A test for joinPfizer()  where the input Person  is already in the Pfizer queue

A test for joinPfizer()  where the input Person  is not already in the Pfizer queue and has received fewer than 2 shots

A test for pfizerVaccinate()  where the Person  at the head of the queue should be receiving their second shot

import java.util.*; 
import static org.junit.Assert.*; 
import org.junit.*; 

public class VaccineQueuesTest {

    private Person obj; 

    // note - not necessary 
    @Before 
    public void setup() { 
        this.queues = new VaccineQueues(); 
        this.obj = new Person(1); 
    } 

    @Test(expected=IllegalArgumentException.class) 
    public void testOne() { 
        queues.pfizer.add(obj); 
        queues.joinPfizer(obj); 
    } 

    @Test 

Person { 
    Person(int ssn); //constructor which takes in a social security number and initializes their number of shots to be
    void vaccinate(); //method which increases the number of shots a person has received 
    int getNumShots();//getter method for number of shots a person has received 
    boolean equals(Object o); //determines if two person objects are equal (every person has a unique ssn identifier) 
}



    public void testTwo() { 
        queues.joinPfizer(obj); 
        assertEquals(0, obj.getNumShots()); 
        assertTrue(queues.pfizer.contains(obj));
        assertFalse(queues.moderna.contains(obj)); 
    } 

    @Test 
    public void testThree() { 
        obj.vaccinate(); 
        queues.joinPfizer(obj); 
        queues.pfizerVaccinate(); 
        assertFalse(queues.pfizer.contains(obj)); 
        assertFalse(queues.moderna.contains(obj)); 
        assertEquals(1, queues.totalVaccinated);
        assertEquals(2, obj.getNumShots()); 
    } 

}

Implementation

Once you have completed your tests, implement the VaccineQueues class as described. (Note: we will not ask you to implement

joinModerna() and modernaVaccinate() as they are symmetric to the Pfizer functions.)

import java.util.*; 

public class VaccineQueues { 
    public int totalVaccinated; // total number of people vaccinated 
    public List<Person> pfizer; // the Pfizer queue 
    public List<Person> moderna; // the Moderna queue 
     
    public VaccineQueues() { 
        this.totalVaccinated = 0; 
        this.pfizer = new LinkedList<>();  
        this.moderna = new LinkedList<>();  
    } 
     
    public void joinPfizer(Person p) { 
        boolean vaccinatedTwice = p.getNumShots() >= 2; 
        boolean alreadyPresent = this.pfizer.contains(p); 
        if (vaccinatedTwice || alreadyPresent) {
            throw new IllegalArgumentException("wrong"); 
        } 
        this.pfizer.add(p); 
    } 
  
    public void pfizerVaccinate() { 
        Person frontObj = this.pfizer.get(0); 
        this.pfizer.remove(frontObj); 
        frontObj.vaccinate(); 

        if (frontObj.getNumShots() < 2) { 
            this.pfizer.add(frontObj); 
        } else {
            this.moderna.remove(frontObj); 
            this.totalVaccinated++; 
        } 
    } 
}

5b: Feeding Time



During quarantine, Gian adopted dozens of cats to keep him company. He has to feed these cats 2 servings of food every night. He has

both salmon and tuna food at his disposal. To prevent a feeding frenzy, Gian has trained his cats to line up in two queues, one for each

type of food, each modeled as a List .

Each Cat  must receive 2 servings of food - this can be both salmon, both tuna or 1 salmon + 1 tuna (the fish doesnʼt matter as long

as they get 2 servings). With both queues, Gian gives out only 1 serving at a time. At a given point of time, a Cat can be in both queues

but cannot appear multiple times in the same queue. And at no point should a Cat who has already received 2 servings be in a

queue.

Here are the List  interface methods you may use for a List  where Cat  is the object type the List  is storing. We've covered these

in class, so it is expected you know what they do. You donʼt need to worry about import statements.

boolean add(Cat c); 
void add(int index, Cat c);  
boolean remove(Cat c);  
boolean contains(Cat c);  
boolean isEmpty(); 
Cat get(int index); 
int size();

We have also given you the Cat API below. You will find the functions in this class helpful.

Cat { 

    /*** 
    * constructor which takes in an animal ID number and 
    * initializes their servings of food to be 0 
    **/ 
   Cat(int id); 

   /*** 
    * method which increases the number of servings 
    * a Cat has received 
    **/ 
    void feed();

   /*** 
    * getter method for number of servings  
    * a Cat has received 
    **/ 
   int getNumServings(); 

   /*** 
    * determines if two Cat objects are equal 
    * (every Cat has a unique animal ID identifier) 
    **/ 
   boolean equals(Object o); 
} 

Before implementing the FeedingQueues  class, we will write a few test cases. We highly recommend you paste the following code into

your Codio environment, and then copy and paste the code for both classes in the essay textbox following this question.

Testing

The fields in FeedingQueues  have been made public for testing convenience. You do NOT need to test for unintended side effects, just

what is specified in the function headers. A test for the constructor has been completed for you as an example. Please write tests for

the following cases and name them appropriately:

A test for joinSalmon()  where the input Cat  is already in the Pfizer queue

A test for joinSalmon()  where the input Cat  is not already in the Pfizer queue and has received fewer than 2 shots



A test for feedSalmon()  where the Cat  at the head of the queue should be receiving their second shot

import java.util.*; 
import static org.junit.Assert.*; 
import org.junit.*; 

public class FeedingQueuesTest {

    private Cat obj; 

    // note - not necessary 
    @Before 
    public void setup() { 
        this.queues = new FeedingQueues(); 
        this.obj = new Cat(1); 
    } 

    @Test(expected=IllegalArgumentException.class) 
    public void testOne() { 
        queues.salmon.add(obj); 
        queues.joinSalmon(obj); 
    } 

    @Test 
    public void testTwo() { 
        queues.joinSalmon(obj); 
        assertEquals(0, obj.getNumServings()); 
        assertTrue(queues.salmon.contains(obj));
        assertFalse(queues.tuna.contains(obj)); 
    } 

    @Test 
    public void testThree() { 
        obj.feed(); 
        queues.joinSalmon(obj); 
        queues.feedSalmon(); 
        assertFalse(queues.salmon.contains(obj)); 
        assertFalse(queues.tuna.contains(obj)); 
        assertEquals(1, queues.totalFed); 
        assertEquals(2, obj.getNumServings()); 
    } 

}

Implementation

Once you have completed your tests, implement the FeedingQueues  class as described. (Note: we will not ask you to implement

joinTuna()  and feedTuna()  as they are symmetric to the Salmon functions.)

import java.util.*; 

public class FeedingQueues { 
    public int totalFed; // total number of people vaccinated 
    public List<Cat> salmon; // the Pfizer queue
    public List<Cat> tuna; // the Moderna queue 
     
    public FeedingQueues() { 
        this.totalFed = 0; 
        this.salmon = new LinkedList<>();  
        this.tuna = new LinkedList<>();  
    } 
     

    public void joinSalmon(Cat c) { 
        boolean fedTwice = c.getNumServings() >= 2; 



        boolean alreadyPresent = this.salmon.contains(c); 
        if (fedTwice || alreadyPresent) { 
            throw new IllegalArgumentException("wrong"); 
        } 
        this.salmon.add(c); 
    } 
  
    public void feedSalmon() { 
        Cat frontObj = this.salmon.get(0); 
        this.salmon.remove(frontObj); 
        frontObj.feed(); 

        if (frontObj.getNumServings() < 2) { 
            this.salmon.add(frontObj); 
        } else {
            this.tuna.remove(frontObj); 
            this.totalFed++; 
        } 
    } 
}

5c: Pool Queues

During quarantine, Professor Harry got very good at mobile games. Specifically, he became a master at two variations of pool: eight-

ball and nine-ball. Some of the students heard about Harry s̓ skills and wanted to challenge him. Harry told them to make two pool

queues so he could orderly play all the challengers, one for eight-ball games and one for nine-ball games, with each modeled as a List.

He decided he would play each student exactly twice.

Each Student must play Harry 2 times - this can be both eight-ball games, both nine-ball games, or 1 of each. With both queues,

Professor Harry plays only one game at a time. At a given point of time, a Student can be in both queues but cannot appear multiple

times in the same queue. And at no point should a Student who has already played 2 games be in a queue.

Here are the List  interface methods you may use for a List  where Student  is the object type the List  is storing. We've covered

these in class, so it is expected you know what they do. You donʼt need to worry about import statements.

boolean add(Student s);  
void add(int index, Student s); 
boolean remove(Student s);  
boolean contains(Student s);  
boolean isEmpty(); 
Student get(int index); 
int size();

We have also given you the Student  API below. You will find the functions in this class helpful.

Student { 
    /*** 
     * constructor which takes in an ID number and  
     * initializes their games played to be 0 
     **/ 
    Student(int id); 

    /*** 
     * method which increases the number of 
     * games a Student has played 
     **/ 
    void play();

    /*** 
     * getter method for number of games  
     * a student has played 
     **/ 



    int getNumGamesPlayed(); 

    /*** 
     * determines if two Student objects are equal  
     * (every student has a unique ID number) 
     **/ 
    boolean equals(Object o); 
}

Before implementing the PoolQueues  class, we will write a few test cases. We highly recommend you paste the following code into

your Codio environment, and then copy and past the code for both classes in the essay textbox following this question.

Testing

The fields in PoolQueues  have been made public for testing convenience. You do NOT need to test for unintended side effects, just

what is specified in the function headers. A test for the constructor has been completed for you as an example. Please write tests for

the following cases and name them appropriately:

A test for joinEightBall()  where the input Student  is already in the eight-ball queue

A test for joinEightBall()  where the input Student  is not already in the eight-ball queue and has played fewer than 2 games

A test for playEightBall()  where the Student  at the head of the queue should be playing their second game

import java.util.*; 
import static org.junit.Assert.*; 
import org.junit.*; 

public class PoolQueuesTest { 

    @Test 
    public void constructorTest() { 
        PoolQueues q = new PoolQueues(); 
        assertTrue(q.eightBall.isEmpty()); 
        assertTrue(q.nineBall.isEmpty()); 
        assertEquals(0, q.totalPlayed); 
    } 

    @Test(expected=IllegalArgumentException.class) 
    public void testOne() { 
        queues.eightBall.add(obj); 
        queues.joinEightBall(obj); 
    } 

    @Test 
    public void testTwo() { 
        queues.joinSalmon(obj); 
        assertEquals(0, obj.getNumGamesPlayed()); 
        assertTrue(queues.eightBall.contains(obj)); 
        assertFalse(queues.nineBall.contains(obj)); 
    } 

    @Test 
    public void testThree() { 
        obj.play() = 1; 
        queues.joinEightBall(obj); 
        queues.playEightBall(); 
        assertFalse(queues.eightBall.contains(obj)); 
        assertFalse(queues.nineBall.contains(obj)); 
        assertEquals(1, queues.totalPlayed); 
        assertEquals(2, obj.getNumGamesPlayed()); 
    } 

}



Implementation

Once you have completed your tests, implement the PoolQueues class as described. (Note: we will not ask you to implement

joinNineBall() and playNineBall() as they are symmetric to the eight-ball functions.)

import java.util.*; 

public class PoolQueues { 
    public int totalPlayed; // total number of Students played 
    public List<Student> eightBall; // the eight-ball queue 
    public List<Student> nineBall; // the nine-ball queue 
     
    public PoolQueues() { 
        this.totalPlayed = 0; 
        this.eightBall = new LinkedList<>();  
        this.nineBall = new LinkedList<>(); 
    } 
     
    public void joinEightBall(Student s) { 
        boolean playedTwice = s.getNumGamesPlayed() >= 2; 
        boolean alreadyPresent = this.eightBall.contains(s); 
        if (playedTwice || alreadyPresent) { 
            throw new IllegalArgumentException("wrong"); 
        } 
        this.eightBall.add(s); 
    } 
  
    public void playEightBall() { 
        Student frontObj = this.eightBall.get(0); 
        this.eightBall.remove(frontObj); 
        frontObj.play(); 

        if (frontObj.getNumGamesPlayed() < 2) { 
            this.eightBall.add(frontObj); 
        } else {
            this.nineBall.remove(frontObj); 
            this.totalPlayed++; 
        } 
    } 
}


