
‭Practice Exam 1‬

‭Types‬

‭Choose the type for the variable that would allow the line to compile, or write "compilation error" if‬
‭there is an error in the expression that makes its type undefined.‬

‭Statement‬ ‭Data Type of‬‭x‬
‭or Error Type‬

‭______ x = "apple" + 123;‬ ‭______‬

‭______ x = 7 < 5 and 3 > 2;‬ ‭______‬

‭______ x = true;‬ ‭______‬

‭______ x = "true";‬ ‭______‬

‭______ x = "true && 2 < 4";‬ ‭______‬

‭______ x = true || 3 < 4 && "yes".equals("no");‬ ‭______‬

‭______ x = (int) (4.0 * 5);‬ ‭______‬

‭______ x = new double[10];‬ ‭______‬

‭Values‬

‭Write the value that gets printed, or write "runtime error" if there is an error during the execution of‬
‭these lines of the program.‬

‭String‬‭str1‬‭=‬‭"Hello"‬‭;‬

‭String‬‭str2‬‭=‬‭"World"‬‭;‬

‭System.out.println(str1 +‬‭" "‬‭+ str2);‬

‭ANSWER: ______‬

‭int‬‭[] numbers = {‬‭5‬‭,‬‭10‬‭,‬‭15‬‭,‬‭20‬‭};‬

‭int‬‭result‬‭=‬‭0‬‭;‬

‭for‬‭(‬‭int‬‭i‬‭=‬‭0‬‭; i < numbers.length; i++) {‬

‭result += numbers[i] /‬‭2‬‭;‬

‭}‬

‭System.out.println(result);‬

‭ANSWER: ______‬

‭int‬‭[] numbers = {‬‭5‬‭,‬‭10‬‭,‬‭15‬‭,‬‭20‬‭};‬

‭int‬‭result‬‭=‬‭0‬‭;‬

‭for‬‭(‬‭int‬‭i‬‭=‬‭0‬‭; i < numbers.length; i++) {‬

‭result += numbers[i /‬‭2‬‭];‬

‭}‬

‭System.out.println(result);‬

‭ANSWER: ______‬

‭System.out.println((‬‭char‬‭) (‬‭'A'‬‭+‬‭2‬‭));‬

‭ANSWER: ______‬

‭System.out.println(‬‭"A"‬‭+‬‭2‬‭);‬

‭ANSWER: ______‬

‭double‬‭[] numbers = {‬‭4.1‬‭,‬‭0‬‭, -‬‭13.1‬‭};‬

‭numbers[(‬‭int‬‭) numbers[‬‭2‬‭]] = numbers[‬‭2‬‭];‬

‭System.out.println(numbers[‬‭0‬‭]);‬

‭ANSWER: ______‬

‭Tracing‬

‭Here's a class that features a few functions.‬

‭public‬‭class‬‭TracingExercise‬‭{‬

‭public‬‭static‬‭void‬‭main‬‭(String[] args) {‬

‭System.out.println(‬‭"Starting main"‬‭);‬

‭int‬‭x‬‭=‬‭7‬‭;‬

‭int‬‭y‬‭=‬‭4‬‭;‬

‭int‬‭z‬‭= functionA(x, y);‬

‭System.out.println(‬‭"The final result is: "‬‭+ z);‬

‭}‬

‭public‬‭static‬‭int‬‭functionA‬‭(‬‭int‬‭a,‬‭int‬‭b) {‬

‭System.out.println(‬‭"functionA arguments: a="‬‭+ a +‬‭", b="‬‭+ b);‬

‭int‬‭result1‬‭= a *‬‭2‬‭;‬

‭int‬‭result2‬‭= functionC(result1, b);‬

‭int‬‭finalResult‬‭= functionC(result2,‬‭9‬‭);‬

‭System.out.println(‬‭"functionA returning: "‬‭+ finalResult);‬

‭return‬‭finalResult;‬

‭}‬

‭public‬‭static‬‭int‬‭functionB‬‭(‬‭int‬‭num) {‬

‭System.out.println(‬‭"functionB argument: num="‬‭+ num);‬

‭int‬‭result‬‭= num -‬‭3‬‭;‬

‭System.out.println(‬‭"functionB returning: "‬‭+ result);‬

‭return‬‭result;‬

‭}‬

‭public‬‭static‬‭int‬‭functionC‬‭(‬‭int‬‭x,‬‭int‬‭y) {‬

‭System.out.println(‬‭"functionC arguments: x="‬‭+ x +‬‭", y="‬‭+ y);‬

‭int‬‭t‬‭= x /‬‭2‬‭;‬

‭int‬‭u‬‭= y %‬‭3‬‭;‬

‭int‬‭v‬‭= -‬‭9‬‭;‬

‭if‬‭(u ==‬‭0‬‭) {‬

‭v = functionB(t);‬

‭}‬‭else‬‭{‬

‭v = t + u;‬

‭}‬

‭System.out.println(‬‭"functionC returning: "‬‭+ v);‬

‭return‬‭v;‬

‭}‬

‭}‬

‭When the program is run with‬‭java TracingExercise‬‭,‬‭ten‬‭lines are printed. For each of the‬
‭following lines, fill in the blanks to show what values the variables have when they are printed out.‬
‭Also, mark the order in which they are printed. Some lines are printed more than once, and so there‬
‭are multiple rows in the table for those lines. The order for the first line is marked as‬‭0‬‭for you.‬

‭Printed Line‬ ‭Order‬

‭Starting main‬ ‭0‬

‭functionA arguments: a=___, b=____‬

‭functionA returning: ____‬

‭functionB argument: num=___‬

‭functionB returning: ___‬

‭functionC arguments: x=___, y=___‬

‭functionC returning: ___‬

‭functionC arguments: x=___, y=___‬

‭functionC returning: ___‬

‭The final result is: ______‬

‭Debugging‬

‭Swiper the Fox loves apples. One day, Swiper stumbles upon‬‭n‬‭picnic tables all conveniently in a‬
‭line, all of which have some number of apples on them (so lucky)! Swiper also has an irresistible‬
‭urge to swipe (steal) items, but since he is feeling quite hungry, he decides to eat half the apples at‬
‭each table as well!‬

‭Swiper is also feeling especially mischievous, so along with eating the apples, he is also going to‬
‭reverse the order of the tables.‬

‭For instance, an example of the picnic tables could look as follows where each integer element is the‬
‭number of apples on that table.‬

‭int‬‭[] tables = {‬‭0‬‭,‬‭2‬‭,‬‭4‬‭,‬‭6‬‭,‬‭8‬‭,‬‭10‬‭};‬

‭int‬‭eatenApples‬‭= reverseAndSwipe(tables);‬‭// returns 15 to represent the number‬

‭of apples eaten‬

‭for‬‭(‬‭int‬‭i‬‭=‬‭0‬‭; i < tables.length; i++) {‬

‭System.out.print(tables[i] +‬‭", "‬‭);‬

‭}‬

‭// prints 5, 4, 3, 2, 1, 0,‬

‭Below is the code implementation of Swiper’s behavior. However, there are several‬

‭bugs in the code. Your job is to determine the lines that contain bugs in the‬

‭code, summarize the issue, and provide a fix that should be made to accurately‬

‭reflect Swiper’s actions!‬‭reserveAndSwipe()‬‭should return the number of apples Swiper‬
‭has eaten.‬

‭Note: You may assume there are an even number of apples on each table for the sake of integer‬
‭division.‬

‭1. public static int[] reverseAndSwipe(int[] tables) {‬

‭2. int eaten = tables.length;‬

‭3. for (int i = 0; i <= tables.length; i++) {‬

‭4. int leftTableApples = tables[i];‬

‭5. int rightTableApples = tables[tables.length - i];‬

‭6. eaten += leftTableApples / 2;‬

‭7. if (leftTableApples != rightTableApples) {‬

‭8. eaten += rightTableApples / 2;‬

‭9. tables[i] = rightTableApples / 2;‬

‭10. }‬

‭11.‬

‭12. tables[tables.length - i - 1] = leftTableApples / 2;‬

‭13. }‬

‭14. if (tables.length % 2 == 1) {‬

‭15. eaten += tables[tables.length / 2] / 2;‬

‭16. tables[tables.length / 2] /= 2;‬

‭17. }‬

‭18. eaten;‬

‭19. }‬

‭Line Number‬ ‭Brief Description‬ ‭Fix‬

‭Coding!‬

‭A business' daily sales revenues for a week can be represented as a‬‭double[]‬‭("an array of‬
‭doubles"). The length of the array can vary between‬‭2‬‭and‬‭7‬‭, since the business may not be open‬
‭every day of the week. A sales week is‬‭typical‬‭if the first and last days have the top two highest‬
‭revenues in the week. A sales week is‬‭stable‬‭if there is no day with revenue more than $100 lower‬
‭than the average revenue for the week. (If the average revenue for a week is $840 and there is a‬
‭day with $700 in revenue, the week would not be stable.) Write the following three functions:‬
‭isTypical‬‭,‬‭greatestInstability‬‭, and‬‭isAtypicalOrUnstable‬‭. Note the function headers &‬
‭signatures for each that describe how they should behave: your functions need to return values of‬
‭the correct types to receive credit!‬

‭/*‬

‭* Input: a double[] representing the week's revenue to analyze‬

‭* Output: true if the week is considered "typical"‬

‭* and false otherwise.‬

‭*‬

‭* A week's revenue is "typical" if the first and last reported days‬

‭* have the top two highest revenues in the week.‬

‭*/‬

‭public‬‭static‬‭boolean‬‭isTypical‬‭(‬‭double‬‭[] revenues) {‬

‭}‬

‭/*‬

‭* Input: a double[] representing the week's revenue to analyze‬

‭* Output: the largest difference between any day's revenue and‬

‭* the week's average revenue.‬

‭*‬

‭* For a given week {800, 600, 700, 900, 1000}, the average revenue is $800/day‬

‭* For each day, the difference between revenue and average is:‬

‭* {0, -200,-100, 100, 200}‬

‭* So we would return -200.‬

‭*/‬

‭public‬‭static‬‭double‬‭greatestInstability‬‭(‬‭double‬‭[] revenues) {‬

‭}‬

‭/*‬

‭* Input: a double[] representing the week's revenue to analyze‬

‭* Output: true if the week is not typical or if the if the week has a‬

‭* day with revenue at least $100 lower than the average weekly revenue,‬

‭* or both.‬

‭*‬

‭* Use the previous two functions you wrote to complete this one in **one line‬

‭only!**‬

‭*/‬

‭public‬‭static‬‭boolean‬‭isAtypicalOrUnstable‬‭(‬‭double‬‭[] revenues) {‬

‭}‬

