

CIS 110 — Introduction to Computer Programming

Fall 2017 — Final Midterm

 Name: __

 Recitation Section# : __

 Pennkey (e.g., paulmcb): __

DO NOT WRITE YOUR ID# ABOVE, YOU WILL LOSE A POINT
My signature below certifies that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this examination.

__ __________________________
Signature Date

Instructions:

• Do not open this exam until told by the proctor. You will
have exactly 120 minutes to finish it.

• Make sure your phone is turned OFF (not to vibrate!)
before the exam starts. You will lose 5 points if your cell
phone goes off.

• Food, gum, and drink are strictly forbidden.

• You may not use your phone or open your bag for any
reason, including to retrieve or put away pens or pencils, until
you have left the exam room.

• This exam is closed-book, closed-notes, and closed-
computational devices.

• If you get stuck on a problem, it may be to your benefit to
move on to another question and come back later.

• All code must be written out in proper java format, including
all curly braces and semicolons.

• Do not separate the pages. You may tear off the one scratch
page at the end of the exam. This scratch paper must be turned
in or you lose 2 points per page.

• Turn in all scratch paper to your exam. Do not take any sheets
of paper with you.

• If you require extra paper for scratch work, please use the
backs of the exam pages or the extra pages provided at the end
of the exam. Only answers on the FRONT of pages will be
grading. The back is for scratch work only.

• Use a pencil, or blue or black pen to complete the exam.

• If you have any questions, raise your hand and a proctor will
come to answer them.

• When you turn in your exam, you may be required to show
ID. If you forgot to bring your ID, talk to an exam proctor
immediately.

• We wish you the best of luck.

Scores: [For instructor use only]

Front Page 1 pt

Question 1
 8 pts

Question 2
 6 pts

Question 3
 9 pts

Question 4
 9 pts

Question 5
 10 pts

Question 6
 16 pts

Question 7 6 pts

Question 8 5 pts

Question 9 10 pts

Total:
 80 pts

 CIS 110 – Final Midterm – Fall 2017 Page 1

1.) Starting Slow (8 points)
In the space below, illustrate a mergeSort with the numbers [8, 4, 1, 3, 2, 7, 9, 0] (3 points)

 Splitting

8413 | 2790
84 | 13 | 27 | 90
8 | 4 | 1 | 3 | 2 | 7 | 9 | 0

Merging:
48 | 13 | 27 | 09
1348 | 0279
01234789

Which type of List is faster for each function call on a list variable. You can assume
someElement and otherElement are both of type Element (which can be sorted). Assume the list
is initially unsorted, and has at least 50 elements. (5 points)

Operation ArrayList<Element> LinkedList<Element> They are both
the same

list.add(0, someElement)

 Faster – in a worst case
constant time, while
ArrayList is O(n)

list.remove(0)

 Faster –constant time,
while ArrayList is O(n)

list.get(25)

Faster –constant time,
while LinkedList is O(n)

list.add(otherElement)

 Very slightly faster, since
in a worst case ArrayList
is O(n)

This answer was
accepted

Collections.sort(list)

 They are both
O(logn * n), though
in Java 8
ArrayList is
SLIGHTLY faster.

 CIS 110 – Final Midterm – Fall 2017 Page 2

2) Inheritance (6 points)
Consider the following Color class
public class Color {
 public int red, green, blue; //between 0-255

 public Color (int r, int g, int b) {
 red = r; green = g; blue = b;
 }

 public void brighten() {
 //assume this method works
 }
}

We want a class called GrayscaleColor such that it extends color. A Grayscale color with a gray
value of x would have RGB values of red = x, blue = x, and green = x. Write the constructor for
the class below. You should not need more space than provided. Do NOT do any error checking.
You may not add ANY variables. (2 point)

public class GrayscaleColor extends Color{

 public GrayscaleColor(int x) {

 super(x, x, x);

 }

}
public void darken() {
 //assume this method works
}

}
If the following lines of code were written in order, clearly circle the lines of code that would
produce SYNTAX errors. (4 points) (Answer key has illegals lines red and scratch out)

i) Color red = new Color(255, 0, 0);

ii) Color black = new GrayscaleColor(0);

iii) GrayscaleColor white = new GrayscaleColor(255);

iv) GrayscaleColor gray = new Color (127, 127, 127);

v) red.blue = 127;

vi) Color c = (Color) black;

vii) red.darken();

viii) white.blue = 127;

ix) white.brighten();

 CIS 110 – Final Midterm – Fall 2017 Page 3

3) Comparing Numbers (9 points)

A bank wants to keep track of both its largest debits AND its largest credits. Therefore, it wants
to sort a List<Account> by the absolute value of the balance in DESCENDING order
using the Collections.sort function. You can assume the class Account has a method
getBalance(), that returns either a positive or negative number representing the amount of
money tied to the credit (positive) or debit(negative).

a) (1 point) Given the fill in the blank below, would this be done with a
Comparable<Account> or Comparator<Account> ?

 Comparator<Account>

b) (4 points) Fill in the blanks below for the class you write to use in Collections.sort

public class SortAbsValDescending implements Comparator<Account> {

 public int compare (Account a0, Account a1) {

 return Math.abs(a1.getBalance()) –

 Math.abs(a0.getBalance())

}

}

c) (2 points) How would you use the above class to sort the List<Account> called accounts?

Collections.sort(accounts, new SortAbsValDescending())

d) (2 points) Above, you answered the question about either Comparable or Comparator
(depending on your answer to a). For the one you didn't choose, what is the method declaration
for the one method need to implement the interface if you also applied it to Account (don't write
the method, JUST the method declaration)?

public int compareTo(Account a) {

 CIS 110 – Final Midterm – Fall 2017 Page 4

4) Birthdays (9 points)
A pop-culture obsessed CIS 110 student wanted to keep track of every celebrity's age. To do this, they
wrote a class called Person (since celebrities are people too). The class Person will keep track of
every instance created by adding that instance to a list. This is so when advanceYear() is called,
everyone ages uniformally. However, the student didn't finish because they were too in shock from
learning that James Franco is nearly 40. The student failed to finish the constructor, failed to specify
which variables and methods need to be static, and did not yet write advanceYear(). Answer the
questions on the next page about this code. YOU CANNOT RIP THIS PAGE OFF.

public class Person {

private String name;
private int age;
private int currentYear = 2017;

 public List<Person> people = new ArrayList<Person>();
 /**
 * Constructor
 */
 public Person(String name, int birthYear) {
 this.name = name;
 age = currentYear – birthYear;

people.add(this);
}
/**
 * Standard toString() method
 */
public String toString() {
 return name + " : " + age;
}
/**
 * Returns the oldest person in the list
 */
public Person getOldestCelebrity() {
 int max = 0;
 Person out = null;
 for (Person p : people) {
 if (p.age > max) {
 max = p.age;
 out = p;
 }

}
return out;

}
/**
 * Increase the current year by one, and ages every
 * person created by one year.
 */
public void advanceYear() {

//TODO: Part D
}

}

 CIS 110 – Final Midterm – Fall 2017 Page 5

a) On the previous page, fill in the blank in the constructor that adds the newly created instance to the list
people. (2 points)

b) In the space below, list the VARIABLES (not methods) that should be static for the code to work. (2
points)

 people, currentYear;

c) In the space below, list the METHODS (not variables) that should be static for the code to work. (2
points)

 getOldestCelebrity(), advanceYear();

d) In the space below, write the function advanceYear(). This function should age every person in
people by one year and increase the current year. This function body should be no longer than 4 lines
of code. If it is longer than 4 lines, it will NOT be graded, and you will get zero points. (3 points)

 currentYear++;
 for(Person p: people) {
 p.age++;
 }

 CIS 110 – Final Midterm – Fall 2017 Page 6

5) Breaking the Bank (10 points)
The following class below attempts to simulate a bank account. However, there are a number of
bugs. On the next page are several test cases. Each time a value or function output is inside of
test(), fill in the expected output (based on the method description in the header comment)
and the ACTUAL output (the result of execution the code). If the test fails, explain the bug fix
under fix. If the test does not fail, leave fix blank.

public class BankAccount {
 public double amount; //amount in the bank
 public Account (double startingBalance) {
 amount = startingBalance;

}

/**

 * Returns the current balance of the account.
 */
 public double getBalance() {
 return 5; //this is intentionally wrong, see next page

}

/**
 * Returns whether or not your account is either at zero or
 * "in the red" (that is, you owe the bank money)
 */
public boolean isEmpty() {
 return account < 0;
}
/**
 * Add money to the account.
 */
public void deposit(double amount) {
 amount += amount;
}

/**
 * Withdraw money. If you try to withdraw too much,
 * do not allow the withdrawal, but subtract $10 from the
 * account as an overdraft penalty
 */
public void withdraw(int cash) {
 if (cash < amount) {
 amount -= 10;
 }
 amount -= cash
}

/**
 * Adds 10% interest to the account.
 */
public void addInterest() {
 amount = amount * 0.1;
}

}

 CIS 110 – Final Midterm – Fall 2017 Page 7

Test Case Expected Actual Fix
Account a = new Account (50.0);
test(a.getBalance());

50.0 5 In getBalance(),
change "return 5"
to return
balance.

Account a = new Account(0.0);
test(a.isEmpty());

true

false

Return account <=
0

Account a = new Account(10.0);
a.deposit(20.0);
test(a.amount);

30.0

10.0

Should be:
this.amount +=
amount;

Account a = new Account(15.0);
a.withdraw(10.0);
test(a.amount);

5.0

-5.0

The if statement
should be if
(cash > amount).
Amount -= cash
needs to be
inside of an else
case

Account a = new Account(11.0);
a.withdraw(15.0);
test(a.amount);

1.0

-4.0

The if statement
should be if
(cash > amount)
Amount -= cash
needs to be
inside of an else
case

Account a = new Account(100.0);
a.addInterest();
test(a.amount);

110.0

10.0

Change it to:
amount += amount
* 0.1;

(2 points per row)

 CIS 110 – Final Midterm – Fall 2017 Page 8

6) Tracing A Schedule (16 points)
A new room reservation system for the engineering buildings is being designed. A Reservation
class is being tested within the ReservationSystemDemo class. Using the main function in
ReservationSystemDemo (next page), fill out the table at the bottom of the next page with the
values at each Point (denoted by comments).

public class Reservation {
 private int roomNum;
 private int numPeople;
 private String reserver;
 private int startTime;
 private int endTime;

 public Reservation() {
 this.roomNum = 100;
 this.numPeople = 100;
 }

 public Reservation(int roomNum, int startTime, int endTime) {
 this.roomNum = roomNum;
 this.numPeople = 30;
 this.startTime = startTime;
 this.endTime = endTime;
 }

 public Reservation(int roomNum, int numPeople, String reserver) {
 this.roomNum = roomNum;
 this.numPeople = numPeople;
 this.reserver = reserver;
 this.startTime = 12;
 this.endTime = 12;
 }

 public void addTime(int hours) {
 endTime += hours;
 }

 public boolean changeReserver(String newReserver) {
 if (newReserver != null) {
 this.reserver = newReserver;
 return true;
 }
 return false;
 }

 public String getReserver() {
 return this.reserver;
 }

 public int getEndTime() {
 return this.endTime;
 }
}

 CIS 110 – Final Midterm – Fall 2017 Page 9

public class ReservationSystemDemo {

 public static void main(String[] arr) {
 Reservation a = new Reservation();
 Reservation b = new Reservation(309, 12, 14);
 Reservation c = new Reservation(100, 200, "Jane");

 a.addTime(2);
 // Point A

 b.changeReserver(a.getReserver());
 a = c;
 a.addTime(2);
 // Point B

 if (c.getEndTime() == 12) {
 c = new Reservation();
 } else if (b.getEndTime() == c.getEndTime()) {
 b.addTime(-1);
 }
 // Point C

 a = new Reservation(202, 50, "Will")
 b = a;
 c = b;
 b = new Reservation();
 a.addTime(2);

 //Point D
 }
}

Point a.numPeople a.reserver b.endTime c.endTime

Point A

100 null 14 12

Point B

200 "Jane" 14 14

Point C

200 "Jane" 13 14

Point D

50 "Will" 0 14

(1 point per box)

 CIS 110 – Final Midterm – Fall 2017 Page 10

7) Bit Strings (6 points)

Below is a partially complete function to adds two BitStrings of 8 bits each. For example, the
BitString representing 5 plus the BitString representing 7 should result in the bitString
representing 12.

However, in a misguided attempt to hold the attention of a younger audience, Will randomly
named all variables after social networks. While we deal with explaining to Will that he's old
now, and he needs to accept that, you fill in the blanks below.

You are not allowed to change any variable names, or add any code. You can only fill in the
blanks.

public static String addBitStrings(String twitter,

String facebook) {

//set initial values

String instagram = ""; //output String

int snapchat = 0; //carry bit

for(int pinterest = 7; pinterest >= 0; pinterest--) {
 //character from twitter

int imgur = twitter.charAt(pinterest) – '0';

 //character from facebook

int reddit = facebook.charAt(pinterest) - '0';

//find the sum bit and add it to the string

instagram = ((imgur + reddit + snapchat) % 2) +

 instagram;

 //determine the new carry bit

snapchat = (imgur + reddit + snapchat) / 2;
 }

 return instagram;
}

 CIS 110 – Final Midterm – Fall 2017 Page 11

8) InLinkedListCeption (5 points)

A professor is keeping track of his students grades on a Recursion homework by using a
LinkedList represented with the following Node class.

public class Node {
 public Student s;
 public Node next;
}

This uses the following Student class:

public class Student {
 public String name; //Student's name
 public int score; //score on the recursion Homework
}

The professor wants to know which student did worst on the homework. So he has tasked
you with writing a recursive function to return the name of the student with the lowest
score. Luckily, you understand recursion, so this should be easy. Write a function
getLowestScoreStudent(Node node) that returns the Student object of the student
with the lowest score in either node or in any Node AFTER it. You can assume no two students
have the same score on the homework.

If the first student in the list is called "head", then getLowestScoreStudent(head)
should return the Student with the lowest score in the class.

If you write an iterative solution, instead of a recursive solution, you will get ZERO points
on this question. Don't even think about using the words for, while, etc.

 public Student getLowestScoreStudent(Node node) {

 if (node.next == null) {
 return node.s;
 } else {
 Student currentLowest = getLowestScoreStudent(node.next);
 if (node.s.score < currentLowest.score) {
 return node.s;
 } else {
 return currentLowest;
 }
 }

 CIS 110 – Final Midterm – Fall 2017 Page 12

9) I'll take Merge on Rye, Hold the Sort (10 points)
In this question, you will write a function that combine two SORTED List<Integer> and
output a single SORTED list. You cannot use Collections.sort(), or any sorting algorithm. No
recursion, and no nested loops. You can assume the two lists are already sorted. You can also
assume that if there are duplicates, their order doesn't matter. You do not have to error check if
the lists are sorted OR null, but it is possible either or both lists are empty. This function must
not add or remove elements to the lists a or b, or change those two lists in any way.

public List<Integer> merge(List<Integer> a, List<Integer> b) {

 int aIndex = 0;
 int bIndex = 0;

 List<Integer> output = new ArrayList<Integer>();

 while (aIndex < a.size() && bIndex < b.size()) {
 if a.get(aIndex) < b.get(bIndex) {
 output.add(a.get(aIndex));
 aIndex++;
 } else {
 Output.add(b.get(bIndex));
 bIndex++;
 }
 }

 while (aIndex < a.size()) {
 output.add(a.get(aIndex));
 aIndex++;
 }

while (bIndex < b.size()) {
 output.add(b.get(bIndex));
 bIndex++;
 }

 return output;
}

