
Abstract Data
Types (ADT) /
Interfaces

CIS 1100 Fall 2024 @ University of Pennsylvania

Mid-Semester Feedback

Recitations

Exam Practice

SRS

Schedule

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 1

Barbara Liskov

One of the first women to get a

Ph.D. in Computer Science in the

USA (Stanford 1968)

Turing Award, 2008

Inventor of Abstract Data Types

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 2

Abstract Data Types (ADTs)

As users of an object, we don't need to know how the object was written & implemented

Only the ways to use an abstraction are relevant!

Make a connection: you can use the In class without knowing how it's

implemented, just knowing the list of methods it had available.

An Abstract Data Type defines a class of abstract objects which is completely

characterized by the operations available on those objects.

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 3

ADT in Java: Interfaces

An interface defines an ADT in Java

An interface is a class-like construct that contains only abstract methods

and constants

An abstract method is a method that is not implemented. Only the method

signature is listed

A constant is a variable which value does not change during the execution of

the program. They are declared static and final

Gives a type for an object based on what it does, not on how it was implemented

Describes a contract that classes must satisfy

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 4

Purposes of Interfaces

Abstract Data Types in Object Oriented Design have several purposes, including:

defining contracts for objects

enabling polymorphism (?)

enabling multiple inheritance (???)

The latter two points are very powerful and interesting techniques in programming, but

are a bit beyond what we can cover at this point in the class. We will focus on the

contract aspect of ADTs in CIS 1100.

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 5

Contracts in Specifying Program Requirements

To specify program behavior, we've used a few different techniques in this class:

long writeups on the course website

writing a bunch of TODO comments in a starter file

stubbed out functions with big specifier comments

These have only very weak enforcement mechanisms—it's up to you to check

your compliance

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 6

Interfaces as Contracts

Any class may be explicitly marked as implementing an interface

"signing the contract"

If a class implements an interface, it must provide implementations for all of the

abstract methods in the interface or else the program will not compile.

"enforcing the contract"

Useful on programming teams & in course environments to formally specify and

automatically enforce what a class is supposed to do before you write it.

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 7

Defining an Interface

public interface InterfaceName {
 constant declarations;
 abstract method signatures;
}

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 8

Constant Declarations

Constants are public static final variables that are declared and initialized on the

same line.

public : accessible outside the interface file, which is important for keeping these

values handy

static : belongs to the ADT itself and not any particular instance

final : putting the "constant" in constant—the compiler enforces that the variable's

value cannot change.

public static final double PI = 3.14159265358;
public static final int MAX_SIZE = 1000;

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 9

Abstract Methods

Unimplemented methods that consist only of a signature (name, return type, input

parameter list)

Completely abstract: defines only what the method should do, not how it works

Classes that implement the interface will have methods that implement

these signatures

public double area();
public Point generateMidpoint(Point other);
public BankAccount openSharedAccount(BankAccount other, double split);

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 10

The Shape Interface

public interface Shape {
 public static final double PI = 3.14159;
 public double area();
 public double perimeter();
 public void draw();
}

This interface says:

Any class that calls itself a Shape must implement the methods double area() ,

double perimeter() , and void draw() . The class will also have access to the

variable PI in scope everywhere throughout its definition.

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 11

More Examples

public interface Displaceable {
 public static final double DELTA = 0.00001;
 public boolean equals(Displaceable other);
 public void moveBy(double x, double y);
}

Any class that calls itself a Displaceable must implement the methods

boolean equals(Displaceable other) and void moveBy() . The class will also

have access to the variable DELTA in scope everywhere throughout its definition.

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 12

More Examples

public interface Playable {
 public void play();
 public void stop();
 public void fastForward(double seconds);
 public void rewind(double seconds);
}

Any class that calls itself a Playable must implement the methods void play() ,

void stop() , void fastForward(double seconds) , and void
rewind(double seconds) . The interface does not have any constants defined.

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 13

Implementing an Interface

To write a class MyClass that implements an interface MyInterface , you write:

public class MyClass implements MyInterface {...}

For example, if Circle.java implements the Shape interface:

public class Circle implements Shape {...}

The class implementing the interface must implement all the methods defined in

the interface

The class is a subtype of the interface; the interface is a supertype of the class

Classes can implement multiple interfaces; interfaces can be implemented by

multiple classes

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 14

public class Circle implements Shape {
 private double radius, x, y;

 public Circle(double radius, double x, double y){
 this.radius = radius;
 this.x = x;
 this.y = y;
 }

 @Override // <-- this annotation is explained on the next slide
 public double area() {
 return radius * radius * PI;
 }
 @Override
 public double perimeter() {
 return 2 * PI * radius;
 }
 @Override
 public void draw() {
 PennDraw.circle(x, y, radius);
 }
}

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 15

Implementing an interface: @Override

The @Override keyword can be used to indicated that a method implements

(overrides) a method defined in the interface.

Has @Override Does Not Have @Override

Method in Interface Compiles without Error Compiles without Error

Method Not in Interface Compilation Error Compiles without Error

Optional, but very useful:

If the interface changes, methods annotated with @Override keyword will raise a

compiler error. To fix the problem, make your code to adhere to the new interface

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 16

Using Objects from an Interface

Declare a variable of type the interface and initialize it using the subtype constructor.

Invoke the methods defined in the ADT on the object

Example:

Shape c = new Circle(0.5, 0.1, 0.2);
c.area();
c.perimeter();
c.draw();

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 17

Using Objects from an Interface

Also OK to just use the concrete subtype for the variable if you want to ignore the ADT

(this makes the ADT pointless if you do it everywhere)

Example:

Circle c = new Circle(0.5, 0.1, 0.2);
c.area();
c.perimeter();
c.draw();

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 18

Using Objects from an Interface

NOT OK to try to instantiate an object from the interface

Interfaces don't ever have constructors!

NONFUNCTIONAL EXAMPLE:

Shape c = new Shape(0.5, 0.1, 0.2); // DOES NOT WORK!!
c.area();
c.perimeter();
c.draw();

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 19

Grouping Objects by Behavior

It's possible to collect multiple objects of different classes(!!!) in the same array or list

as long as they all have the same ADT that the structure is declared to store.

Shape[] shapes = new Shape[3];
Shape smallRectangle = new Rectangle(0.5, 0.5, 0.1, 0.2);
Shape bigRectangle = new Rectangle(0.3, 0.6, 0.2, 0.1);
Shape myCircle = new Circle(0.1, 0.8, 0.2);
shapes[0] = smallRectangle;
shapes[1] = bigRectangle;
shapes[2] = myCircle;

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 20

Grouping Objects by Behavior

Given the Shape interface:

public interface Shape {
 public static final double PI = 3.14159;
 public double area();
 public double perimeter();
 public void draw();
}

We know that we can write:

Shape[] shapes = new Shape[3];
// refer to the way we filled the array on the last slide
for (int i = 0; i < shapes.length; i++) {
 Shape current = shapes[i];
 current.draw();
}

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 21

Abstract Data Type Relationships

An abstract object (an ADT is the object’s type) may be operated upon by the

operations which define its abstract type

An abstract object may be listed as a parameter to a procedure (function/method)

An object may be assigned to a variable with an abstract data type, but only if the

object's type is a subtype of that ADT.

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 22

List ADT

List.java is an interface that defines the List ADT.

The complete List ADT is huge.

Bad: doesn't fit on a slide

Good: if you're using a List implementation (ArrayList/LinkedList), you

know it has a ton of stuff it can do!

There are multiple classes built in to Java that implement the List ADT

ArrayList , as we studied already. Built on an array that is managed for you.

LinkedList , built on a series of linked Nodes accessible from some start

point.

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 23

https://docs.oracle.com/javase/8/docs/api/java/util/List.html

List ADT: Why?

Different List implementations have different performance (memory requirements,

speed efficiency) tradeoffs.

Most important thing about all of them is that they are Lists! So you know that

you can add , get , set , etc.

You can swap out different implementations to fit your performance requirements

without changing the logic of the implementation.

ABSTRACT DATA TYPES

CIS 1100 Fall 2024 @ University of Pennsylvania 24

