
2D Arrays

CIS 1100 Spring 2024 @ University of Pennsylvania

Looking Ahead: Snake

Cannot use late days on this assignment.

Cannot drop this assignment.

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 1

Overview

We know how to store data in an ordered sequence using arrays.

Our ordered collections have only been in one dimension so far, though.

Sometimes we want to represent data in multiple dimensions

Images as grids of pixels, arrays at different points in time, matrices

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 2

Arrays of Arrays

We've seen arrays of...

ints

doubles

Strings

chars

Songs

What about an array of arrays?

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 3

Learning Objectives

After this lecture, you should be able to…

declare a 2D array

initialize a 2D array with the new keyword or with an initializer list

identify the dimensions of a 2D array

access 2D array values

modify 2D array values

traverse a 2D array using the for-loop

solve problems using 2D arrays

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 4

Two-Dimensional

Arrays

A one-dimensional array stores an

ordered sequence of elements.

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 5

Two-Dimensional

Arrays

A two-dimensional array can be

thought of as a table of elements,

with rows and columns.

The "outer" array represents the

table, which consists of a bunch

of rows.

Each "inner" array is a row of the

table, containing a bunch of cells

(one per column.)

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 6

Declaration and Initialization

Here's one way to think about initializing a 2D

array as an array of int arrays.

int[][] arrayOfArrays = new int[3][];
int[] firstArray = new int[7];
int[] secondArray = new int[7];
int[] thirdArray = new int[7];
arrayOfArrays[0] = firstArray;
arrayOfArrays[1] = secondArray;
arrayOfArrays[2] = thirdArray;

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 7

Declaration and Initialization

Here’s the general way to initialize a rectangular 2D array:

type[][] arrayName = new type[numRows][numCols];

This creates a 2D array with numRows rows and numCols columns.

So, we could create the previous 2D array of ints with three rows and seven columns

like so:

int[][] my2DArray = new int[3][7];

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 8

Arrays of Arrays

Ultimately, a 2D array is an array

of arrays.

int[][] my2DArray = new int[3][7];

creates a new array containing three

int[]s. Each int[] (row) has a

length of seven.

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 9

Types & Expressions for 2D arrays

If we declare

double[][] matrix = new double[100][30];

To reference a single element at row r and column c :

double value = matrix[r][c]; // "row-major order"

Expression Type Description

matrix double[][] 2D array of doubles, or an array of double arrays

matrix[3] double[] Array of doubles

matrix[3][4] double double

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 10

Explicit 2D Array Initialization

Sometimes helpful to write out the 2D array explicitly in your program:

int[][] scores = {{44, 55, 66, 77},
 {88, 99, 11, 22},
 {33, 0, 100, 50}};

Check in:

What is the type of scores?

What is the type of scores[1]?

What is the value of scores[1][2]?

What is the index for the value 22?

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 11

Explicit 2D Array Initialization

Sometimes helpful to write out the 2D array explicitly in your program:

int[][] scores = {{44, 55, 66, 77},
 {88, 99, 11, 22},
 {33, 0, 100, 50}};

Check in:

What is the type of scores? int[][]

What is the type of scores[1]? int[]

What is the value of scores[1][2]? 11

What is the index for the value 22? scores[1][3]

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 12

Shapes of 2D Arrays

A 2D array can have a different number of rows and columns.

String[][] square = new String[5][5];
String[][] rectangle = new String[5][10];

We say a 2D array is square if it has the same number of rows and columns. Otherwise,

we say it is rectangular if all rows have the same length but the number of rows and

columns are different.

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 13

Iterating over Squares & Rectangles

We can use nested for-loops to iterate over the elements of a 2D array.

double[][] randomRectangle = new double[3][10];
int numRows = randomRectangle.length;
int numCols = randomRectangle[0].length; // NPE if row 0 is null, so be careful!
for (int row = 0; row < numRows; row++) {

for (int col = 0; col < numCols; col++) {
randomRectangle[row][col] = Math.random();

}
}

Initializes a rectangular array of doubles to store 30 random values.

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 14

Shapes of 2D Arrays

Since 2D arrays are arrays of arrays, there's no actual requirement that each "inner"

array has the same length as all the others. That is, rows may have different numbers

of columns.

String[][] names = {{"Harry"},
 {"Becca", "Bhrajit"},
 {"Adi", "Sukya", "Sofia"}};

names is an example of a ragged or jagged 2D array. (Both terms are used for the

same thing)

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 15

Dangers of Jagged Arrays

Consider the following example:

// same 2d array as before, just on one line for space purposes
String[][] names = {{"Harry"}, {"Becca", "Bhrajit"}, {"Adi", "Sukya", "Sofia"}};
int numRows = names.length;
int numCols = names[0].length; // NPE if row 0 is null, so be careful!
for (int row = 0; row < numRows; row++) {

for (int col = 0; col < numCols; col++) {
System.out.println(names[row][col]);

}
}

What gets printed?

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 16

Dangers of Jagged Arrays

Consider the following example:

// same 2d array as before, just on one line for space purposes
String[][] names = {{"Harry"}, {"Becca", "Bhrajit"}, {"Adi", "Sukya", "Sofia"}};
int numRows = names.length;
int numCols = names[0].length; // NPE if row 0 is null, so be careful!
for (int row = 0; row < numRows; row++) {

for (int col = 0; col < numCols; col++) {
System.out.println(names[row][col]);

}
}

numCols is set to 1 and doesn't change without each iteration, so we print only the first

String from each column.

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 17

Dangers of Jagged Arrays

Consider the following example:

// same 2d array as before, just on one line for space purposes
String[][] names = {{"Adi", "Sukya", "Sofia"}, {"Harry"}, {"Becca", "Bhrajit"}};
int numRows = names.length;
int numCols = names[0].length; // NPE if row 0 is null, so be careful!
for (int row = 0; row < numRows; row++) {

for (int col = 0; col < numCols; col++) {
System.out.println(names[row][col]);

}
}

What gets printed?

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 18

Dangers of Jagged Arrays

Consider the following example:

// same 2d array as before, just on one line for space purposes
String[][] names = {{"Adi", "Sukya", "Sofia"}, {"Harry"}, {"Becca", "Bhrajit"}};
int numRows = names.length;
int numCols = names[0].length; // NPE if row 0 is null, so be careful!
for (int row = 0; row < numRows; row++) {

for (int col = 0; col < numCols; col++) {
System.out.println(names[row][col]);

}
}

The program crashes! names[1] has only one element, so names[1][0] is valid, but

names[1][1] is not.

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 19

Practice Safe Iteration

When iterating over a 2D array, always use the length of the inner array to determine

the number of columns.

// same 2d array as before, just on one line for space purposes
for (int row = 0; row < names.length; row++) {

for (int col = 0; col < names[row].length; col++) {
System.out.println(names[row][col]);

}
}

This works for any 2D array (as long as it's not null and none of its rows are null)

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 20

Practice Safest Iteration

When iterating over a 2D array, always use the length of the inner array to determine

the number of columns. Also, check for null values

// same 2d array as before, just on one line for space purposes
for (int row = 0; names != null && row < names.length; row++) {

for (int col = 0; names[row] != null && col < names[row].length; col++) {
System.out.println(names[row][col]);

}
}

This works for any 2D array at all, but is often overkill if you can be sure there are no null

values ahead of time.

2D ARRAYS

CIS 1100 Spring 2024 @ University of Pennsylvania 21

