Comparing
Objects




COMPARING OBJECTS

Learning Objectives

e Be able to implement the Comparable interface

e Be able to use the compareTo method to compare objects

CIS 1100 Fall 2024 @ University of Pennsylvania



COMPARING OBJECTS

Poll:

What does the array {2, 0, 1} look like after we pass it in as input to mystery() ?

public static void mystery(int[] arr) {
for (int i = 0; 1 < arr.length; i++) {
int min = 1;
for (int j = 1 + 1; j < arr.length; j++) {
if (arr[jl < arrlmin]) {
min = j;
s

Iy

if (i '= min) {
int temp = arrl[il];
arr[i] = arr[min];
arr[min] = temp;

CIS 1100 Fall 2024 @ University of Pennsylvania



COMPARING OBJECTS

Common Java Object Methods

Four methods are essential for ordering & comparing Java objects

e equals: used for defining when two objects are structurally equal to each other
e hashCode: you'll learn about it in a future course

e compare, compareTo: for today!
Many built-in Java objects (like String) define these for you.

e For your own objects, you'll need to define them yourself.

CIS 1100 Fall 2024 @ University of Pennsylvania



COMPARING OBJECTS

Poll:

If we are trying to order the strings "Film" and "Movie", which comes first?

CIS 1100 Fall 2024 @ University of Pennsylvania



COMPARING OBJECTS

comparelTlo

Way back when, we've already seen compareTo for Strings!

firstString.compareTo(secondString);

returns:

e 0 if both Strings are equal
e a negative number if firstString is less than (comes before) secondString

e a positive number if firstString is greater than (comes after) secondString

CIS 1100 Fall 2024 @ University of Pennsylvania



COMPARING OBJECTS

compareTo

compareTlo returns:

e 0 if both Strings are equal
e a negative number if firstString is less than (comes before) secondString

e a positive number if firstString is greater than (comes after) secondString

"apple'".compareTo("banana"); // -1
"banana'".compareTo("apple"); // 1
"apple'".compareTo("apple"); // 0

CIS 1100 Fall 2024 @ University of Pennsylvania



COMPARING OBJECTS

Poll:

How could we change this code so that it can sort an array of Strings (instead of ints?)

public static void mystery(int[] arr) {
for (int i = 0; 1 < arr.length; i++) {
int min = 1;
for (int j = 1 + 1; j < arr.length; j++) {
if (arr[jl < arrlmin]) {
min = j;
s

Iy

if (i '= min) {
int temp = arrl[il];
arr[i] = arr[min];
arr[min] = temp;

CIS 1100 Fall 2024 @ University of Pennsylvania



COMPARING OBJECTS

Solution:

public static void mystery(Stringl[] arr) {
for (int i = 0; i < arr.length; i++) {
int min = 1;
for (int j = 1 + 1; j < arr.length; j++) {
if (arr[j].compareTo(arr[min]) < 0) {
min = j;
I3

I3

if (i !'= min) {
String temp = arrl[i];
arr[i] = arr[min];
arr[min] = temp;

CIS 1100 Fall 2024 @ University of Pennsylvania



COMPARING OBJECTS

Activity: Imagine that we have a Student class that stores a firstName, lastName,
program, and programGPA.

e We want to be able to compare two Student objects by their last names.
e If they have the same last name, then break ties by comparing their first names.

o If they have the same first & last name, then they are the same student.
o (Speaking as a "Harry Smith" in the US, this is a gross oversimplification...)

public class Student {
private String firstName, lastName, program;
private double programGPA;
public int compareTo(Student other) {
return -1; // TODO

CIS 1100 Fall 2024 @ University of Pennsylvania



COMPARING OBJECTS

One Solution

public int compareTo(Student other) {
if (this.lastName.compareTo(other.lastName) < 0) {

return -1;
} else if (this.lastName.compareTo(other.lastName) > 0) {
return 1;
} else {
if (this.firstName.compareTo(other.firstName) < 0) {
return -1;
} else if (this.firstName.compareTo(other.firstName) > 0) {
return 1,
} else {
return 0;

CIS 1100 Fall 2024 @ University of Pennsylvania

10



COMPARING OBJECTS

A Concise Solution

public int compareTo(Student other) {
if (this.lastName.equals(other.lastName)) {
return this.firstName.compareTo(other.firstName);
} else {
return this.lastName.compareTo(other.lastName);

CIS 1100 Fall 2024 @ University of Pennsylvania

11



COMPARING OBJECTS

The Comparable ADT

e Built-in Java interface

e Defines a single abstract method for comparison: compareTo
o By definition of interfaces, any class that implements Comparable must
implement compareTo

e Objects of a class that implements Comparable are "sortable"
o If a class implements Comparable, other built-in Java libraries will know
how to make use of it!

o e.g. makes Arrays.sort(...) possible automatically!

CIS 1100 Fall 2024 @ University of Pennsylvania

12



COMPARING OBJECTS

The Comparable ADT

compareTo compares two objects for ordering:
e returns a negative int if the object on which the method is invoked is less than the
object passed as a parameter.

e returns 0 if the object on which the method is invoked is equal to the object
passed as a parameter.

e returens a positive int if the object on which the method is invoked is greater
than the object passed as a parameter.

Object objl; // the object that the method is invoked on in this example
Object obj2; // the object passed as a parameter in this example
objl.compareTo(obj2);

CIS 1100 Fall 2024 @ University of Pennsylvania

13



COMPARING OBJECTS

Making an Object Sortable

Simply implement Comparable!

e tells Java "this object can be sorted!"

e Comparable is generically typed, so you have to specify the type i

public class Student implements Comparable<Student> {
private String firstName, lastName, program;
private double programGPA;
public int compareTo(Student other) {
if (this.lastName.equals(other.lastName)) {
return this.firstName.compareTo(other.firstName);
} else {
return this.lastName.compareTo(other.lastName);
s
s

// ... Other methods ...

CIS 1100 Fall 2024 @ University of Pennsylvania

14



COMPARING OBJECTS

Implementing Comparable

e Mark that the class implements Comparable<ClassName>
e Implement compareTo returning a -ve, O, or +ve value in the correct cases

e Keep in mind that the magnitude of the return value doesn't matter, just the sign!

CIS 1100 Fall 2024 @ University of Pennsylvania

15



COMPARING OBJECTS

Using Arrays.sort()

Arrays is the name of a library (static class) built-in to Java. You have to import it to
use it.

import java.util.Arrays;
public static void main(Stringl[] args) {
String[] arr = {"cherry", "apple", '"banana"};

Arrays.sort(arr); // sorts in place
System.out.println(Arrays.toString(arr)); // lapple, banana, cherry]

Arrays.sort works on any array of objects that implement Comparable.

CIS 1100 Fall 2024 @ University of Pennsylvania

16



COMPARING OBJECTS

Sorting Lists
To sort a List, you need to use Collections.sort() instead of Arrays.sort().

import java.util.Collections;

public static void main(Stringl[] args) {
List<String> 1 = new ArraylList<String>();
L.add("cherry");
L.add("apple");
l.add("banana");
Collections.sort(l); // sorts in place
System.out.println(1l); // [apple, banana, cherryl

CIS 1100 Fall 2024 @ University of Pennsylvania

17



COMPARING OBJECTS

equals()

== is only useful for determining referential equality between objects
e Do these two references point to the same object?
equals() is a method that compares two objects for structural equality.

e Do these two objects represent the same thing?

CIS 1100 Fall 2024 @ University of Pennsylvania

18



COMPARING OBJECTS

The Duration Class

credit to this course website for the example idea

public class Duration {
private int minutes;
private int seconds;

public Duration(int minutes, int seconds) {
this.minutes = minutes;
this.seconds seconds:

}

public boolean equals(Duration other) { ...

CIS 1100 Fall 2024 @ University of Pennsylvania


https://web.mit.edu/6.005/www/fa16/classes/15-equality/

COMPARING OBJECTS

Poll

Which of the following Duration objects is not referentially equal to d1? (i.e. not equal

using ==)?

new Duration(1, 30);
new Duration(1, 30);
dl;
d2;

Duration d1l
Duration d2
Duration d3
Duration d4

CIS 1100 Fall 2024 @ University of Pennsylvania 2®



COMPARING OBJECTS

Poll

Which of the following Duration objects should be considered structurally equal to
dl?

Duration dl
Duration d2
Duration d3
Duration d4
Duration d5

new Duration(1, 30);
new Duration(@, 90);
dl;
d2;
new Duration(1, 20);

CIS 1100 Fall 2024 @ University of Pennsylvania

21



COMPARING OBJECTS

Drafting an Equals Method

How can we write the equals() method for the Duration class?
We want:

e the object to always be structurally equal to itself
o (that is, referential equality should imply structural equality)

e a null object should never be structurally equal to anything

e two Durations should be equal if they represent the same amount of time

CIS 1100 Fall 2024 @ University of Pennsylvania

22



COMPARING OBJECTS

Poll

Is this good enough?

public boolean equals(Duration other) {
if (other == null) {
return false;
s

return this.minutes == other.minutes && this.seconds == other.seconds;

CIS 1100 Fall 2024 @ University of Pennsylvania



COMPARING OBJECTS

Activity

Write a better equals() method for the Duration class.

CIS 1100 Fall 2024 @ University of Pennsylvania

24



COMPARING OBJECTS

Solution

public int lengthInSeconds() {
return this.minutes % 60 + this.seconds;
¥

public boolean equals(Duration other) {
if (other == null) { // handle null case
return false;
s

if (other == this) { // handle referential equality
return true;
I3

return this.lengthInSeconds() == other.lengthInSeconds();

CIS 1100 Fall 2024 @ University of Pennsylvania

25



COMPARING OBJECTS

Discussion

Can you think of a place that it might be useful to define an equals() method in your
Snake project?

CIS 1100 Fall 2024 @ University of Pennsylvania

26



COMPARING OBJECTS

Relationship Between equals() & compareTo()

Ideally, when compareTo() returns @, equals() should return true, and vice versa.

It's possible, though, that you might want to compare objects in a way that's more or
less "detailed" than testing for equality.

e In practice: defining custom comparators allows for flexible behavior, but that's
beyond the scope of this class

e For us: it's OK if compareTo() might say that some objects are "equal” even if
equals() would return false.

CIS 1100 Fall 2024 @ University of Pennsylvania

27



COMPARING OBJECTS

public class Book implements Comparable<Book> {
private String title;
private String author;
private int ISBN;

public int compareTo(Book other) { // sort by author name, then title
if (author.equals(other.getAuthor)) {
return title.compareTo(other.getTitle());
I3

return author.compareTo(other.getAuthor());

}

// use the guaranteed unique ISBN for actual equality
public boolean equals(Book other) {

return this.ISBN == other.ISBN;
s

This is a reasonable implementation of both methods, although they imply two different
notions of equality.

CIS 1100 Fall 2024 @ University of Pennsylvania

28



COMPARING OBJECTS

Activity
The object Roster maintains an array of unique Student objects. Write a method that
prints the array of students in sorted order.

e Note: don't print null Student references if they're present

e Keep in mind that Student implements Comparable<Student>, so you should
offload the hard word of sorting to Arrays.sort(...)

e Student objects can be printed directly since they have a toString() method

implemented.

CIS 1100 Fall 2024 @ University of Pennsylvania

29



