
Records

CIS 1100 Fall 2024 @ University of Pennsylvania

Reminder about Autograder Output

Gradescope has automatic style deductions

Take a look sometime today to make sure that you have no automatic style errors!

Other things that are your responsibility to check for:

submitting all files

compilation issues

Not an autograder thing, but also remember:

When we say pennkey, we mean e.g. sharry or jwshi

In the readme, you have to copy the collaboration statement exactly

If you see 0/40, that's not something you should ignore!

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 1

Reminder about OHQ

Look at the course calendar for TA office hours

you do not make an appointment ahead of time

when you show up, go to ohq.io and sign yourself up to get help

make sure that you select the proper queue (JAVA!!)

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 2

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 3

Exam Reminders

Plan to take your exam during the section for which you are registered.

Take a practice exam once you're done with Caesar.

All students who require SDS accommodation to take the exam should schedule

their exam through the Weingarten Testing Center ASAP.

Any time on October 9th is acceptable.

The exam only covers material up until functions & searching. Material covered

today and Monday will be covered on HW04 and Exam 2.

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 4

Records & Data Oriented Programming

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 5

Background: Programming Paradigms

The different ways that we write & organize code are referred to as programming

paradigms.

For example, we've been using imperative programming techniques in Java so far

Different varieties of problems we want to solve call for different ways of thinking

about solutions!

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 6

Data Oriented Programming Writ Large

A model of writing programs that separates the code from the data

Works with immutable (unmodifiable) constructs in a program to focus on analysis

& transformation of data

Often an essential mindset for programs intended to make full use of

hardware capabilities

scientific programming, graphics, video games

Disclaimer: This is just a way of thinking about what we're doing—it's not a binding

set of rules!

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 7

Data Oriented Programming in CIS 1100

As novice programmers, we aren't going to worry yet about questions of efficiency and

memory organization.

However, within the last few years, Java has included some constructs that allow us to

separate code from data nicely.

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 8

Data Oriented Programming in CIS 1100: The Old Way

Imagine that we want to write a program that models planets in a planetary simulation.

To do so, we need information about the position (x, y) and speed (x, y) of each

planet, along with its mass and the name of some image with which to represent it

Previously, we would have used cumbersome programming techniques like parallel

arrays to do this

double[] px = new double[n];
double[] py = new double[n];
double[] vx = new double[n];
double[] vy = new double[n];
double[] m = new double[n];
String[] img = new double[n];
// for what it's worth, this technique is still useful sometimes

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 9

Record Types in Java: The New Way

Similar to structs in C or records in OCaml

Associate multiple pieces of data with the same entity to allow convenient access

to all pieces at once

Immutable

The difference is sometimes elided when speaking about them, but:

Record type refers to the category of entities that are described using the

same pieces of information

Records themselves are individual values in our program that model one

individual instance of an entity belonging to this type

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 10

The Big Idea

Most real or imaginary world entities have multiple properties

In this module, we will learn how to represent the properties (or attributes) the entities

that our program will manipulate

Example:

Entity: student

Properties: name, age, gpa, pennkey, graduation year

Types:

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 11

The Big Idea

Most real or imaginary world entities have multiple properties

In this module, we will learn how to represent the properties (or attributes) the entities

that our program will manipulate

Example:

Entity: student

Properties: name, age, gpa, pennkey, graduation year

Types: String, int, double, String, int/String

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 12

Learning Objectives

To be able to define record types

To be able to initialize a record of a given type

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 13

Modeling with Records

Record types are used to model real-world entities.

A record type has some properties that can be used to describe all entities that

belong to this type

Properties can be used to describe a particular record

All records of a type have the same properties but not the same values for

those properties.

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 14

Records in Java

Record types are defined using a record definition, and they give a template for

creating records

Record Type Record

Cat Garfield the cat

Cat Izzy

Cat Digby

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 15

Defining a Record Type

As simple as:

public record RecordTypeName(type0 arg0, type1 arg1, ...) {}

That's it!

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 16

Defining a Record Type: Example

In my program, I want to model points in 2D space.

public record Point(double xPos, double yPos) {}

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 17

Using the Record Type

We'll come back to the finer points of the new syntax here shortly, but for now:

public record Point(double xPos, double yPos) {} // defines the type

// expects an array of points as input
public static void drawAllPoints(Point[] points) {
 PennDraw.setPenRadius(0.01);
 for (int i = 0; i < points.length; i++) {
 // each value in the points array has type Point
 Point thisPoint = points[i];
 System.out.println("Drawing " + thisPoint); // Point can be printed
 // access attibutes with . notation
 PennDraw.point(thisPoint.xPos(), thisPoint.yPos());
 }
}

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 18

Defining a Record Type: Practice

In my program, I want to model students that each have a name, age, GPA, PennKey, &

graduation year.

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 19

Defining a Record Type: Practice

In my program, I want to model students that each have a name, age, GPA, PennKey, &

graduation year.

public record Student(String name, int age, double GPA,
 String pennKey, int graduationYear) {}

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 20

Defining a Record Type: Practice

In my program, I want to model planets that each have positions (x, y), velocities (x, y),

mass, and images stored in files.

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 21

Defining a Record Type: Practice

In my program, I want to model planets that each have positions (x, y), velocities (x, y),

mass, and images stored in files.

public record Planet(double xPos, double yPos,
 double xVel, double yVel,
 double mass, String imageFileName) {}

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 22

Creating a Record in Java

Each record type has a constructor that is used to initialize the attributes in a newly

created record

The constructor and the record type have the same name

To create a record, you write

RecordType variableName = new RecordType(arguments);

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 23

Constructors: More Detail

Creating a new record of a type requires us to call the constructor with the new
keyword

new Cat("Garfield the cat", "orange") calls the constructor for the Cat
type.

For now, when you call the constructor, you need to pass in one value as input for each

of the attributes that make up a record of this type.

new Cat() or new Cat("Garfield the cat") or new Cat(3.4, 7) will all fail

to compile!

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 24

Creating a Record in Java

Example:

A cat has the following attributes: name, color,

so its record type may be defined with:

public record Cat(String name, String color) {}

To create a new orange Cat named “Garfield

the cat” you write:

Cat garfield = new Cat("Garfield the cat", "orange");

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 25

Creating Records

We can create more than one record of the same type!

Cat garfield = new Cat("Garfield the cat", "orange");
Cat myCat = new Cat("mona", "yellow");
Cat yourCat = new Cat("midnight", "black");

Our program will manipulate the following records (cats):

Object name name Color

garfield Garfield the cat orange

myCat mona yellow

yourCat midnight black

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 26

Printing Records

Simple as calling System.out.println() !

public record Point(double x, double y) {}

then, in main...

Point a = new Point(0.5, 0.5);

System.out.println(a);
//prints Point[x=0.5, y=0.5]

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 27

Accessing Properties

Access the properties of a given record using the name given to the property as a

function on that record:

public record Point(double x, double y) {}

then, in main...

Point a = new Point(0.5, 0.5);
double myX = a.x();
double myY = a.y();

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 28

Records Are Immutable Always

Trying f.x = 5; or b.y = 7; raises a compiler error independently of where the

record is defined.

Although x is the name of a property of f , its value cannot be changed once

created.

Java will explicitly prevent this and complain: "cannot assign a value to
final variable x"

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 29

Comparing Records

Two Records can be compared to see if they contain exactly the same data by using

.equals()

public record Point(double x, double y) {}

then, in main...

Point a = new Point(0.5, 0.5);
Point b = new Point(0.5, 0.5);
Point c = new Point(0, 0);

System.out.println(a.equals(b)); // true!
System.out.println(a.equals(c)); // false!

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 30

Where to Place the Record Definition

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 31

Defining the Record Within a Class

You can place the record definition inside the class but outside of any other function.

public class Records {
 public record Foo(int x) {}

 public static void main(String[] args) {
 Foo f = new Foo(4);
 System.out.println(f.x()); // preferred way of accessing properties
 System.out.println(f.x); // this is allowed here, but not good
 f.x = 5; // compiler error!!!!
 }
}

In this example, accessing f.x is allowed. Assigning to f.x is not.

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 32

Defining the Record In Its Own File

// in Bar.java
public record Bar(int y) {}

// in Records.java
public class Records {
 public static void main(String[] args) {
 Bar b = new Bar(7);
 // this is the only allowed way of accessing property y
 System.out.println(b.y());
 System.out.println(b.y); // this is not allowed here
 b.y = 5; // compiler error, as before.
 }
}

In Records.java , accessing b.y is not allowed. Assigning to b.y is also not allowed.

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 33

Within an Existing Class vs. In Its Own File

You can put the record definition in either place.

You should always access record properties using the function syntax

e.g. always prefer f.x() over f.x

Why?

f.x() always works to access property x independent of your choice

It's best not to think of f.x as a variable anyway since its value can't actually

change!

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 34

Worked Example: Books!

I'm vain, so we're going to use my personal data: my collection of books read from

Goodreads. (follow me?)

We'll use this data to build a recommender system

"I heard about this author, can you recommend me her best book?"

"What's the best book from last year?"

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 35

https://www.goodreads.com/user/show/89222261-harry-smith

Understanding
the Data

What's going on here?

What do we have to

work with?

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 36

Understanding
the Data

For each data point (Book),

we have:

title

author

year, page

count, rating

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 37

Understanding the Data

For each data point (Book), we have:

title

String

author

String

year, page count, rating

int, int, double

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 38

Understanding the Data

For each data point (Book), we have:

title

String

author

String

year, page count, rating

int, int, double

public record Book(String title, String author,
 int year, int pages, double rating)

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 39

Parsing the Data

We need to write a function (in this case main) that can take data in a file and read it

into Book records in our program.

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 40

String filename = args[0];
In reader = new In(filename);

int numBooks = reader.readInt();
System.out.println(numBooks);

Book[] books = new Book[numBooks];
for (int i = 0; i < numBooks; i++) {
 reader.readLine(); // proceed to next line...
 String title = reader.readLine().trim();
 String author = reader.readLine().trim();
 System.out.println(title);
 int year = reader.readInt();
 int pages = reader.readInt();
 double rating = reader.readDouble();

 books[i] = new Book(title, author, year, pages, rating);
}

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 41

Analyzing the Data

The types of analysis we'll do correspond to the kinds of questions we want to answer.

"I heard about this author, can you recommend me her best book?"

"best" highest rating

"her best" only consider books with proper author value

This is a "find a maximum value in array" problem!

"What's the best book from last year?"

"best" highest rating

"from last year" only consider books with proper year value

This is the same exact problem!!

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 42

Analyzing the Data

Observe: lots of questions you want to answer are just different versions of the

same thing

find the max...

find the min...

find the sum...

find the average...

find the first...

find the last...

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 43

Analyzing the Data

Another common question: find all data points that match a criteria, e.g.:

"What have you read by this author?"

"What kinds of books do you usually read in the winter?"

Similar to finding a max/min/sum/etc., but we have to collect multiple results in an array

to answer the question.

RECORDS

CIS 1100 Fall 2024 @ University of Pennsylvania 44

	Records
	Reminder about Autograder Output
	Reminder about OHQ
	Exam Reminders
	Records & Data Oriented Programming
	Background: Programming Paradigms
	Data Oriented Programming Writ Large
	Data Oriented Programming in CIS 1100
	Data Oriented Programming in CIS 1100: The Old Way
	Record Types in Java: The New Way
	The Big Idea
	The Big Idea
	Learning Objectives
	Modeling with Records
	Records in Java
	Defining a Record Type
	Defining a Record Type: Example
	Using the Record Type
	Defining a Record Type: Practice
	Defining a Record Type: Practice
	Defining a Record Type: Practice
	Defining a Record Type: Practice
	Creating a Record in Java
	Constructors: More Detail
	Creating a Record in Java
	Creating Records
	Printing Records
	Accessing Properties
	Records Are Immutable Always
	Comparing Records
	Where to Place the Record Definition
	Defining the Record Within a Class
	Defining the Record In Its Own File
	Within an Existing Class vs. In Its Own File
	Worked Example: Books!
	Understanding the Data
	Understanding the Data
	Understanding the Data
	Understanding the Data
	Parsing the Data
	Analyzing the Data
	Analyzing the Data
	Analyzing the Data

