
Recursion

CIS 1100 Fall 2024 @ University of Pennsylvania

Learning Objectives

To understand how to think recursively

To be able to write recursive functions

To be able to trace a recursive function

To be able to write recursive algorithms and functions for searching arrays

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 1

Recursive Thinking

The journey of a thousand miles starts with one mile.

And then a journey of 999 miles.

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 2

Recursive Thinking

A function is recursive if it invokes itself to do part of its work.

Recursion is a problem-solving approach that can be used to generate simple solutions

to certain kinds of problems that are difficult to solve by other means.

Recursion reduces a problem into one or more simpler versions of itself.

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 3

Recursion

An alternate to using loops for solving problems

Some problems are easier to solve with recursion

Some people just prefer using recursion!

The core of recursion is taking a big task and breaking it up into a series of related

small tasks.

Example: handing out papers for an exam

Iterative: have a TA walk down a row of students, giving each person an exam

Recursive: A student takes one exam, pass the rest down the aisle

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 4

Breaking up a large problem

We want to write a program that prints N stars on one line, but without loops.

public static void printStars(int N);

Here's

printStars(N) ---> printStars(1) + printStars(N - 1)
printStars(3) ---> printStars(1) + printStars(2)
printStars(2) ---> printStars(1) + printStars(1)
printStars(1) ---> System.out.print("*");

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 5

Anatomy of a Recursive Function

Every recursive function needs at least one base case and at least one recursive part.

The base case:

handles a simple input that can be solved without resorting to a recursive call. Can

also be thought of as the case where we "end“ our recursion.

The recursive part:

contains one or more recursive calls to the function.

In every recursive call, the parameters must be in some sense “closer” to the base

case than those of the original call

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 6

Anatomy of a Recursive Function

Pretend that you never learned about * as an operator!

/**
 * The function takes two ints x and y and returns x * y
 * @param x the first operand
 * @param y the second operand
 * @return x * y
 */
public static int multiply(int x, int y) {
 if (x == 1) { // base case (multiplying by 1 is easy)
 return y; // 1 * y == y, so just return y.
 } else {
 return multiply(x - 1, y) + y; // recursive call!
 }

}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 7

Tracing a Returning Recursive Function

Tracing multiply(4, 10);

call x y return call status

multiply(4, 10) 4 10 10 + multiply(3, 10) pending

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 8

Tracing a Returning Recursive Function

Tracing multiply(4, 10);

call x y return call status

multiply(4, 10) 4 10 10 + multiply(3, 10) pending

multiply(3, 10) 3 10 10 + multiply(2, 10) pending

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 9

Tracing a Returning Recursive Function

Tracing multiply(4, 10);

call x y return call status

multiply(4, 10) 4 10 10 + multiply(3, 10) pending

multiply(3, 10) 3 10 10 + multiply(2, 10) pending

multiply(2, 10) 2 10 10 + multiply(1, 10) pending

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 10

Tracing a Returning Recursive Function

Tracing multiply(4, 10);

call x y return call status

multiply(4, 10) 4 10 10 + multiply(3, 10) pending

multiply(3, 10) 3 10 10 + multiply(2, 10) pending

multiply(2, 10) 2 10 10 + multiply(1, 10) pending

multiply(1, 10) 1 10 10 complete (base case triggered)

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 11

Tracing a Returning Recursive Function

Tracing multiply(4, 10);

call x y return call status

multiply(4, 10) 4 10 10 + multiply(3, 10) pending

multiply(3, 10) 3 10 10 + multiply(2, 10) pending

multiply(2, 10) 2 10 10 + 10 20 complete

multiply(1, 10) 1 10 10 (base case triggered!) complete (base case triggered)

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 12

Tracing a Returning Recursive Function

Tracing multiply(4, 10);

call x y return call status

multiply(4, 10) 4 10 10 + multiply(3, 10) pending

multiply(3, 10) 3 10 10 + 20 30 complete

multiply(2, 10) 2 10 10 + 10 20 complete

multiply(1, 10) 1 10 10 (base case triggered!) complete (base case triggered)

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 13

Tracing a Returning Recursive Function

Tracing multiply(4, 10);

call x y return call status

multiply(4, 10) 4 10 10 + 30 40 complete

multiply(3, 10) 3 10 10 + 20 30 complete

multiply(2, 10) 2 10 10 + 10 20 complete

multiply(1, 10) 1 10 10 (base case triggered!) complete (base case triggered)

So multiply(4, 10) evaluates to 40 .

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 14

Steps to Design a Recursive Algorithm

Identify the base case(s) and solve it/them directly

There must be at least one case (the base case), for a small value of n, that can be

solved directly

Devise a strategy to reduce the problem to smaller versions of itself while making

progress toward the base case

A problem of a given size n can be reduced to one or more smaller versions of the

same problem (recursive case(s))

Combine the solutions to the smaller problems to solve the larger problem

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 15

Design a Recursive Solution to a Problem

public static boolean isPalindrome(String s) {...}

Given a String, decide if it is a palindrome, that is, if it reads the same forwards

and backwards.

Base case?

Recursive steps?

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 16

Design a Recursive Solution to a Problem

public static boolean isPalindrome(String s) {...}

Given a String, decide if it is a palindrome, that is, if it reads the same forwards

and backwards.

Base case? Strings of length 0 or 1 are palindromes always! ("" and "a" , for

example))

Recursive steps?

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 17

Design a Recursive Solution to a Problem

public static boolean isPalindrome(String s) {...}

Given a String, decide if it is a palindrome, that is, if it reads the same forwards

and backwards.

Base case? Strings of length 0 or 1 are palindromes always! ("" and "a" , for

example))

Recursive steps? For any String, it can only be a palindrome if its first and last

letters are the same.

If they are, then we still need to check the rest of the String

If they are not the same, then we can stop immediately.

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 18

Design a Recursive Solution to a Problem

public static boolean isPalindrome(String s) {
 // base case
 if (???) {
 return ???;
 } else { // recursive case
 return ???;
 }
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 19

Design a Recursive Solution to a Problem

What's the condition for the base case?

public static boolean isPalindrome(String s) {
 // base case
 if (s.length() <= 1) {
 return ???;
 } else { // recursive case
 return ???;
 }
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 20

Design a Recursive Solution to a Problem

What do we return for a String that's empty or 1 character long?

public static boolean isPalindrome(String s) {
 // base case
 if (s.length() <= 1) {
 return true
 } else { // recursive case
 return ???;
 }
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 21

Design a Recursive Solution to a Problem

How do we check if the first and last characters are the same?

public static boolean isPalindrome(String s) {
 // base case
 if (s.length() <= 1) {
 return true
 } else { // recursive case
 boolean firstMatchesLast = s.charAt(0) == s.charAt(s.length() - 1);
 return ???;
 }
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 22

Design a Recursive Solution to a Problem

How do we use this boolean value?

public static boolean isPalindrome(String s) {
 // base case
 if (s.length() <= 1) {
 return true
 } else { // recursive case
 boolean firstMatchesLast = s.charAt(0) == s.charAt(s.length() - 1);
 if (firstMatchesLast) {
 return isPalindrome(s.substring(1, s.length() - 1));
 } else {
 return false;
 }
 }
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 23

Design a Recursive Solution to a Problem

Slightly more succinctly...

public static boolean isPalindrome(String s) {
 // base case
 if (s.length() <= 1) {
 return true
 } else { // recursive case
 boolean firstMatchesLast = s.charAt(0) == s.charAt(s.length() - 1);
 String theRest = s.substring(1, s.length() - 1);
 return firstMatchesLast && isPalindrome(theRest);
 }
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 24

Recursion & Nodes

The Node class is defined in terms of itself! Nodes are considered recursive data

structures, and so recursion is a natural way to process sequences of Nodes.

public class Node {
 public int data;
 public Node next;

 public Node(int data, Node next) {
 this.data = data;
 this.next = next;
 }
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 25

Recursion & Nodes

Problem: Given a Node reference, how long is the chain of Nodes rooted at

this reference?

Base Case?

Recursive Steps?

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 26

Recursion & Nodes

Problem: Given a Node reference, how long is the chain of Nodes rooted at

this reference?

Base Case? If a Node reference is null, the chain is empty, so the length is 0.

Recursive Steps?

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 27

Recursion & Nodes

Problem: Given a Node reference, how long is the chain of Nodes rooted at

this reference?

Base Case? If a Node reference is null, the chain is empty, so the length is 0.

Recursive Steps? If a Node reference is not null, then it points to some Node!

The length of the chain rooted at this Node will be 1 plus the length of the chain

rooted at the Node it points to.

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 28

Recursion & Nodes

public static int length(Node n) {
 // base case
 if (???) {
 return ???;
 } else { // recursive case
 return ???;
 }
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 29

Recursion & Nodes

public static int length(Node n) {
 if (n == null) {
 return 0;
 } else {
 return 1 + length(n.next);
 }
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 30

Recursion & Nodes

(The iterative solution, if you were curious...)

public static int length(Node n) {
 int count = 0;
 Node curr = n;
 while (curr != null) {
 count++;
 curr = curr.next;
 }
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 31

Recursion & Nodes

Problem: Given a Node reference, what's the sum of values stored in the chain of

Nodes rooted here?

Base Case?

Recursive Steps?

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 32

Recursion & Nodes

Problem: Given a Node reference, what's the sum of values stored in the chain of

Nodes rooted here?

Base Case? If a Node reference is null, the chain is empty, so the sum of values here

is 0.

Recursive Steps?

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 33

Recursion & Nodes

Problem: Given a Node reference, what's the sum of values stored in the chain of

Nodes rooted here?

Base Case? If a Node reference is null, the chain is empty, so the sum of values here

is 0.

Recursive Steps? If a Node reference is not null, then it points to some Node!

The sum of the data in the chain rooted at this Node will be the data in the current

node plus the sum of the data in the rest of the chain.

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 34

Recursion & Nodes

public static int sumOfData(Node n) {
 // base case
 if (???) {
 return ???;
 } else { // recursive case
 return ???;
 }
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 35

Recursion & Nodes

public static int sumOfData(Node n) {
 if (n == null) {
 return 0;
 } else {
 return n.data + sumOfData(n.next);
 }
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 36

Recursion & Nodes

(The iterative solution, if you were curious...)

public static int length(Node n) {
 int sum = 0;
 Node curr = n;
 while (curr != null) {
 sum += curr.data;
 curr = curr.next;
 }
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 37

Tracing a

Recursive

Function

The process of returning

from recursive calls and

computing the partial

results is called unwinding

the recursion

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 38

Run-Time Stack and Activation Frames

Java maintains a run-time stack on which it saves new information in the form of an

activation frame

The activation frame contains storage for

function arguments

local variables (if any)

the return address of the instruction that called the method

Whenever a new method is called (recursive or not), Java pushes a new activation

frame onto the run-time stack

Details not at all important for this course; much more on this in CIS 2400.

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 39

Recursive
Array Search

CIS 1100 Fall 2024 @ University of Pennsylvania 40

Recursion & Arrays

Recall that we want to make the problem smaller, but it's not actually possible to

change the size of an array. How can we recurse on an array?

public int findLargest(int[] arr)

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 41

Recursion & Arrays

Recall that we want to make the problem smaller, but it's not actually possible to

change the size of an array. How can we recurse on an array?

Solution: use an index (or indices) to specify the portion of the array that you're

recursing over.

public int findLargest(int[] arr)

becomes

public int findLargest(int[] arr, int currIdx)

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 42

Recursion & Arrays

public int findLargest(int[] arr, int currIdx)

Given an array of ints, and a current index for searching at, return the largest int in the

array at or after the current index.

Base case?

Empty arrays have no largest element, so return Integer.MIN_VALUE

Recursive steps?

Return whichever is greater: the element at the current position, or the

greatest element in the rest of the array.

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 43

Recursion & Arrays

public int findLargest(int[] arr, int currIdx) {
 // base case(s)
 if (???) {
 return ???;
 }
 // recursive case
 return ???;
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 44

Recursion & Arrays

public int findLargest(int[] arr, int currIdx) {
 // base case(s)
 if (arr == null || currIdx >= arr.length) {
 return Integer.MIN_VALUE;
 }
 // recursive case
 return ???;
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 45

Recursion & Arrays

public int findLargest(int[] arr, int currIdx) {
 // base case 1
 if (arr == null || currIdx >= arr.length) {
 return Integer.MIN_VALUE;
 }
 // recursive case
 return ???;
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 46

Recursion & Arrays

public int findLargest(int[] arr, int currIdx) {
 // base case 1
 if (arr == null || currIdx >= arr.length) {
 return Integer.MIN_VALUE;
 }
 int biggestInRest = findLargest(arr, currIdx + 1);
 return Math.max(arr[currIdx], biggestInRest);
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 47

Recursive Array Search

Searching an array can be accomplished using recursion

Simplest way to search is a linear search

Examine one element at a time starting with the first element and ending with

the last

How many recursive calls are needed?

Each recursive call examines one element

On average, elements are examined to find the target in a linear search

If the target is not in the list, elements are examined

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 48

Recursive Array Search (cont.)

Base cases?

Empty array, target can not be found; result is -1

First element of the portion of the array being searched is target; result is the

index of first element

Recursive steps?

The recursive step searches the rest of the array, excluding the first element

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 49

Algorithm for Recursive Linear Array Search

Algorithm for Recursive Linear Array Search

if the array is empty, the result is –1

else if the first element of the feasible area matches the target, the result is the

position of the first element

else, search the array excluding the first element and return the result

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 50

public static void int linearSearch(String[] items, String target,
 int idx) {
 if (idx >= items.length) {
 return -1;
 } else if (items[idx].equals(target)) {
 return idx;
 } else {
 return linearSearch(items, target, idx + 1);
 }
}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 51

Implementation

of Recursive

Linear Search

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 52

Design of a Binary Search Algorithm

A binary search can be performed only on an array that has been sorted. Remember:

rather than looking at the first element, a binary search compares the middle element

for a match with the target

Base cases?

The array is empty

Element being examined matches the target

Recursive steps?

If the middle element does not match the target, a binary search excludes the

half of the array within which the target cannot lie

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 53

Design of a Binary Search Algorithm

if the array is empty, return –1 as the search result

else if the middle element matches the target, return the subscript of the middle

element as the result

else if the target is less than the middle element, recursively search the array

elements before the middle element and return the result

else recursively search the array elements after the middle element and return

the result

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 54

public static void int binarySearch(String[] items, String target,
 int left, int right) {
 if (left > right || items.length == 0) {
 return -1;
 }
 int middle = (left + right) / 2;
 if (items[middle].equals(target)) {
 return middle;
 } else if (target.compareTo(items[middle]) < 0) {
 return binarySearch(items, target, left, middle - 1);
 } else {
 return binarySearch(items, target, middle + 1, right);
 }

}

RECURSION

CIS 1100 Fall 2024 @ University of Pennsylvania 55

	Recursion
	Learning Objectives
	Recursive Thinking
	Recursive Thinking
	Recursion
	Breaking up a large problem
	Anatomy of a Recursive Function
	Anatomy of a Recursive Function
	Tracing a Returning Recursive Function
	Tracing a Returning Recursive Function
	Tracing a Returning Recursive Function
	Tracing a Returning Recursive Function
	Tracing a Returning Recursive Function
	Tracing a Returning Recursive Function
	Tracing a Returning Recursive Function
	Steps to Design a Recursive Algorithm
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Recursion & Nodes
	Recursion & Nodes
	Recursion & Nodes
	Recursion & Nodes
	Recursion & Nodes
	Recursion & Nodes
	Recursion & Nodes
	Recursion & Nodes
	Recursion & Nodes
	Recursion & Nodes
	Recursion & Nodes
	Recursion & Nodes
	Recursion & Nodes
	Tracing a Recursive Function
	Run-Time Stack and Activation Frames
	Recursive Array Search
	Recursion & Arrays
	Recursion & Arrays
	Recursion & Arrays
	Recursion & Arrays
	Recursion & Arrays
	Recursion & Arrays
	Recursion & Arrays
	Recursive Array Search
	Recursive Array Search (cont.)
	Algorithm for Recursive Linear Array Search
	Implementation of Recursive Linear Search
	Design of a Binary Search Algorithm
	Design of a Binary Search Algorithm

