
Classes &
Methods

CIS 1100 Spring 2024 @ University of Pennsylvania

Overview

Record Types allow us to create and manipulate real or imaginary world entities

Records are immutable

Records are defined by the properties they store, not by the behaviors they exhibit.

In this module, we will learn how to create and manipulate real or imaginary world

entities as objects, which have both properties AND behaviors.

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 1

Learning Objectives

To be able to write and use a class

To be able to write a class constructor

To be able to write comments

To be able to understand and write accessor and mutator methods

To be able to write methods

To be able to use static variables and methods

To be able to understand variable scope

To be able to understand and use the this keyword

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 2

Introduction

A CLASS is a template for creating objects

(like a RECORD TYPE defines what RECORDS of that type look like)

A class defines a new data type

(like record types do.)

A class defines the object’s attributes / properties and behaviors

Object’s properties are implemented as INSTANCE VARIABLES

Object’s behavior are implemented as METHODS

Objects are instances of a class, the way that records belong to a record type.

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 3

Class Design

Abstraction: set of information properties relevant to a stakeholder about an entity

Information Property (or just "property"): a named, objective and quantifiable aspect of

an entity

Stakeholder: a real or imagined person (or a class of people) who is seen as the

audience for, or user of the abstraction being defined

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 4

Class Design Exercise

Entity: Movie from the point of view of someone shopping for a movie on an online

storefront

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 5

Class Design

Entity: Movie

Properties:

Title

Year

Length

Genre

Format

Price

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 6

Class Design

Entity: Movie

Properties:

Title (String)

Year (int)

Length (int)

Genre (String)

Format (String)

Price (double)

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 7

Instances
of the
Movie
Class

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 8

Content of a Class

A class contains

Instance variables representing the properties of the abstraction

One or more constructor(s) to initialize the objects’ instance variables

Methods to implement the objects’ behaviors

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 9

Anatomy of a Class

public class Person {
 // instance variables
 private String name;
 private String email;
 private String phoneNumber;

 // constructor
 public Person(String newName, String newEmail, String newNumber) {
 // implementation withheld for now
 }

 // methods!
 public void print() {
 // implementation withheld
 }
 public void updateEmail(String newEmail) {
 // implementation withheld
 }
}

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 10

Instance Variables

Listed at the top of the class definition

To declare an instance variable, you write

private DataType variableName;

e.g. private String name; or private double price;

private means that only this class has access to this instance variable

important for class design! let each class only know about what it needs to.

opposite of public , which is more appropriate for functions/methods.

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 11

Instance Variables

Recalling the properties we decided on for Movies...

public class Movie {

 private String title;
 private int year;
 private int length;
 private String genre
 private String format
 private double price
 ...
}

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 12

Instance Variables

Another example, for a Person class:

public class Person {

 private String name;
 private String email;
 private String phoneNumber;
 ...
}

From the point of view of a University

Directory entry.

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 13

Instance Variables

Instance variables are the properties of the object

They are in scope throughout the entire class!

Can be used in other functions of the class

Usually they are not declared with an initial value

The initial value is usually assigned in the constructor

Different objects of this class will have different values for these variables!

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 14

Constructors

Set the initial values for the object’s instance variables

Constructors must have the same name as the class

Constructors have no return type!

To define a constructor, you write:

public ClassName(DataType1 parameter1, DataType2 parameter2, …){

 /* instance variable initialization */

}

(the parameter list can also just be empty!)

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 15

No-argument constructor

Default constructor (provided by Java) initializes instance variables to default values

Not often very useful

String and array instance variables set to null—dangerous!

Primitives set to 0/false

equivalent to the following:

public Person() {
 name = null;
 email = null;
 phoneNumber = null;
} // ¯_(ツ)_/¯ (not very useful!)

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 16

Argument constructor

A constructor can take in arguments to initialize the instance variables.

public Person(String initName, String initEmail, String initPhone) {
 name = initName;
 email = initEmail;
 phoneNumber = initPhone;
}

This constructor says: "I will create a new Person for you with these initial values for

name , email , and phoneNumber ."

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 17

Argument constructor

A constructor doesn't have to take one input per instance variable

public Person(String initName, String initEmail) {
 name = initName;
 email = initEmail;
 if (email.indexOf("upenn.edu") != -1) {
 phoneNumber = "215-898-5000";
 } else {
 phoneNumber = "";
 }
}

What does this constructor do?

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 18

Argument constructor

A constructor doesn't have to take one input per instance variable

public Person(String initName, String initEmail) {
 name = initName;
 email = initEmail;
 if (email.indexOf("upenn.edu") != -1) {
 phoneNumber = "215-898-5000";
 } else {
 phoneNumber = "";
 }
}

This constructor says: "I will create a new Person for you with these initial values for

name , email . If they have a Penn email, I'll give them a default Penn phone number.

Otherwise, I'll leave the field blank with an empty String."

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 19

Methods

Methods are functions that belong to objects of a class. They define how an object

behaves based on its properties.

Every object from a class has the same methods and the same instance variables.

The values of the instance variables differ between the objects.

 Since methods behave differently based on the values of the instance variables,

they can behave differently for different objects.

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 20

Special methods

Accessor methods: to retrieve and return the value of the instance variables

Records gave you these for free!

Mutator methods: to change (update) the value of the instance variables

These are not possible with Records

Main method: used to test your class (execute your code). There can be only one

main method inside a class

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 21

Accessor Methods

AKA "getter" methods

Used to return the value of an instance variable

Usually take no input, have the return type of the instance variable they're getting

// general structure
public VariableType getVariableName(){
 return variableName
}

e.g.

public String getName(){
 return name;
}

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 22

Mutator Methods

AKA "setter" methods

Used to change the value of an instance variable

Usually take an input matching type of the variable being set, have no return type

// general structure
public void setVariable(VariableType v){
 instanceVariable = v;
}

e.g. in the Person class:

public void setName(String newName){
 name = newName;
}

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 23

Methods, in General

Define the objects’ behavior

Can only be called on an object that was created using the constructor

Can return a value or not

To call a method, you write

objectName.methodName(/* parameters or not*/);

Example:

Person p = new Person();
p.setName(“Mariah”);

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 24

Methods, in General

A method is just a function, so it has:

A signature

A body

public returnType methodName(/* parameters */){
 // method’s body
}

For example:

public String toString() { // signature
 return "my name is: " + name; // body, uses instance variable
}

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 25

Some Common Methods

public String toString()
A method that lets you print out a human-readable String representation of the

object

Java doesn't do this for you, sadly!

public boolean equals(Object other)
A method that lets you decide if this object is the same as some other object

== is usable, but like with Strings, it doesn't do what you expect!

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 26

Methods with Parameters (Inputs)

When calling a method with parameters, you must provide actual values for each of the

formal parameters (inputs).

Within Point.java , we might write:

public void move(double dx, double dy) {
 x = x + dx;
 y = y + dy;
}

This could be called by writing, for example:

myPoint.move(-0.5, 1);

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 27

Methods & Primitive Inputs

When calling a method with a primitive type input, any changes to the value of the

variable will not be reflected outside of the method call.

public void setXWithinLimit(double newX) {
 if (newX > 1) {
 newX = 1;
 }
 x = newX;
}

public static void main(String[] args) {
 Point p = new Point(0.4, 0.3);
 double newX = 34;
 p.setXWithinLimit(newX);
 System.out.println(p.getX()); // 1
 System.out.println(newX); // 34
}

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 28

Methods & Object Inputs

When calling a method with an object type input, (any array, Point, etc.):

An alias, or copy of the reference, is stored in the parameter variable

Changes to the object inside of the method will be visible outside of the method!

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 29

Methods & Object Inputs

copyXToOtherPoint takes a Point as input and modifies its x value.

public void copyXToOtherPoint(Point other) {
 other.setX(x);
}

public static void main(String[] args) {
 Point a = new Point(0.4, 0.3);
 Point b = new Point(0, 0);
 System.out.println(b.getX()); // 0
 a.copyXToOtherPoint(b);
 System.out.println(b.getX()); // 0.4
}

The modification made to other inside the body of copyXToOtherPoint is reflected

in whatever object was passed in as input—b in this case.

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 30

Static Variables & Methods

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 31

Static Variables & Methods

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 32

Static Variables & Methods

Instance variables and non-static methods define the properties and behaviors of

the objects of a class.

These variables and methods are referenced using the name of a particular

object instance

p.getX() , p.toString() where p is a particular Point that's been

initialized

Static variables and methods belong to the entire class and do not vary among

objects of the class.

These are referenced using the name of the class itself, e.g.

PennDraw.clear() or Math.random() or Math.PI

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 33

Static Variables & Methods

To tag a method or variable as static, write static after the public/private modifier

public class Point {
 private double x;
 private double y;
 private static int numPointsCreated = 0; // all Points share this value

 public Point(double newX, double newY) {
 x = newX;
 y = newY;
 numPointsCreated++; // all Points see a new value for this var.
 }
 // other methods omitted...
 public static int getNumPoints() {
 return numPointsCreated;
 }
}

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 34

Static Variables & Methods

Later, in main ...

public static void main(String[] args) {
 Point first = new Point(0.1, 0.3);
 System.out.println(Point.getNumPoints()); // prints 1
 Point second = new Point(0, 0);
 System.out.println(Point.getNumPoints()); // prints 2

 // technically, you can do this, too:
 System.out.println(first.getNumPoints()); // prints 2
 System.out.println(second.getNumPoints()); // prints 2
}

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 35

Making Scope Explicit

The scope of a variable is where the variable is accessible by name and depends

on where the variable was declared.

Three main levels of scope when designing classes:

CLASS LEVEL SCOPE: used for instance variables, these are accessible in the

entire class.

METHOD LEVEL SCOPE: used for "local" variables and method inputs, these

are accessible inside of a single method.

BLOCK LEVEL SCOPE: used for loop control variables, these are accessible

only inside the body of a loop or conditional

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 36

Scoping
out Scope

OBJECT ORIENTED PROGRAMMING

CIS 1100 Spring 2024 @ University of Pennsylvania 37

	Classes & Methods
	Overview
	Learning Objectives
	Introduction
	Class Design
	Class Design Exercise
	Class Design
	Class Design
	Instances of the Movie Class
	Content of a Class
	Anatomy of a Class
	Instance Variables
	Instance Variables
	Instance Variables
	Instance Variables
	Constructors
	No-argument constructor
	Argument constructor
	Argument constructor
	Argument constructor
	Methods
	Special methods
	Accessor Methods
	Mutator Methods
	Methods, in General
	Methods, in General
	Some Common Methods
	Methods with Parameters (Inputs)
	Methods & Primitive Inputs
	Methods & Object Inputs
	Methods & Object Inputs
	Static Variables & Methods
	Static Variables & Methods
	Static Variables & Methods
	Static Variables & Methods
	Static Variables & Methods
	Making Scope Explicit
	Scoping out Scope

