
Lists

CIS 1100 Spring 2024 @ University of Pennsylvania

Recall: Public Interface

The public interface of a class comprises the public methods and instance variables

defined in the class.

These public methods and instance variables are the only ways that objects of the

class can be used once created.

Private instance variables and helper methods make the implementation of the

public interface possible, but are not exposed to the outside.

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 2

Rules & "Public Interface" of Arrays

Once an array object is declared, its size can't change.

An array can only contain elements of one declared type.

Array elements are accessed/modified using [] , and we get array length with

.length
This is the extent of the "public interface" of arrays

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 3

Imagining a Better Future

What if we had a data structure that was a bit easier to use?

Something that can change size to accomodate more elements.

Something that has the same methods for getting & setting values in an ordered

sequence in addition to other useful operations.

deleting elements? searching for elements? subsequences?

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 4

The ArrayList

In Java (and other languages...), the List data type describes an ordered,

resizeable collection of elements.

List.java defines a public interface for what any List can do

Java includes many different classes that implement this public interface:

Vector , LinkedList , ArrayList , and many more.

The following examples will all use ArrayList , but any of the others would

work, too.

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 5

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html

Importing

To use an ArrayList in your program, make sure to put the import statement at the

top of the file.

import java.util.ArrayList;

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 6

In order to declare a variable for an ArrayList and initialize an empty one:

ArrayList<DataType> values = new ArrayList<DataType>();

In the angle brackets (<>) goes the data type that the ArrayList will store

For example, we say that ArrayList<String> is an ArrayList of Strings .

The contents of the angle brackets on the left and right should match.

(you can also safely omit the contents of the right angle brackets)

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 7

Declaring ArrayLists

Lists cannot support primitive types like int , double , boolean , or char .

Java has a bunch of wrapper classes that can be used instead.

Wrong! Right.

ArrayList<int> ArrayList<Integer>

ArrayList<double> ArrayList<Double>

ArrayList<char> ArrayList<Character>

ArrayList<boolean> ArrayList<Boolean>

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 8

ArrayList Types

add(T element) adds the value element to the ArrayList, making sure there's space

for it first.

ArrayList<String> staffNames = new ArrayList<String>();
staffNames.add("Hannah");
staffNames.add("Jared");
staffNames.add("Elie");
staffNames.add("Mia");
staffNames.add("Ruth");
System.out.println(staffNames);

 ["Hannah", "Jared", "Elie", "Mia", "Ruth"]

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 9

Adding to an ArrayList

...did you catch that?

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 10

You can print out the contents of an ArrayList with a
single call to System.out.println() !

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 11

add(T element) adds the value element to the List

Elements are added to the end

the size of the ArrayList will grow by one

The List can grow arbitrarily large, although there are occasionally performance

penalties when growing the List.

don't worry about this for now

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 12

Anyway...

get(int index) returns the element at the specified location. Valid indices range

from 0 to list.size() - 1 (just like in arrays.)

ArrayList<String> staffNames = new ArrayList<String>();
staffNames.add("Hannah");
staffNames.add("Jared");
staffNames.add("Elie");
staffNames.add("Mia");
staffNames.add("Ruth");
System.out.println(staffNames.get(2));

 "Elie"

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 13

Getting from a List

get(int index) returns the element at the specified location. Valid indices range

from 0 to list.size() - 1 (just like in arrays.)

ArrayList<String> staffNames = new ArrayList<String>();
staffNames.add("Hannah");
staffNames.add("Jared");
staffNames.add("Elie");
staffNames.add("Mia");
staffNames.add("Ruth");
System.out.println(staffNames.get(0));

 "Hannah"

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 14

Getting from a List

get(int index) returns the element at the specified location. Valid indices range

from 0 to list.size() - 1 (just like in arrays.)

ArrayList<String> staffNames = new ArrayList<String>();
staffNames.add("Hannah");
staffNames.add("Jared");
staffNames.add("Elie");
staffNames.add("Mia");
staffNames.add("Ruth");
System.out.println(staffNames.get(-1));

Exception in thread "main" java.lang.IndexOutOfBoundsException: Index
-1 out of bounds for length 5

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 15

Getting from a List

get(int index) returns the element at the specified location. Valid indices range

from 0 to list.size() - 1 (just like in arrays.)

ArrayList<String> staffNames = new ArrayList<String>();
staffNames.add("Hannah");
staffNames.add("Jared");
staffNames.add("Elie");
staffNames.add("Mia");
staffNames.add("Ruth");
System.out.println(staffNames.get(10));

Exception in thread "main" java.lang.IndexOutOfBoundsException: Index
10 out of bounds for length 5

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 16

Getting from a List

set(int index, T element) sets the value at the specified location to be element .

Valid indices range from 0 to list.size() - 1 still.

ArrayList<String> staffNames = new ArrayList<String>();
staffNames.add("Hannah");
staffNames.add("Jared");
staffNames.add("Elie");
staffNames.add("Mia");
staffNames.add("Ruth");
staffNames.set(2, "Evil Elie")
System.out.println(staffNames);

 ["Hannah", "Jared", "Evil Elie", "Mia", "Ruth"]

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 17

Updating Values in a List

set(int index, T element) actually returns the value that's being replaced, if you

want it.

ArrayList<String> staffNames = new ArrayList<String>();
staffNames.add("Hannah");
staffNames.add("Jared");
staffNames.add("Elie");
staffNames.add("Mia");
staffNames.add("Ruth");
String oldName = staffNames.set(2, "Evil Elie")
System.out.println(oldName);

 "Elie"

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 18

Updating Values in a List

size() returns the number of elements inside of the specified ArrayList.

ArrayList<String> staffNames = new ArrayList<String>();
System.out.print(staffNames.size() + " ");
staffNames.add("Hannah");
System.out.print(staffNames.size() + " ");
staffNames.add("Jared");
System.out.print(staffNames.size() + " ");

 0 1 2

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 19

The Length of a List

Check out the documentation if you want to use other methods of an ArrayList. Here are

a few handy ones.

Method Return Type Purpose

add(int index, T
element)

void Put an element at a specific place in the ArrayList

clear() void Remove all elements from the list

remove(int index)
element

type

Delete and return whatever lives at the specified

index.

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 20

There's more where that came from...

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Rectangle[] shapes = new Rectangle[10];
// assume that we add some Rectangles to the array here!

for (int i = 0; i < shapes.length; i++) {
 Rectangle currentElement = shapes[i];
 System.out.println("shapes has " + currentElement + " at index " + i);
}

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 21

Refresher: Iterating over Arrays

It's pretty similar to array iteration, replacing shapes[idx] with shapes.get(idx) and

shapes.length with shapes.size() :

ArrayList<Rectangle> shapes = new ArrayList<Rectangle>();
// assume that we add some Rectangles to the ArrayList here!

for (int i = 0; i < shapes.size(); i++) {
 Rectangle currentElement = shapes.get(i);
 System.out.println("shapes has " + currentElement + " at index " + i);
}

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 22

Iterating over Lists

You can also use the Enhanced For Loop to iterate over ArrayLists

ArrayList<Rectangle> shapes = new ArrayList<Rectangle>();
// assume that we add some stuff to the ArrayList here!

for (Rectangle currentElement : shapes) {
 System.out.println("currentElement is now " + currentElement);
}

The iteration order is the same: it'll proceed from index 0 to shapes.size() - 1 .

Within the enhanced for loop, the value of currentElement is set directly to be a

Rectangle—no indexing necessary or even possible.

Technically, you can do this over plain old arrays, too.

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 23

Enhanced Iteration over ArrayLists

Given an ArrayList of names, make sure that they start with an uppercase letter. If they

don't, print that you're fixing the name and then modify the list to have the correctly

formatted name.

You'll find that Character.isUpperCase(char c) and

Character.toUpperCase(char c) will come in handy.

Make sure to change the ArrayList in-place, which is to say that you shouldn't create a

new ArrayList to complete this task.

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 24

Problem: Acceptable Names

public void fixFormatting(ArrayList<String> names) {
 for (int i = 0; i < names.size(); i++) {
 String currentName = names.get(i);
 char firstLetter = currentName.charAt(0);
 if (!Character.isUpperCase(firstLetter)) {
 char firstLetterUpper = Character.toUpperCase(firstLetter);
 String rest = currentName.substring(1);
 String fixedName = firstLetterUpper + rest;
 names.set(i, fixedName);
 System.out.print("Fixing name " + currentName);
 System.out.println(" at position " + i);
 }
 }
}

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 25

Solution:

Given two ArrayLists, create a new ArrayList containing first the values from the first

ArrayList followed by the values from the second ArrayList

Make sure to create and return a new ArrayList

public ArrayList<Integer> concatenate(ArrayList<Integer> first, ArrayList<Integer> second) {

}

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 26

Problem: Concatenate

public ArrayList<Integer> concatenate(ArrayList<Integer> first, ArrayList<Integer> second) {
 ArrayList<Integer> newList = new ArrayList<Integer>();

 for (int i : first) {
 newList.add(i);
 }
 for (int i : second) {
 newList.add(i);
 }
 return newList;
}

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 27

Solution:

Given two ArrayLists, create a new ArrayList with the values from the input lists woven

together like so:

a = [1, 3, 5, 7];
b = [2, 4, 6, 8, 10, 12];
weave(a, b) --> [1, 2, 3, 4, 5, 6, 7, 8, 10, 12]

Make sure to create and return a new ArrayList.

public ArrayList<Integer> weave(ArrayList<Integer> first, ArrayList<Integer> second) {

}

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 28

Problem: Weave

public ArrayList<Integer> weave(ArrayList<Integer> first, ArrayList<Integer> second) {
 ArrayList<Integer> newList = new ArrayList<Integer>();
 int firstIdx = 0;
 int secondIdx = 0;
 while (firstIdx < first.size() || secondIdx < second.size()) {
 if (firstIdx < first.size()) {
 newList.add(first.get(firstIdx));
 firstIdx++;
 }
 if (secondIdx < second.size()) {
 newList.add(second.get(secondIdx));
 secondIdx++;
 }
 }
 return newList;
}

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 29

Solution:

Using Lists in Creative Ways

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 30

Bouncing Ball Simulation

Ingredients:

Ball.java , a class that defines how a 2D ball moves & bounces on a screen

BouncingBalls.java , a class that:

contains a main method so that the simulation is runnable

creates an ArrayList<Ball> in which to store the objects to be simulated

defines a "physics" (animation) loop

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 31

A Bit of Physics

To simulate an object's motion in 2D space over time, we need to keep track of its:

position ()

where the object is right now

velocity/speed ()

how much the object should move from where it is right now to where it will be

next time we look

acceleration ()

how much the object's velocity should change from what it is right now to what

it will be next time we look

we'll hold acceleration constant

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 32

A Bit of Physics

Since our simulation is run using a loop, we do our calculations in discrete steps.

We denote the step number using superscripts, so means "x position at step "

We'll assume a constant unit timestep, meaning that we don't have to account for

the length of the timestep in our equations

(ignore this point if the details of physical simulations are not interesting to

you)

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 33

A Bit of Physics

Equation Meaning Code

x position in the next iteration is equal to the x position now plus

the x speed now

px = px +
vx

y position in the next iteration is equal to the y position now plus

the y speed now

py = py +
vy

x speed in the next iteration is equal to the x speed now plus the x

acceleration

vx = vx +
ax

y speed in the next iteration is equal to the y speed now plus the y

acceleration

vy = vy +
ay

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 34

Implementing Ball.java
What behaviors does a Ball object need to exhibit as part of a simple physics

simulation?

Needs to be drawable so that we can see the simulation

Needs to move & bounce pursuant to the previous equations

Methods:

public void draw() , public void update()

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 35

Implementing Ball.java
What properties does a Ball object need to store in order to perform these

operations?

position, x and y

velocity, x and y

acceleration, x and y

we'll ignore x acceleration, and y acceleration is just gravity

radius

used for drawing

used for deciding when to bounce

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 36

The Simulator

The simulator will be responsible for initializing and keeping track of all of the balls in

the simulation.

How will we store all of the objects being simulated?

Create an ArrayList<Ball>

How will we draw each of the objects being simulated?

Iterate through the array list and call the draw() method on each of the Ball
objects.

How will we get each of the objects to move and bounce?

Iterate through the array list and call the update() method on each of the

Ball objects

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 37

The Simulator

import java.util.ArrayList;

public class BouncingBalls {
 public static void main(String[] args) {
 int N = 40;
 ArrayList<Ball> allBalls = new ArrayList<Ball>();
 for (int i = 0; i < N; i++) {
 allBalls.add(new Ball());
 }

 PennDraw.setCanvasSize(600, 600);
 PennDraw.enableAnimation(30);
 while (true) {
 PennDraw.clear();
 for (int i = 0; i < N; i++) {
 Ball current = allBalls.get(i);
 current.draw();
 current.update();
 }
 PennDraw.advance();
 }
 }
}

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 38

A First Pass at the "Bouncing" Ball

public class Ball {
 private double px, py, vx, vy, gravity, radius;

 public Ball() {
 px = Math.random();
 py = Math.random();
 vx = -0.005 + (Math.random() * 0.01); // [-0.005, 0.005]
 vy = -0.005 + (Math.random() * 0.01);
 gravity = -0.0001;
 radius = 0.02 + Math.random() * 0.04; // [0.02, 0.06]
 }

 public void draw() {
 PennDraw.filledCircle(px, py, radius);
 }

 public void update() {
 px = px + vx;
 py = py + vy;
 vy = vy + gravity;
 }
}

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 39

Problem: No Bouncing!

Currently, the balls just drop off the sides or bottom of the screen. How can we get them

to bounce?

Check if the ball has gone past the left, right, or bottom of the screen

Simulate a bounce by inverting the velocity for the next update step

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 40

A Bounce

(0, 0)

(1, 1)(0, 1)

(1, 0)

(px, py)

(px, py - radius)

(px, py)

(px, py - radius)

On the left, we have a sketch of the canvas

with two balls.

Which one should "bounce"?

How can you formalize what it means

for a ball to bounce off of the bottom

of the screen?

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 41

Checking a Bounce

A ball should bounce off the bottom of the screen when, at time step :

The ball is traveling downwards ()

The bottom of the ball is at or below the bottom of the screen ()

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 42

Modeling a Bounce

What happens when an object bounces off of a surface?

The object should change direction

The object should lose a bit of momentum

The Bounce:

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 43

A Better update()
public void update() {
 px = px + vx;
 py = py + vy;
 vy = vy + gravity;

 if (vy < 0 && py - radius <= 0) {
 vy = -0.9 * vy;
 }
}

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 44

A Best update()
public void update() {
 px = px + vx;
 py = py + vy;
 vy = vy + gravity;

 if (vy < 0 && py - radius <= 0) {
 vy = -0.9 * vy;
 }

 if ((vx < 0 && px - radius <= 0) ||
 (vx > 0 && px + radius >= 1)) {
 vx = -0.9 * vx;
 }
}

LISTS

CIS 1100 Spring 2024 @ University of Pennsylvania 45

	Lists
	Recall: Public Interface
	Rules & "Public Interface" of Arrays
	Imagining a Better Future
	The ArrayList
	Importing
	Declaring ArrayLists
	ArrayList Types
	Adding to an ArrayList

	...did you catch that?
	🚨 🚨 🚨 🚨 🚨
	You can print out the contents of an ArrayList with a single call to System.out.println()!
	🚨 🚨 🚨 🚨 🚨
	Anyway...
	Getting from a List
	Getting from a List
	Getting from a List
	Getting from a List
	Updating Values in a List
	Updating Values in a List
	The Length of a List
	There's more where that came from...
	Refresher: Iterating over Arrays
	Iterating over Lists
	Enhanced Iteration over ArrayLists
	Problem: Acceptable Names
	Solution:
	Problem: Concatenate
	Solution:
	Problem: Weave
	Solution:

	Using Lists in Creative Ways
	Bouncing Ball Simulation
	A Bit of Physics
	A Bit of Physics
	A Bit of Physics
	Implementing Ball.java
	Implementing Ball.java
	The Simulator
	The Simulator
	A First Pass at the "Bouncing" Ball
	Problem: No Bouncing!
	A Bounce
	Checking a Bounce
	Modeling a Bounce
	A Better update()
	A Best update()

