
Unit Testing Code



Summary & Reference
Quick Reference for when you

will write your own tests. ☺



Testing a unit of code



Testing a unit of code

1. Identify the INPUT, possibly including any state variables
2. Generate, manually or through means OUTSIDE of your code

an EXPECTED OUTPUT
3. Execute your code to get an ACTUAL OUTPUT

4. Compare the expected and actual output 



Test Case

● Comprised of:

○ An Input

○ An EXPECTED output (Usually manually coded in)

○ And an ACTUAL output. (generated by the code we are testing)

● If an expected output doesn’t match the actual  output, one of the two is 

wrong

○ Usually, but not necessarily, the actual output is wrong



Testing a unit of code

Test Case #1: Input = {3,2,1}; Expected output = 3; Actual output = 3

Test Case #2: Input = {1,2,3}; Expected output = 3; Actual output = 1

PASS!!!

FAIL!!!



Testing is like potato chips

● They both contribute to my overall poor health*

● Additionally, you can’t have just one

○ One test passing may have no bearing on another test  passing

*credit toWillMcBurney (?) for this good joke



Why does Test 1 pass and not Test 2?

● Test1 does not cover/execute the underlying FAULT in the code.

● A fault is a static defect in the code, or “bug”

Test Case #1: Input = {3,2,1}; Expected output = 3; Actual output = 3

Test Case #2: Input = {1,2,3}; Expected output = 3; Actual output = 1

PASS!!!

FAIL!!!



JUnit

● An automatic testing tool that allows you to write  tests once and continue 

to use them again and  again

● In this way, if you change something later that  breaks code that worked 

previously, you will  immediately know because your tests fail

● Technically not built into Java



Writing a JUnit Test

@Test  // This must be before every test function

public void testFindMax0() {      // Notice – no static keyword

// inputs 

int a = 3;

int b = 2; 

int c = 1;

// expected – generated manually

int expected = 3;

// actual – Execute the code with the above input

int actual = findMax(a, b, c);

// Assertion – if the two things below aren’t equal, the

//             test fails. Always put expected argument first.

assertEquals(expected, actual);

}



Writing a JUnit Test (with an error message)

@Test  // This must be before every test function

public void testFindMax0() {      // Notice – no static keyword

String message = "ERROR: findMax(3,2,1) returned an incorrect result";

// expected – generated manually

int expected = 3;

// actual – Execute the code with the above input

int actual = findMax(3, 2, 1);

// Assertion – now prints out an error message if the assert fails

assertEquals(message, expected, actual);

}



Import Statements

Start all Test files with the two important statements below.



Writing Junit (Demo)



How to find JUnit



How to set up JUnit



How to run tests



Failure!



Success!



What a test failing means

● A test failing doesn’t always mean the code has a  bug

○ The test could be written wrong (that is, the test writer  came up with the 

wrong expected output)

● A test passing doesn’t mean there is no bug

○ The test code not execute a buggy statement

○ The test could execute a buggy statement in a way that a  failure doesn’t 

manifest



Consider these test cases

Test Case #3: Input = {1,1,1}; Expected output = 1; Actual output = 1

Test Case #4: Input = {4,5,6}; Expected output = 4; Actual output = 4

PASS!!!

PASS!!!



Errors in the test case

● Encountering the fault does not mean your test will fail.

● Your test could be erroneous!

○ In this case, test #4 is a false positive

Test Case #3: Input = {1,1,1}; Expected output = 1; Actual output = 1

Test Case #4: Input = {4,5,6}; Expected output = 4; Actual output = 4

PASS!!!

PASS!!!



False Negatives

● If your test is erroneous, you could also get a false  negative.

● This test DOESN'T cover the fault, but still fails, due  to erroneous testing

Test Case #4: Input = {9,8,7}; Expected output = 7; Actual output = 9

FAIL!!!



Testing Strategies

● Exhaustive Testing

○ Attempt a test with every possible input

○ Not even remotely feasible in most cases

● Random Testing

○ Select random inputs

○ Likely to miss narrow inputs that are special cases  (example, dividing by zero)



Testing Strategies

● Black-box Testing

○ Select inputs based on the specification space

○ “Assume the code can’t be seen”

○ We focus on this one

● White-box Testing

○ Select inputs based on the code itself

○ Have every line of code covered by at least one test



The need for automatic testing

● Automatic testing (such as JUnit) allows for testing  rapidly after each 

update

● If an update breaks a test, a commit can be rejected

● Ensure you don’t break something that already  worked

○ Not fool proof



Searching



Overview

● We often need to search for an item in a collection

● In this module, we will learn about how to search for an element in an 

array 

● Example:

○ Find the cat named Garfield inside an array named shelter



Learning Objectives

● To be able to use linear search to find an element inside an array

● To be able to use binary search to find an element inside an array

● To be able to know when to use linear search and when to use binary 

search



Linear Search

● Used to search for a value (the target) in an unsorted array

● It uses a loop to iterate over the values

● Starts at the first element and move to the next element until the target is 

found

● Returns the position of the target if it was found in the array

● Returns -1 if the target was not found in the array



Linear Search: array
search

array
target

loop through the array 

starting at the first element

check if current element is the target

return the position of the target

the target was not found in the array 



Learning Objectives

● To be able to use linear search to find an element inside an array or an 

ArrayList

● To be able to use binary search to find an element inside an array

● To be able to know when to use linear search and when to use binary 

search



Binary Search

● Used to search for a value (the target) in a sorted array 

● Keeps dividing the array in half

● Compares the target with the value at the middle index (middle element)

● If the target is less than the middle element, then we search the target in 

the left half of the array (the positions before the middle element)

● If the target is greater than the middle element, then we search the target 

in the right half of the array (the positions before the middle element)



Binary Search

● Returns the position of the middle element if it is equal to the target

● Returns -1 if the target was not found in the array



Binary Search

Caryn Debbie Dustin Elliot Jacquie Jon Rich

Dustin

target

left = 0 right = 6middle = 3

First iteration



Binary Search

Caryn Debbie Dustin Elliot Jacquie Jon Rich

Dustin

target

left = 0 right = 2

middle = 1

Second iteration 



Binary Search

Caryn Debbie Dustin Elliot Jacquie Jon Rich

Dustin

target

left= middle = right = 2

Third iteration



Binary Search
search

array
target

compute middle position

keep searching until no space left

move right before middle when target < middle element

move left after middle when target > middle element

Return middle when target == middle element

the target was not found in the ArrayList 



Linear Search vs. Binary Search

● Binary search is faster than linear search

● Binary search runs on sorted data

● Linear search runs on unsorted data



Linear Search vs. Binary Search

● Runtime analysis: how many comparisons will it take to determine that 

the target is not in the array?

Length of the array Linear Search Binary Search

2 2 2

4 4 3

8 8 4

16 16 5

100 100 7


