
CIS 1100
Conditionals (Lecture) Python

Fall 2024
University of Pennsylvania

An important aspect of the string type, is that it is a
sequence type. A string contains a sequence of characters.

Sequences have a length and indexes for individual members of the sequences.

For strings, it is a sequence of characters. Emphasis
on sequences because: The order matters

s1 = "hi"
s2 = "ih"
print(s1 == s2) # False

Sequence Types: String

1

Ordering is an important aspect to string, and we use
indexes as a way to specify positions in the string.

Consider the string

index 0 1 2 3 4 5

characters H e l l o !

index 0 is the first position (first character)

len(string) - 1 is the index of the last character

Sequence Types: String

2

For any sequence, you can use

x = "Maracuyá"
print(x[0]) # 'M'
print(x[3]) # 'a'
print(x[len(x) - 1]) # 'á'

Sequence Types: Basic Functionality

len(seq) to find the length of the sequence seq

seq[i] to access the ith index of the sequence seq

3

What is the index of the letter B from the following string (M3)

x = "GY! BE"

Practice:

(A) 3

(B) 4

(C) 5

(D) 2

(E) 0

4

Get the middle character of a string withouth knowing
the string's value. Assume length is odd and >= 1.

string = "example"
middle_char = "

Hint: //

Get the age from this string an int. Do not just
say age = 26, actually extract it from the string.

string = "Age: 26"
age = ___________________

Hint: assume age is two characters. Think about what operators are useful here.

Extra Practice:

5

example:

"Hello".find("l") # 2
"Phl".find("U") # -1
"Attack".find("ta") # 2

Other String Sequence Function
string.find(target): finds the first index that has the target string, or -1 if not found.

6

Boolean expressions evaluate to bool values, i.e. either True or False.

3 < 4 and 9 == (81 / 9) # always True
not True and True or False and not False # always False

We are also able to write boolean expressions that contain variables.

x % 3 == 2 and x > 5 # not always True or False!

This expression's value changes based on the value of x!

Can you think of a value of x that would cause the
expression to evaluate to True? What about False?

Recap: Conditions as Boolean Expressions

7

Relational Operators:

Operator/method Input Types Description

< / <= int, float, str less than / less than or equal to

> / >= int, float, str greater than / greater than or equal to

== / != int, float, str equal to / not equal to

The Boolean Expression Toolkit

8

Logical Operators:

Operator/method Input Types Description

and bool evaluates to True only if both inputs are True

or bool evaluates to True as long as at least one input is True

not bool negates a single bool value to its opposite

The Boolean Expression Toolkit

9

M1:
I'm writing a program to monitor valve pressure in a chemical plant. I want to define safe
conditions as those where the pressure is 0.5, 3.5, or between those two values. Which
is a boolean expression that is True only when conditions are safe?

Activity: Under Pressure

(A) 0.5 < pressure and 3.5 < pressure

(B) 0.5 <= pressure and 3.5 >= pressure

(C) 0.5 <= pressure or 3.5 >= pressure

(D) 0.5 >= pressure or 3.5 <= pressure

(E) 0.5 > pressure and 3.5 <= pressure

10

In its simplest usage, it checks to see if something is within something else.

It evaluates to either True or False. As an example:

result = "pressure" in "under_pressure"
print(result) # prints True!!

result = "Maracuyá" in "Mar"
print(result) # prints False!

We will eventually see more complex usage; but this is ok for now. :)

The in Keyword

11

(S7)
Find a value for s such that this expression is True, or write "None" if there are none:

len(s) > 5 and len(s) % 2 == 0 and "watch" in s

(S8)
Find a value for x such that this expression is True, or write "None" if there are none:

(3 < x < 8 or x % 2 == 0) and (x // 10 == 0 or x % 2 != 0)

(S9)
Find a value for x such that this expression is True, or write "None" if there are none:
Hint: There might be multiple solutions.

not ((3 < x < 8 and x % 2 == 0) and (x // 10 == 0 and x % 2 != 0))

Activity: Satisfaction

12

"if he wanted to, he would." — William Shakespeare

The if statement allows us to specify a portions of our program
that should be run only in the case that a certain condition is met.

if my_boolean_expression:
statement_one
statement_two
...
statement_last

Recap: if

13

Recap: Control
Flow & if

Test the condition...
if it is True, execute
the block of statements

otherwise, proceed to
the next statement.

14

import penndraw as pd
r = 0.1
if r == 0.1:
 pd.set_pen_color(pd.RED)
if r > 0.05:
 pd.set_pen_color(pd.GREEN)
if r < 0.5:
 pd.filled_circle(0.5, 0.5, r)
 pd.set_pen_color(pd.BLACK)

M2: What color is the circle that gets drawn?
(A) Red
(B) Green
(C) Black
(D) There is no circle drawn

Activity:

15

elif allows you to specify an alternative condition that is
be tested only when all previous conditions were False.

The elif syntax:

if first_boolean_expression:
statement_one
statement_two
...
statement_last

elif alternative_boolean_expression:
statement_a
statement_b
...
statement_z

Recap: elif

16

if and elif statements
represent mutually exclusive
choices: we may execute
the body of one, the other,
or neither, but never both.

Recap: elif

17

C12: Draw a flow-chart representing the control flow of this program. Use
diamonds for conditionals (if/elif) and put the boolean expressions
inside of the diamonds. Represent blocks of code as rectangles. Write all
of the lines of code that belong to a block in the rectangle.

import penndraw as pd
code = input("TYPE THE CODE")

if len(code) == 4:
 pd.square(0.25, 0.25, 0.1)
elif not code.isalpha(): # `isalpha` evaluates to True if all characters are alphabetical...
 pd.circle(0.75, 0.75, 0.1)

if code.endswith("!") and code[0] == "0": # `endswith` evaluates to True if it ends with the str inside ().
 pd.circle(0.5, 0.5, 0.1)
pd.run()

Activity: Picking Paths

18

Clockwise from the top-left, write the input <"CODE">
that a person could type in to generate each output. (L13)

Activity: Picking Paths

19

The else keyword allows us to define a body of statements that
will be run if all previous conditions (if and elif) were not met.

if first_boolean_expression:
 block_one
elif alternative_boolean_expression:
 block_two
optionally many elif statements provided here...
else:
 block_three

Look: no new condition provided!

Recap: else

20

Recipe for any conditional:

1. Always start with an if. Each if comes with a boolean
expression to test. This expression is always tested.

2. As many elif statements as desired. Each comes with a boolean
expression. Each expression only tested if all previous are False.

3. An else statement, or not. No boolean expression provided.
Body executed if all previous expressions are False.

Recap: All Conditionals

21

Both snippets below are broken for some reason. In (C14),
write an explanation for what is wrong in both cases.

x = int(input())
if x > 12:
 print("daylight")
elif x < -10:
 print("fires")
elif x != 45:
 print("ridges")
else x % 13 == 2:
 print("green")

y = input()
if y == "bliss":
 z = "ful"
else:
 print(y + z)

Activity: Fix it!

22

Write a program that simulates a guessing game. (The
answer is always 50, but the gamer is ignorant of this fact.)

(C16)

Extra Practive Activity: hot_or_cold.py

You will need to prompt the user for input using input()
and parse that value as a number using int().

If their guess is correct, print out "Victory".

If the guess is within ten of the correct answer, print out "Hot ".

Otherwise, print out "Cold "

23

What to do at a traffic light, take two:

match traffic_light:
 case "red":
 print("Stop!")
 case "yellow":
 print("Slow down.")
 case "green":
 print("Proceed carefully.")

Recap: case /match :
Another Way to Choose

match allows us to compare an expression's value to several different cases.

Each case gives a value to compare to and a block of code to execute if there's a match.

Use | to specify multiple options per case

Use _ to specify a fall-back 24

A tier list is an assignment of letter grades to different options. CIS 1100 TAs
are really opinionated about lots of things, including different kinds of milks.
Here are my personal rankings...:

Milks Tier

Oat, Whole Cow S (highest)

2% Cow, Soy A

Coconut, Condensed B

All other milks C

Almond, Goat F (lowest; a disgrace)

Use match and case to write a program that prints the tier of a milk name. (C16)

Activity: Tier List

25

milk = input()
match milk:
 case "Oat" | "Whole Cow":
 print("S")
 case "2% Cow" | "Soy":
 print("A")
 case "Coconut" | "Condensed":
 print("B")
 case "Almond" | "Goat":
 print("F")
 case _:
 print("C")

26

Reminders
HW00 is due tonight at 11:59pm

Earn late tokens by handing in effortfully completed worksheets

Check-in due before 1/31

HW01 Released Tomorrow Afternoon, Due 2/5

Use one late day --> submit by 1/30 @ 11:59pm

Use two late days --> submit by 1/31 @ 11:59pm

START EARLY!

Recitation continues next week

27

28

