
CIS 1100
Exam Tips Python

Spring 2025
University of Pennsylvania

Type Ordered Indexable Common Methods Notes

String Yes Yes .find(), .replace(), .split() Immutable

List Yes Yes .append(), .extend() Mutable

Set No n .add(), .remove(), &, | Unordered, no duplicates

Common mistakes:

Different Sequences, Different Behaviors

Using the same methods across all sequences (DO NOT DO THIS)

Forgetting you can't index into a set

Misreading {} vs []. You can always use set(), dict(), list() if you want to be
super clear when writing code.

1

list_one = list("CIS4480ISTHEBEST")
list_two = list("CIS1100ISTHEBEST")

result_one = {char for char in list_one if char not in list_two}
result_two = [char for char in list_one if char not in list_two]

print(result_one) # {'4', '8'}
print(result_two) # ['4', '4', '8']

Formatting and Comprehensions

[x for x in seq] → list comprehension

{x for x in seq} → set comprehension

2

Tool Behavior Good Lambda

map Applies function to each item lambda x: x * 2

filter Keeps items passing a test lambda x: x > 0

reduce Combines all items to a single value lambda x, y: x + y

Map, Filter, Reduce: Quick Reminders

map & filter:

reduce:

Forgetting to wrap map or filter in list() if you want a list of items

DO NOT WRITE lambdas that modify the accumulator in-place.

Forgetting to provide an initial value to catch edge cases (if necessary).

3

Bad example :

reduce(lambda acc, elem: acc.append(elem), nums, [])

Good example :

reduce(lambda acc, elem: acc + [elem], nums, [])

Lambdas Must Be Exact
Must have the correct number of arguments. If you
know it needs two, make sure to give it two arguments.

In reduce, don't modify the accumulator directly — always return a new object
(this is a bit on cusp of being out of scope of the class, but this is possible to
happen with lists! To be safe, do not perform .method calls on the accumulator.)

4

Return Type Accumulation Behavior

String Concatenation (+)

List Concatenation (+ [item])

Number Addition (+) or Multiplication (*)

def build_str(s):
 if not s:
 return ""
 return s[0] + build_str(s[1:])

def sum_nums(nums):
 if not nums:
 return 0
 return nums[0] + sum_nums(nums[1:])

You should be able to answer questions like: Suppose you call
build_str("1234") and sum_nums(["1", "2", "3", "4"]).
Do they both succeed? If so, what does each function return?

How Recursion Accumulates Results

5

No exceptions:

0 % 5 == 0
0 % 99 == 0
0 % (-8) == 0

Misapplying % often causes wrong conditionals. Please do not miss questions
becuase you don't know this. From 0 things, there is nothing "remaining" possible.

note: 0 % 0 gives an error.

0 Modulo Anything Is Always 0

6

When updating dictionaries:

Handling Missing Keys

You must check if a key exists first.

Otherwise you get a KeyError.

7

Without any help:

d = {}
if key not in d:
 d[key] = 1 # if we don't do this; bugs!
else:
 d[key] += 1

Tedious, easy to mess up.

Manual Defaulting

8

A better way:

from collections import defaultdict

d = defaultdict(int)
d[key] += 1

No need to check if the key exists, will default to 0!

defaultdict : Automatic Defaults

9

You can control the default:

from collections import defaultdict

d = defaultdict(lambda: 1)
print(d["apples"]) # 1
d["apples"] += 1
print(d["apples"]) # 2

Example: Start New Keys at 1

10

from collections import defaultdict

d = defaultdict(list)
d["fruits"].append("apple")
d["fruits"].append("banana")

print(d)
{'fruits': ['apple', 'banana']}

defaultdict(list) : Default Empty Lists

New keys automatically start with an empty list [].

11

Use it when:

Otherwise, manual checks are required.

When to Use defaultdict

You want missing keys to safely have a starting value.

You want less code and fewer mistakes.

12

What Is Missing from This Image?

You are tasked with returning the sum of elements in a list.

Look carefully: What key part is missing?
13

DO NOT FORGET TO RETURN!
DO NOT FORGET TO RETURN WHAT YOU NEED TO RETURN.
DO NOT LOSE POINTSSSS!!!

No return = less points.

Always double-check: What is the function supposed to give back? Common mistake
made by people who leave early. PRINTING IS NOT THE SAME AS RETURNING!

return !!!!

14

Complete a function that sums the odd elements in a list and then prints the result.

import sys

def sum_odd(args):
 total = 0
 for arg in args:
 num = int(arg)
 if ___BLANK_1___:
 ___BLANK_2___
 return total

def main():
 args = ___BLANK_3___
 result = ___BLANK_4___
 print(result)

Fill in the Blank Tips

Anchor yourself on what cannot be wrong.

Start from the lines where behavior is most predictable and necessary.
15

Start with immovable facts, then fill in conditions and logic around them.

Example Walkthrough:
Work upward from certainties.

Then move inside the function.

Prioritize what must happen, check if variable names give hints, and infer!

print(result) means result must exist.

result = ... must call sum_odd — there is no other option.

args = ... must strip out the filename: slice sys.argv[1:].

for arg in args: means we are looping through numbers as strings.

We need to check for odd numbers, so use num % 2 != 0.

If odd, add to total: total += num.

16

That's it!

17

