
CIS 1100
Functional
Programming in Python

Python
Fall 2024
University of Pennsylvania

We covered three general purpose higher-order functions:

and a new language feature: lambda
Today we are just going to do a bunch of practice with it and apply it to more complicated
scenarios

Review:

filter

map

reduce

1

Why are we talking about Higher Order Functions (HOF)?
It turns out that a LOT of problems we want to solve in computer science can reduce down
to one of the three funnctions we have shown

These are sort of "fundamental" patterns in computer
science, showing up in many programming languages.

If you want to take more CIS courses (e.g. CIS 1200) then this is a core topic.

Why?

filter

map (sometimes called transform)

reduce (sometimes called fold, accumulate, aggregate or other terms)

2

filter is a higher order function that takes in a function and
sequence and returns a new sequence containing only those
elements for which the provided function evaluates to True.

filter(f, seq) is equivalent to:

[elem for elem in seq if f(elem)]

or

res = []
for elem in seq:
 if f(elem):
 res.append(elem)

filter

3

map is a higher order function that takes in a function and sequence and returns a new
sequence containing elements of the input sequence after having f applied to them.

map(f, seq) is equivalent to:

[f(elem) for elem in seq]

or

res = []
for elem in seq:
 res.append(f(elem))

map

4

Aggregation is done using a HOF called reduce imported from
functools.

reduce is a function that takes in an accumulator function and a sequence. It
repeatedly accumulates elements from the sequence using the accumulator function.

reduce(f, seq) is roughly equivalent to:

result = seq[0]
for elem in seq[1:]:
 result = f(result, elem)

reduce

5

Lambdas (or anonymous functions) are functions that are defined without names.

lambda <parameter_list> : expression

would become

def no_name(<parameter_list>):
 return expression

lore: lambda comes from lambda calculus, a formal system of mathematics.

Lambdas

6

What do each of these evaluate to?
(S7)

def perfect_name(name):
 return len(name) == 5 and 'a' in name

names = ["harRy", "Joel", "SUKya", "aDi", "Molly", "ZWEEEE", "Jared", "thEO", "mario"]
result = list(filter(perfect_name, names))

(S8)

names = ["harRy", "Joel", "SUKya", "aDi", "Molly", "ZWEEEE", "Jared", "thEO", "mario"]
result = list(map(lambda name : name[0] + name[-1], names))

(S9)

mexican_states = ["Veracruz", "Ciudad de Mexico", "Nuevo Leon", "Zacatecas", "Quintana Roo"]
mexican_states = list(filter(lambda state : len(state.split()) == 1, mexican_states))
mexican_states = reduce(lambda a, b: a + b[0], mexican_states)

Lecture Activity

7

As said before, many problems can boil down to a combination of filter/map/reduce.
For these problems what functions do you think would be needed?
(Select all that apply for each question, A for filter, B for map, C for reduce)

Practice! Identifying the pattern

(M1) convert a list of strings/characters into a single string e.g. ["h", "i", "!"] -> "hi!"

(M2) get a list of all the capital letters in a string

(M3) given a list of numbers, get another list of numbers that has the
square (square of x is x^2), and then sum all those numbers together

(M4) find the maximum value in a list without using max()

(M5) given a list of strings, get a single string that is made up of the
last character of each string. (e.g. ["Hello!" , "I, "am", "tired"] -> "HIat")

8

Let's take a closer look at "convert a list of strings/characters into a single string e.g."

Try implementing it with a higher order function (L11):

def strlist_to_str(strings : list[str]) -> list[str]:

 single_string = ______________________________

 return single_string

print(strlist_to_str(["h", "i", "!"])) #Should print "hi!"

Lecture Activity: Let's try
to write one from scratch.

9

Remember the caesar homework?
We wrote a function called string_to_symbol_list() that took a string and returned a
list but all characters were converted to symbols. ord(charater) - 65

What does this sound like?

Try implementing it with a higher order function (L13):

def string_to_symbol_list(string):
 # TODO

Applying Higher Order
Functions to past problems

10

def shift(symbol, n):
 return (symbol + n) % 26 if 0 <= symbol <= 25 else symbol

assume `n` is the amount we want to shift each symbol by
def encrypt(to_encode, n):
 symbols = string_to_symbol_list(to_encode)
 # TODO: put something here
 return symbol_list_to_string(symbols)

Which of these would work for encrypt? (M6)

(Bonus: When we implement symbol_list_to_string, which HOF will we need?)

Applying HOF to Caesar

(A) symbols = list(map(shift, symbols))

(B) symbols = list(map(lambda char : shift(char, n), symbols))

(C) symbols = list(map(shift(n), symbols))

(D) symbols = list(reduce(shift, symbols, []))

11

Sometimes, we want to transform a tuple of key-value pairs into a dictionary.
This is where map is incredidly useful!

We can use map to process a list of data and turn it into a dictionary with dict().

statements = [
 ("Dmitri", "Passion rules all!"),
 ("Ivan", "If God does not exist, everything is permitted."),
 ("Alyosha", "Love is the only way.")
]
mapped = map(lambda s: (s[0], len(s[1].split())), statements)
 # (__ , ______________) is a (key, value) pair!
word_counts = dict(mapped)

print(word_counts)
Output: {'Dmitri': 3, 'Ivan': 8, 'Alyosha': 5}

Creating Dictionaries from map

Example: Mapping People to Word Counts

12

Use map to convert a list of student scores into a dictionary of letter grades. C12:

Grading Scale:

students = [("Molly", 92), ("Theo", 85), ("Zara", 77), ("Joel", 59), ("Sofia", 88)]

def get_letter_grade(score):
 #TODO

TODO: Use map to create a dictionary
mapped = map(__________________________________)
student_grades = dict(mapped)

print(student_grades)

Expected Output:
{'Alice': 'A', 'Bob': 'B', 'Charlie': 'C', 'David': 'F', 'Eve': 'B'}

Activity: Mapping Students to Grades

90+ → 'A', 80-89 → 'B', 70-79 → 'C', 60-69 → 'D', Below 60 → 'F'

13

Let's transform this into a dictionary so that:

students = {
 "Molly": [92, 85, 78], "Theo": [55, 60, 58], "Zara": [88, 90, 85], "Joel": [59, 50, 45],
 "Sofia": [75, 80, 72]
}
Step 1: Create a dictionary of Name : Average Grade (hint use .items())
averages = dict(________________________)
Step 2: Remove out failing students < 60
passing_students = dict(______________________)
Step 3: Map remaining students to letters using get_letter_grade(score) like we did before
graded_students = dict(___________________________)
print(graded_students)

Output: {'Molly': 'B', 'Zara': 'A', 'Sofia': 'C'}

Extending The Previous Problem

Computes the average score for each student

Filters out students who failed (average < 60)

Maps remaining students to a letter grade

14

Searching :)

Next time!

15

