
CIS 1100
Nested Data Python

Fall 2024

University of Pennsylvania

Not all data is tabular...

Dicts of Lists of Dicts of Lists of...

sometimes we have to wrangle messy data into a DataFrame-y shape

other times we deal with data structures that

aren't cleanly reducible to tables no matter what

API Responses & Data sent over the web

Survey responses

Data collected by hand

family trees

certain file formats, like SVGs

1

open-meteo.com maintains a service that lets you look up

historical weather records for free using programs or a web form.

Unfortunately, when you ask it for some weather data, it looks like this:

{"latitude":47.90861,"longitude":-110.44777,"gener
ationtime_ms":21.31497859954834,"utc_offset_second
s":0,"timezone":"GMT","timezone_abbreviation":"GMT
","elevation":786.0,"hourly_units":{"time":"iso860
1","temperature_2m":"°F","precipitation":"inch"},"
hourly":{"time":["1972-01-15T00:00","1972-01-15T01
:00","1972-01-15T02:00","1972-01-15T03:00","1972-0
1-15T04:00","1972-01-15T05:00","1972-01-15T06:00",
"1972-01-15T07:00","1972-01-15T08:00","1972-01-15T
09:00","1972-01-15T10:00","1972-01-15T11:00","1972
-01-15T12:00","1972-01-15T13:00","1972-01-15T14:00
","1972-01-15T15:00","1972-01-15T16:00","1972-01-1
5T17:00","1972-01-15T18:00","1972-01-15T19:00","19
72-01-15T20:00","1972-01-15T21:00","1972-01-15T22:
00","1972-01-15T23:00"],"temperature_2m":[-3.3,-1.
1,2.4,7.4,11.5,14.4,17.4,20.2,23.2,25.6,29.1,31.0,
32.5,33.1,33.1,33.4,34.2,34.8,35.8,37.3,38.4,39.3,
39.5,39.6],"precipitation":[0.000,0.000,0.000,0.00
0,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.
000,0.000,0.000,0.000]}}

Example: Historical Weather API

2

{
 "latitude": 47.90861,
 "longitude": -110.44777,
 "generationtime_ms": 21.31497859954834,
 "utc_offset_seconds": 0,
 "timezone": "GMT",
 "timezone_abbreviation": "GMT",
 "elevation": 786,
 "hourly_units": {
 "time": "iso8601",
 "temperature_2m": "°F",
 "precipitation": "inch"
 },
 "hourly": {
 "time": ["1972-01-15T00:00", "1972-01-15T01:00", ...],
 "temperature_2m": [-3.3, -1.1, ...],
 "precipitation": [0, 0, ...]
 }
}

This is an example of JSON data

(Javascript Object Notation)

Formatting to the Rescue

3

JSON is a common standard for data returned from requests made on the internet.

{
 "latitude": 47.90861,
 "longitude": -110.44777,
 "generationtime_ms": 21.31497859954834,
 "utc_offset_seconds": 0,
 "timezone": "GMT",
 "timezone_abbreviation": "GMT",
 "elevation": 786,
 "hourly_units": {
 "time": "iso8601",
 "temperature_2m": "°F",
 "precipitation": "inch"
 },
 "hourly": {
 "time": ["1972-01-15T00:00", "1972-01-15T01:00", ...],
 "temperature_2m": [-3.3, -1.1, ...],
 "precipitation": [0, 0, ...]
 }
}

JSON

Not just for Javascript

In fact, it looks a lot like a Python dictionary...

4

CIS 1100
JSON & Python Python

Fall 2024

University of Pennsylvania

Python has a built-in JSON encoding and decoding library called json .

json.loads() ("load string") parses a string of JSON data into a dictionary.

import json
data_string = '{"name" : "Harry"}'
data_dict = json.loads(data_string)
print(data_dict)
print(data_dict["name"])

{'name': 'Harry'}
Harry

json

5

json.load() parses a string of JSON data into a dictionary.

import json
data_file = open('weather_response.json', 'r')
data_dict = json.load(data_file)
print(data_dict.keys())

dict_keys(['latitude', 'longitude',
'generationtime_ms', 'utc_offset_seconds',
'timezone', 'timezone_abbreviation',
'elevation', 'hourly_units', 'hourly'])

json

6

Here are our keys...

dict_keys(['latitude', 'longitude', 'generationtime_ms', 'utc_offset_seconds',
'timezone', 'timezone_abbreviation', 'elevation', 'hourly_units', 'hourly'])

But how do we read it? And where are time and temperature in the dictionary?

{
 "latitude": 47.90861,
 "longitude": -110.44777,
 "generationtime_ms": 21.31497859954834,
 "utc_offset_seconds": 0,
 "timezone": "GMT",
 "timezone_abbreviation": "GMT",
 "elevation": 786,
 "hourly_units": {
 "time": "iso8601",
 "temperature_2m": "°F",
 "precipitation": "inch"
 },
 "hourly": {
 "time": ["1972-01-15T00:00", "1972-01-15T01:00", ...],
 "temperature_2m": [-3.3, -1.1, ...],
 "precipitation": [0, 0, ...]
 }
}

Traversing Through JSON Data

7

A JSON Object will often have a nested, hierarchical structure.

Nesting in JSON Data

Some keys in the dictionary map to primitives

"latitude": 47.90861,
"longitude": -110.44777,
"generationtime_ms": 21.31497859954834,
"utc_offset_seconds": 0,

Other keys map to other dictionaries...

"hourly_units": {
 "time": "iso8601",
 "temperature_2m": "°F",
 "precipitation": "inch"
},

8

A JSON Object will often have a nested, hierarchical structure.

Nesting in JSON Data

And sometimes those dictionaries store other dictionaries or lists themselves!

"hourly": {
 "time": ["1972-01-15T00:00", "1972-01-15T01:00", ...],
 "temperature_2m": [-3.3, -1.1, ...],
 "precipitation": [0, 0, ...]
}

9

Answering questions using nested structures/JSON often requires...

Working with Nested Structures

careful study of the structure by looking at keys, brackets

list indexing and dictionary lookups, which you already know how to do!

10

Where is this weather sample taken from?

{
 "latitude": 47.90861,
 "longitude": -110.44777,
 "generationtime_ms": 21.31497859954834,
 "utc_offset_seconds": 0,
 "timezone": "GMT",
 "timezone_abbreviation": "GMT",
 "elevation": 786,
 "hourly_units": {
 "time": "iso8601",
 "temperature_2m": "°F",
 "precipitation": "inch"
 },
 "hourly": {
 "time": ["1972-01-15T00:00", "1972-01-15T01:00", ...],
 "temperature_2m": [-3.3, -1.1, ...],
 "precipitation": [0, 0, ...]
 }
}

Answering Questions

11

Where is this weather sample taken from?

data = json.load(weather_file)
lat = data["latitude"]
lon = data["longitude"]
elv = data["elevation"]
print(f"Sample is from coordinates ({lat}, {lon}) at elevation of {elv} feet.")

Sample is from coordinates (39.964848, 75.2933) at elevation of 2924.0 feet.

Answering Questions

12

Are the weather samples in Farenheit or Celsius?

{
 "latitude": 47.90861,
 "longitude": -110.44777,
 "generationtime_ms": 21.31497859954834,
 "utc_offset_seconds": 0,
 "timezone": "GMT",
 "timezone_abbreviation": "GMT",
 "elevation": 786,
 "hourly_units": {
 "time": "iso8601",
 "temperature_2m": "°F",
 "precipitation": "inch"
 },
 "hourly": {
 "time": ["1972-01-15T00:00", "1972-01-15T01:00", ...],
 "temperature_2m": [-3.3, -1.1, ...],
 "precipitation": [0, 0, ...]
 }
}

Answering Questions

13

Are the weather samples in Farenheit or Celsius?

data = json.load(weather_file)
units = data["temperature_2m"]

Answering Questions

14

Are the weather samples in Farenheit or Celsius?

data = json.load(weather_file)
units = data["hourly_units"]
degrees = units["temperature_2m"]
print(f"Temperature given in {degrees}.")

Temperature given in °F.

Answering Questions

15

Are the weather samples in Farenheit or Celsius?

data = json.load(weather_file)
degrees = data["hourly_units"]["temperature_2m"]
print(f"Temperature given in {degrees}.")

Temperature given in °F.

Answering Questions

16

How many temperature samples are included?

What was the range of temperatures measured?

{
 "latitude": 47.90861,
 "longitude": -110.44777,
 "generationtime_ms": 21.31497859954834,
 "utc_offset_seconds": 0,
 "timezone": "GMT",
 "timezone_abbreviation": "GMT",
 "elevation": 786,
 "hourly_units": {
 "time": "iso8601",
 "temperature_2m": "°F",
 "precipitation": "inch"
 },
 "hourly": {
 "time": ["1972-01-15T00:00", "1972-01-15T01:00", ...],
 "temperature_2m": [-3.3, -1.1, ...],
 "precipitation": [0, 0, ...]
 }
}

Answering Questions

17

How many temperature samples are included?

What was the range of temperatures measured?

data = json.load(weather_file)
degrees = data["hourly_units"]["temperature_2m"]
temperatures = data["hourly"]["temperature_2m"]
num_samples = len(temperatures)
low, high = min(temperatures), max(temperatures)
temp_range = high - low
print(f"Over {num_samples} samples,")
print(f"the temperature shifted from {high} to {low}.")
print(f"That's a swing of {temp_range} {degrees}!")

Over 360 samples,
the temperature shifted from 59.0 to 31.2.
That's a swing of 27.8 °F!

Answering Questions

18

CIS 1100
Trees & XML Python

Fall 2024

University of Pennsylvania

Trees in computer science are

hierarchical collections of data

elements (often called nodes) that

have connections between them.

Tree Data

e.g. family trees

19

XML is a data document format that allows us

to represent data nested inside of other data.

<inventory>
<drink>

<lemonade>
<price>$2.50</price>
<amount>20</amount>

</lemonade>
<pop brand="Pepsi">

<price>$1.50</price>
<amount>10</amount>

</pop>
</drink>

<snack>
<chips flavor="BBQ">

<price>$4.50</price>
<amount>60</amount>

</chips>
</snack>

</inventory>

http://www.tizag.com/xmlTutorial/xmltree.php

XML

20

http://www.tizag.com/xmlTutorial/xmltree.php

<inventory>
<drink>

<lemonade>
<price>$2.50</price>
<amount>20</amount>

</lemonade>
<pop brand="Pepsi">

<price>$1.50</price>
<amount>10</amount>

</pop>
</drink>

<snack>
<chips flavor="BBQ">

<price>$4.50</price>
<amount>60</amount>

</chips>
</snack>

</inventory>

Some XML Terminology

Elements are the entities being represented

in the XML tree, e.g. an inventory or a price.

Tags are the names that we give to the

elements, e.g. <inventory> or <price>

Attributes are properties that individual

elements can have, stored in the tags

If the pop element is specifically

a Pepsi, we could have its tag

be <pop brand="Pepsi"> .

21

<inventory>
<drink>

<lemonade>
<price>$2.50</price>
<amount>20</amount>

</lemonade>
<pop brand="Pepsi">

<price>$1.50</price>
<amount>10</amount>

</pop>
</drink>

<snack>
<chips flavor="BBQ">

<price>$4.50</price>
<amount>60</amount>

</chips>
</snack>

</inventory>

Some Tree Terminology

The tree is the collection of

elements being represented and

the connections between them

The root is the element of the

tree that has no ancestors.

An ancestor is an element

that contains another element.

A descendant is an element that

is contained by another element.

A parent is a direct ancestor.

A child is a direct descendant.

22

It's a convenient standard for representing hierarchy.

Many visual elements are best represented as hierarchical data

Why XML?

Family trees, inventory systems

Degree requirements & course dependencies

PowerPoints and Word Documents are actually just XML documents rendered in a fancy way

Some image formats are XML, like SVG

Slides, which have boxes, which have images & text, which each have properties...

23

<ns0:svg xmlns:ns0="http://www.w3.org/2000/svg" id="emoji" viewBox="0 0 72 72">
 <ns0:g id="color">
 <ns0:path fill="#d0cfce" d="m56..." />
 <ns0:path fill="#9b9b9a" d="m36.."/>
 </ns0:g>
 <ns0:g id="line">
 <ns0:path fill="none" stroke="#000" stroke-linecap="round" ... />
 <ns0:path fill="none" stroke="#000" stroke-miterlimit="10" ... />
 </ns0:g>
</ns0:svg>

24

CIS 1100
XML & Python Python

Fall 2024

University of Pennsylvania

BeautifulSoup is a library we can use to parse or modify XML. Need to install it!

pip install bs4

from bs4 import BeautifulSoup
data_file = open('country_data.xml', 'r')
tree = BeautifulSoup(data_file, 'xml')
data_file.close()

tree now stores the full XML structure!

Parsing XML with Python

25

This is country_data.xml :

<data>
 <country name="Liechtenstein">
 <rank>1</rank>
 <year>2008</year>
 <gdppc>141100</gdppc>
 <neighbor name="Austria" direction="E"/>
 <neighbor name="Switzerland" direction="W"/>
 </country>
 <country name="Singapore">
 <rank>4</rank>
 <year>2011</year>
 <gdppc>59900</gdppc>
 <neighbor name="Malaysia" direction="N"/>
 </country>
 <country name="Panama">
 <rank>68</rank>
 <year>2011</year>
 <gdppc>13600</gdppc>
 <neighbor name="Costa Rica" direction="W"/>
 <neighbor name="Colombia" direction="E"/>
 </country>
</data>

https://docs.python.org/3/library/xml.etree.elementtree.html

Demo XML

26

https://docs.python.org/3/library/xml.etree.elementtree.html

The tree is "rooted" at a data tag, so we could access that tag with:

root = tree.data

root stores its tag name and a dictionary of its attributes:

>>> root.name
'data'
>>> root.attrs
{}

"The root is a 'data' element that stores no attributes."

Parsing XML with Python

27

You can iterate over all of the children of an element using .find_all(recursive=False)

for child in root.find_all(recursive=False):
 print(child.name, child.attrs)

country {'name': 'Liechtenstein'}
country {'name': 'Singapore'}
country {'name': 'Panama'}

<data>
 <country name="Liechtenstein">
 <rank>1</rank>
 <year>2008</year>
 <gdppc>141100</gdppc>
 <neighbor name="Austria" direction="E"/>
 <neighbor name="Switzerland" direction="W"/>
 </country>
 <country name="Singapore">
 <rank>4</rank>
 <year>2011</year>
 <gdppc>59900</gdppc>
 <neighbor name="Malaysia" direction="N"/>
 </country>
 <country name="Panama">
 <rank>68</rank>
 <year>2011</year>
 <gdppc>13600</gdppc>
 <neighbor name="Costa Rica" direction="W"/>
 <neighbor name="Colombia" direction="E"/>
 </country>
</data>

Look at the Children

28

You can search over all descendants of an element that

have a specific tag using .find_all(tag_name)

for neighbor in root.find_all('neighbor'):
 print(neighbor.attrs)

{'name': 'Austria', 'direction': 'E'}
{'name': 'Switzerland', 'direction': 'W'}
{'name': 'Malaysia', 'direction': 'N'}
{'name': 'Costa Rica', 'direction': 'W'}
{'name': 'Colombia', 'direction': 'E'}

<data>
 <country name="Liechtenstein">
 <rank>1</rank>
 <year>2008</year>
 <gdppc>141100</gdppc>
 <neighbor name="Austria" direction="E"/>
 <neighbor name="Switzerland" direction="W"/>
 </country>
 <country name="Singapore">
 <rank>4</rank>
 <year>2011</year>
 <gdppc>59900</gdppc>
 <neighbor name="Malaysia" direction="N"/>
 </country>
 <country name="Panama">
 <rank>68</rank>
 <year>2011</year>
 <gdppc>13600</gdppc>
 <neighbor name="Costa Rica" direction="W"/>
 <neighbor name="Colombia" direction="E"/>
 </country>
</data>

Looking Further

29

.find_all(tag_name) gives all children of a given element that have a matching tag.

.find(tag_name) or just .tag_name gives the first child of a given element that have a

matching tag.

for country in root.find_all('country'):
 rank = country.find('neighbor')
 print(rank)

<neighbor direction="E" name="Austria"/>
<neighbor direction="N" name="Malaysia"/>
<neighbor direction="W" name="Costa Rica"/>

<data>
 <country name="Liechtenstein">
 <rank>1</rank>
 <year>2008</year>
 <gdppc>141100</gdppc>
 <neighbor name="Austria" direction="E"/>
 <neighbor name="Switzerland" direction="W"/>
 </country>
 <country name="Singapore">
 <rank>4</rank>
 <year>2011</year>
 <gdppc>59900</gdppc>
 <neighbor name="Malaysia" direction="N"/>
 </country>
 <country name="Panama">
 <rank>68</rank>
 <year>2011</year>
 <gdppc>13600</gdppc>
 <neighbor name="Costa Rica" direction="W"/>
 <neighbor name="Colombia" direction="E"/>
 </country>
</data>

Filtering Children

30

	Nested Data
	Dicts of Lists of Dicts of Lists of...
	Example: Historical Weather API
	Formatting to the Rescue
	JSON

	JSON & Python
	json
	json
	Traversing Through JSON Data
	Nesting in JSON Data
	Nesting in JSON Data
	Working with Nested Structures
	Answering Questions
	Answering Questions
	Answering Questions
	Answering Questions
	Answering Questions
	Answering Questions
	Answering Questions
	Answering Questions

	Trees & XML
	Tree Data
	XML
	Some XML Terminology
	Some Tree Terminology
	Why XML?
	

	XML & Python
	Parsing XML with Python
	Demo XML
	Parsing XML with Python
	Look at the Children
	Looking Further
	Filtering Children

