
Part 1: Scraping

Part 2: Recommending

Reminders:

HW9: What to Watch

Part 1 due Apr 23 at 11:59pm

Part 2 due Apr 30 at 11:59pm, no late days accepted

1

A MovieRecommender stores an attribute called self.all_user_ratings .

It will look something like this. (Actually much longer.)

{514: {2028: 5.0, 1210: 2.0},
 279: {1210: 4.0, 1307: 2.5, 56367: 0.5}}

(L11) What do the "outer" keys (514, 279) represent? What do the "inner" keys

(2716 or 300) represent? What do the float values (5.0, 4.0) represent?

Movie Recommender

2

(C12) Finish this method belonging to the

MovieRecommender class. Remember the attibutes!

self.all_user_ratings: dict[int, dict[int, float]]
self.movie_info: dict[int, tuple[str, tuple]]

def count_movies_by_genre(self, user_id: int) -> dict[str, int]:
 """Return a dictionary mapping genres to the number of movies that
 the input user has rated from that genre."""

 counter = {}
 ...

 return counter

Keep this in mind when calculating the average rating of movies per genre...

Movie Recommender

3

Representing something complex as a bunch of numbers?

Figuring out which bunches of numbers are more or less similar?

Cosine similarity calculates this for us!

Cosine Similarity

1 identical in direction

0 perpendicular in direction

-1 opposite in direction

(not actually possible in our case since all numbers are positive)

4

As in the reading, vectors are traditionally represented as lists/arrays. But we're using dicts...

Cosine Similarity & Vectors

Genres don't have unique numeric identifiers, so we would

need a way of encoding genres into the list positions.

Sparsity: There are 19 genres in the dataset, but most people don't rate all of them.

i.e. in [4.0, 5.0, 0.0, 3.0] , which genre gets the 5.0 reading??

{"Comedy" : 4.0, "Action" : 3.0} might become

the following instead if we needed a list of 19 elements:

[4.0, 3.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

5

Cosine Similarity is calculated like so:

"the ratio of the dot product to the product of the magnitudes"

That's hard, but:

Calculations

the top term (dot product) is the sum of elementwise products of vectors A and B

the magnitude of a vector is the square root of the sum of the squares of the elements.

6

Dot Product is the sum of elementwise products of vectors A and B.

If

A = {"Comedy" : 4.0, "Action" : 3.0}
B = {"Action" : 5.0, "Drama" : 2.5}

then:

(S7) Calculate the dot product between two vectors A = {"Comedy" : 4.0,
"Action" : 4.0} and B = {"Action" : 5.0, "Comedy" : 5.0}

Dot Product

7

Dot Product is the sum of elementwise products of vectors A and B.

If

A = {"Comedy" : 4.0, "Action" : 3.0}
B = {"Action" : 5.0, "Drama" : 2.5}

then:

(C14) Here's a function to calculate the dot product between two lists (assuming

same length). How would we convert this to work when our vectors are dicts?

def dot(a: list[float], b: list[float]) -> float:
 total = 0
 for i in range(len(a)):
 total += a[i] * b[i]
 return total

Dot Product

8

If A = {"Comedy" : 4.0, "Action" : 3.0} then the magnitude of A is:

(S8) Calculate the magnitude of A = {"Comedy" : 4.0, "Action" : 4.0}
(S9) Calculate the magnitude of B = {"Action" : 5.0, "Comedy" : 5.0}

(C16) Here's a function to calculate the magnitude of a vector as a list of

floats. How would we convert this to work when our vectors are dicts?

import math
def mag(a : list[float]) -> float:
 squared = map(lambda x : x * x, a)
 squared_sum = sum(squared)
 return math.sqrt(squared_sum)

Magnitude

9

(S10) Combine S7, S8, S9 to calculate the cosine similarity between:

(L13) Reflect: what is the meaning of this result?

Cosine Similarity Wrapped

A = {"Comedy" : 4.0, "Action" : 4.0} and

B = {"Action" : 5.0, "Comedy" : 5.0}

10

Default Dictionaries allow for us to avoid a KeyError
if we ask for a key that's not already present.

from collections import defaultdict
dd = defaultdict(f)
...
print(dd[key])

Default Dictionaries

If key in dd , prints the value associated with key in dd like a normal dictionary.

If key not in dd , prints the result of f

11

In (L11), write what gets printed for the following

snippet. (Assume defaultdict has been imported.)

targets = defaultdict(lambda: 11)
targets["first"] = 12
print(targets["first"])
targets["second"] -= 2
print(targets["second"])
print(targets["third"])

Default Dictionaries

12

int() is a function that turns its input into an integer, or returns 0 if it is given no arguments.

print(int()) # prints 0

A default dictionary initialized like defaultdict(int) uses a default value

of 0 ! (C12) Rewrite count_movies_by_genre to use a defaultdict .

def count_movies_by_genre(self, user_id: int) -> dict[str, int]:
 user_ratings = self.all_user_ratings[user_id]
 counter = {}
 for movie_id in user_ratings:
 genres = self.movie_info[movie_id][1]
 for genre in genres:
 if genre not in counter:
 counter[genre] = 1
 else:
 counter[genre] = counter[genre] + 1
 return counter

Default Dictionaries as Counters

13

	HW9: What to Watch
	Movie Recommender
	Movie Recommender
	Cosine Similarity
	Cosine Similarity & Vectors
	Calculations
	Dot Product
	Dot Product
	Magnitude
	Cosine Similarity Wrapped
	Default Dictionaries
	Default Dictionaries
	Default Dictionaries as Counters

