
CIS 1100
Sets! Python

Spring 2025

University of Pennsylvania

Note
keyword args

set overview
  add
    remove
      delete? or was it dispatch

      implement 
      set intersection

      set union

      what is the output of these set operations?

      sub sets

      set theory is big in CS, more in 1600

      converting between list and set

dictionary
-> usually you want to store two things together
-> map from one thing to another
   (Could make a set of tuples, but dict allows us to make sure that there are uniqueness on keys)

   operator[]
   for blah in blah 

   activity: replace words   
   def replace_words(words:list[str], replacements:dict[str, str]) -> list[str]:



Any questions from last time?

1



So far in this class we have put all our code directly in the py file.

Now that we know functions, we should follow better practices.

Starting with HW03 onwards, all code should go in a function.

main

import statements should still be at the top of the py file outside of functions

Comments can be outside of functions

2



From now on we will have a function called main()  that will be

where we keep the code we previously did not put in a function

We also need to add an if statement to the bottom of our code. Do not forget it!

For example:

def main():
    print("Hello World!")

if __name__ == "__main__":
    main()

Hello World w/ main()

3



rewrite the following code so that we use the new style that uses:

def main():  and

if __name__ == "__main__":

import sys

# Prints all command line args
def print_args():
  for arg in sys.argv:
    print(arg)

print("Hello!") 
print_args()

main() practice (C16)

4



Writing our code in a main()  function has a few benefits:

Why main() ?

Usually means our code is easier to read and better organized

We can now import functions from the python files we write

This is also just a style convention followed by most programming languages

this is the most important point

means we can import our own code into separate files for testing (or for the REPL)

5



Often times in this class we call the inputs to functions "Inputs"

def add(x, b):
    return x + b

zinc = 64
add(3, zinc)

Previously we would call x , b , 3 , zinc  all "inputs"

Technically we would make the distinction where

x  and b  are parameters (The variables defined in the function header)

3  and zinc  are arguments (The actual data passed into the function)

You do not need to memorize this distinction, this is just for your future use and

so you know what we mean when we say parameter and argument of a function.

Inputs, Parameters, Arguments

6



Quick: What gets printed from this code? (S10)

def mystery(x):
    x += 5

def plank(name):
    name.upper()

def main():
    number = 3
    artist = "Kuji"
    mystery(number)
    plank(artist)

    print(number)
    print(artist)

if __name__ == "__main__":
    main()

Inputs should be inputs

7



When we pass most things to a function, we pass in a

copy of it or we pass something that cannot be mutated.

We generally want our inputs to be inputs only. If we

get something from a function it should be returned

Inputs should be inputs

8



Consider this code though:

def modify_list(nums):
    nums.append(3)

def main():
    my_numbers = [2, 5]
    modify_list(my_numbers)
    print(my_numbers) # prints "[2, 5, 3]"

if __name__ == "__main__":
    main()

Lists (and sets and dicts) are special in that they can be

modified when used as a function input. Why? (more later)

Be careful not to modify a list in a function that was taken as

input. Our homework code checks to make sure you don't do this.

Lists as parameters

9



Sets are an unordered container for data.

Unordered means:

Review: Sets

We can still use for  to loop over every element

can still use in  to see if something is in it

can not access into it with an index and []  or slice

10



Sets look similar to lists, but with {}  instead of []

Cannot store lists, dicts or other sets within a set

Most important part of a set: it enforces uniquness of its

elements. An element can only be in the set once or not at all.

Review: Sets

{"this"}

{"howdy", "partner"}

11



There are a few common features of a set:

What is the final value of my_set  after running this code? (S7)

my_set = {"moons", "farming", "tormented"}
my_set.add("agility")
my_set.add("agility")
my_set.remove("agility")
my_set.discard("Farming")
my_set.remove("farming")

More Set Review

.add()  adds an item to the set

.remove()  removes an item from a set, if the item is not in the set then crash

.discard()  removes an item from a set, ignore if the item is already not in the set

set comprehension work like list comprehensions, use {} instead of []

12



Put both of these in (C12)

def remove_all(words, filter):
    # given a list of strings, return a new list of strings except all words
    # that are in the input set "filter" are not in the output
    # remove_all(["Hi", "There"], {"Hi"}) -> ["There"]

def count_unique_words(words):
    # given a list of strings, return the number of unique strings in that list

Practice

13



Name Meaning Method Operator

Union
Create a new set with

all elements from both
s.union(t) s | t

Intersection
Create a new set with only

elements that appear in both sets
s.intersection(t) s & t

Difference
Create a new set with only

elements in s  that don't appear in t
s.difference(t) s - t

Symmetric

Difference

Create a new set with elements that

appear in only one set but not both
s.symmetric_difference(t) s ^ t

Set Operations

14



Put both of these in (C14)

Implement both an intersection function and a union function without using the built-in

intesection or union operators or functions.

def set_union(s1, s2):
    # given two sets, return a new set that has all elements of both input sets
    # set_union({"hi","ho"}, {"bad","hi"}) -> {"hi", "ho", "bad"} 

def set_intersection(s1, s2):
    # given two sets, return a new set that only has the elements that are in both input sets
    # set_intersection({"hi","ho"}, {"bad","hi"}) -> {"hi"} 

Set Operations Practice

15



Dictionaries (also called "dicts") are the much more commonly used unordered collection

Dictionaries

Associates keys to values

Allow for looking up some information associated with a search key

Keys must be unique, values do not need to be unique

16



Any association from keys (things you can search

by) to values (information you might want to know.)

The Penn Directory, for example:

Name : Email
Harry Smith : sharry@seas
Travis McGaha : tqmcgaha@seas
...

Here, the names are keys and the emails are values.

What is a Mapping?

17



Dict literals are defined with curly braces ({}) and separate keys and values with a colon.

Dict Syntax

{3, 10, 15}

{"Harry" : "sharry", "Travis" : "tqmcgaha"}

{}  is an empty dict

is a set with three elements

is a dict with two elements (key-value pairs)

writing just dict()  gets the same result

18



Given the following dictionaries, which ones are legal dictionaries? (Legal / Illegal)

(S8)

speak = {
  "dog": "woof",
  "cat": "meow",
  "seal": "arf",
  "fox": "woof"
}

(S9)

last_year_movies = {"Anora", "Conclave", "A Real Pain"}

(S10)

recs = {201:["Zwe", "Hannah"], 203: ["Adi", "Sofia"],
        204: ["Jana", "Hannah"], 201: ["Hannah", "Zwe"]}

Dictionary Practice: Reading

19



Next time

More on dictionaries!

I only just barely started talking about them

These are a really important data structure in Python and Programming in general

20


	Sets!
	Any questions from last time?
	main
	Hello World w/ main()
	main() practice (C16)
	Why main()?
	Inputs, Parameters, Arguments
	Inputs should be inputs
	Inputs should be inputs
	Lists as parameters
	Review: Sets
	Review: Sets
	More Set Review
	Practice
	Set Operations
	Set Operations Practice
	Dictionaries
	What is a Mapping?
	Dict Syntax
	Dictionary Practice: Reading
	Next time


