
CIS 1100
Types, Variables &

Sequences! (Lecture)

Python

Fall 2024

University of Pennsylvania

Note
Any questions before we start?

good reminder:
- important part of practice is repitition
- yes you have probably seen this content again, and sequences will be covered again in a future lecture, but reptition can be pretty helpful

You also are not expected to code everything I say and follow along exactlyt in lecture

Review
 variable review from last time
 bool
 and or not

 comparing
 what does this simplify to?
 x = 3

 modulo, integer division
 assignment +=

 really common thing is to check if a number is even, how do that?
 given: x = <some number>

any questions?

new in lecture:

 - operator precedence
 - What is the type of this expression?

 - complex reassignment examples
 - what does this output?

 - type error

 - repl

 - casting

 - sequence types
 - string functions that return non strings (bool for example)
 - string and indexes
 - startswith
 - endswith
 - find
 - []
 - strip
 # this is why int is a distinct type from float, can't access index 3.14
 - in
 - not in
 - len
 negative indexes

 no slicing!!!!
 slicing may be easy to confuse while they are just learning the [] operator. Slicing when we get to sequence types more another time.

If you want to print { in an f-string, you don't escape

it with a \ , instead you "double it" within a {} pair

example:

print(f"{1}}}") # prints "1}"

Note: You are not expected to know this, and we will not test on this specific part of f-strings.

Correction: Printing { and } in f-strings

1

Another type that exists is bool which can represent two values True or False

x = True
y = False
print(x)

can use the operators and , or and not on booleans

What does c evaluate to? (S7)

e.g. if we ran this code then printed c , what would it print?

a = False
b = True
c = (not a or b) and not (a and True)

Review: Boolean Type

2

A common way to get boolean values is through comparison.

Review: Comparing

== checks if two things are equal

!= checks if two things are NOT equal

"Hello" == "hello" evaluates to False

5 != 3 evaluates to True

"hi" == "hi" evaluates to True

3

There also exist oeprators to check for:

Review: Ordering

<= : less than or equal to

>= : greater than or equal to

< : less than

> : greater than

4

Python can store numbers, but it makes a distinction between two types of numbers:

Review: Numerical Types

int These are Integers, meaning any positive or negative value (or zero).

float These can store rational numbers and some special values

e.g. 0 , -3200 , 10

e.g. 3.14 , 2.0 , infinity

5

Write some code to determine if the variable x contains an even integer (L11)

x = <some_number>
is_even = _________________

Review: Other Arithmetic Operators

** used for exponents.

// used for "integer division, rounds the result towards 0

% called "modulo" used to get the remainder of a division.

e.g. 5 squared is 5 ** 2

int // int evaluates to an int

3 // 2 evaluates to 1

5 % 2 evaluates to 1

9 % 3 evaluates to 0

6

When we start combining operators together, it can get

pretty complex to figure out the order things are evaluated.

Basic order of operations: (First evaluated to last evaluated)

You do not need to memorize these. When in doubt: Use Parenthesis

Operator Precedence

Parentheses ()

exponents **

multiplication/division/mod * / // %

addition / subtaction + -

comparisons and membership in not in < >= == etc.

not , and , or

7

Allows you to convert from one type to another

x = int("1300") # converted str to int
z = str(x) # Z has str conversion of x "1300"
a = bool("True") # a has bool value True
f = float("3.14") # f has float value 3.14

Type Conversion

8

What does z evaluate to after this code is run? (S8)

x = 3
y = "luv sic"
z = str(x > 0 and x <= 6) + " " + y + str(x)

Compressed Order of Operations

Complex Reassignment

PEMDAS

comparison

boolean operations (and/or/not)

9

Some operands cannot be used between some types

Consider:

x = 3 + "Howdy"
y = "bleh" > True

Most of the time you can resolve this by just adding a type conversion

TypeError

10

Not all types can always be converted from one to another.

Consider:

x = int("Howdy") # invalid literal for int() with base 10: 'howdy'

Invalid Casts

11

Python has a REPL that you can use to run

python code without storing it in a file.

REPL = Read Evaluate Print Loop

Useful if you want to just

check something real quick

May be useful to write a regular python

file for more longer or complex code.

To run, you can go to the "Run"

or "terminal" tab in codio and

type the command python

Python REPL

12

To run, you can go to the "Run"

or "terminal" tab in codio and

type the command python

Remember to end any running program

first before you try to run the REPL

Once you have it open, you should be

able to see it prompt you in the terminal:

Python REPL

13

Once you have it open, you should be

able to see it prompt you in the terminal:

I underlined the prompt in red

you can then type in lines of

python and it will run those

lines and remember variables.

if you don't assign a value into a

variable, it will print that value.

Use CTRL + D or type

exit() when done.

Python REPL

14

An important aspect of the string type, is that it is a

sequence type. A string contains a sequence of characters.

Sequences have a length and indices for individual members of the sequences.

For strings, it is a sequence of characters. Emphasis on sequences because: The order matters

s1 = "hi"
s2 = "ih"
print(s1 == s2) # False

Sequence Types: String

15

Ordering is an important aspect to string, and we use

indices as a way to specify positions in the string.

Consider the string

index 0 1 2 3 4 5

characters H e l l o !

index 0 is the first position (first character)

len(string) - 1 is the index of the last character

Sequence Types: String

16

For any sequence, you can use

x = "Travis"
print(x[0]) # 'T'
print(x[3]) # 'v'
print(x[len(x) - 1]) # 's'

Sequence Types: Basic Functionality

len(seq) to find the length of the sequence seq

seq[i] to access the ith index of the sequence seq

17

What is the index of the letter E and Y from the following string (S9)

x = "GY! BE"

Get the last character of a string. Your code should work for any value

of string that has len >= 1. Do not just say last_char = "e" . (S10)

string = "example"
last_char = ________

Practice:

18

Get the middle character of a string withouth knowing

the string's value. Assume length is odd and >= 1. (C12)

string = "example"
middle_char = "

Hint: //

Get the age from this string an int. Do not just say age
= 26 , actually extract it from the string. (Also C12)

string = "Age: 26"
age = ___________________

Hint: assume age is two characters. Think about what operators are useful here.

Practice:

19

example:

"Hello".find("l") # 2
"Phl".find("U") # -1
"Attack".find("ta") # 2

Other String Sequence Function

string.find(target) : finds the first index that has the target string, or -1 if not found.

20

Reminder:

There is another check-in due before next lecture as always.

Office Hours and Recitation start this week!

HW00 is out and due Wednesday (1/29) at midnight

HW01 will be released on Thursday and due the

following Wednesday (normal HW cadence from now on)

Friday's check-in will have an "exit-ticket" for you

to submit questions and metrics about the course.

Recitation counts attendance, show up to your assigned recitaiton!

21

	Types, Variables & Sequences! (Lecture)
	Correction: Printing { and } in f-strings
	Review: Boolean Type
	Review: Comparing
	Review: Ordering
	Review: Numerical Types
	Review: Other Arithmetic Operators
	Operator Precedence
	Type Conversion
	Complex Reassignment
	TypeError
	Invalid Casts
	Python REPL
	Python REPL
	Python REPL
	Sequence Types: String
	Sequence Types: String
	Sequence Types: Basic Functionality
	Practice:
	Practice:
	Other String Sequence Function
	Reminder:

