
Programming Languages
and Techniques

(CIS1200)

Lecture 2
Value-Oriented Programming

CIS 1200
• If you are joining us today…WELCOME!

• Please check Ed for announcements and reminders
– If you are already registered for the course, you should be signed up

automatically
– If not, you’ll get added automatically when you enroll

• Read the course syllabus and Ch. 1 lecture notes and
watch Wed's lectures, all available on the website
– www.cis.upenn.edu/~cis1200/

CIS1200

Announcements (1)
• No class on Monday (MLK Day)

• Recitations start next week

• Dr. Zdancewic will be away next week
– no office hours
– Lectures on Weds. and Fri. will be covered by Dr. Weirich

(another regular instructor for this course)
– otherwise, business as usual - I should have access to Ed

and email

CIS1200

Announcements (2)
• Please read
– Chapter 2 of the lecture notes
– OCaml style guide on the course website

(https://www.seas.upenn.edu/~cis1200/23sp/ocaml_style)
• Homework 1: OCaml Finger Exercises
– Instructions are on the Schedule page of course website
– Code is available on Codio (see Ed)
– Practice using OCaml to write simple programs
– Due: January 24th, at 11:59:59pm (midnight)
– Start early!
– Start with first 4 problems

(lists will be introduced next week!)

CIS1200

https://www.seas.upenn.edu/~cis1200/23sp/ocaml_style

Homework Policies
• Projects will be (mostly) automatically graded with immediate

feedback
– We’ll give you some tests with the assignment
– You’ll need to write your own tests
– Our grading script will apply additional tests
– Your code must compile to get any credit

• Multiple submissions are allowed
– First few submissions: no penalty
– Each submission after the first few will be penalized
– Your final grade is determined by the best raw score

• Late Policy
– Submission up to 24 hours late costs 10 points
– Submission 24-48 hours late costs 20 points
– After 48 hours, no submissions allowed

• Style / Test cases
– TA manual grading of non-testable properties
– feedback on style from your TAs

CIS1200

Where to ask questions
• Course material
– Ed Discussion Board
– TA office hours (on website calendar, starts Tues 9/6)
– Prof. office hours:

Dr. Zdancewic Mon 3.30-5pm Levine 511
(also by appointment)

• Tutoring available
• HW/Exam Grading: see website FAQ
• About CIS majors & Course Registration
– CIS Undergraduate coordinators, Levine 308
– cis-undergrad-advising@seas.upenn.edu

CIS1200

mailto:cis-undergrad-advising@seas.upenn.edu

Poll Everywhere

• We will use Poll Everywhere for interactive quizzes
during lecture
– Answer with your phone or laptop
– Completely ungraded
– Useful for gauging your understanding

• We’ll start using it on January 23rd

CIS1200

No Devices during Lecture
• Laptops closed… minds open

– Although this is a computer science class,
the use of electronic devices – laptops,
phones, etc., during lecture (except for
participating in quizzes) is prohibited

• Why?
– Device users tend to surf/chat/

email/game/text/tweet/etc.
– They also distract those around them
– Better to take notes by hand
– You will get plenty of time in front of your

computer while working on the homework
:-)

CIS1200

Programming in OCaml

Codio
• Codio codio.com
– see Ed for enrollment info
– web-based development

environment
– remote access for TA help

• Under the hood:
– linux virtual machine (Ubuntu)
– pre-configured per project with everything you need
– configurable editor

CIS1200

OCaml

• Industrial-strength, statically-typed
functional programming language

• Lightweight, approachable setting for
learning about program design

• See ocaml.org
– CIS1200 uses only a small part of the language
– We will cover everything you need to know.

CIS1200

Who uses OCaml?

CIS1200

What is an OCaml module?
;; open Assert

let attendees (price:int) :int =
(-15 * price) / 10 + 870

let test () : bool =
attendees 500 = 120

;; run_test "attendees at 5.00" test

let x : int = attendees 500

;; print_int x
;; print_endline "end of demo"

CIS1200

module import

(top level) commands

top-level function
declarations
(use let keyword)

top-level identifier
declarations
(also use let)

To know what will be printed
we need to know the
value of this expression

What does an OCaml program do?

CIS1200

To know what an OCaml program will do, we need to know
what the value of each expression is

To know if the test will pass,
we need to know whether this
expression is true or false

;; open Assert

let attendees (price:int) :int =
(-15 * price) / 10 + 870

let test () : bool =
attendees 500 = 120

;; run_test "attendees at 5.00" test

let x = attendees 500

;; print_int x

Value-Oriented Programming

pure, functional, strongly typed

Course goal

• Beautiful code
– is simple
– is easy to understand
– is easy(er) to get right
– is easy to maintain
– takes skill to write

CIS1200

Strive for beautiful code.

Value-Oriented Programming
• Java, C, C#, C++, Python, Perl, etc. are tuned for an
imperative programming style
– Programs are full of commands

• “Change x to 5!”
• “Increment z!”
• “Make this point to that!”

• OCaml, on the other hand, promotes a
value-oriented style
– We’ve seen that there are a few commands…

print_endline, run_test

… but these are used rarely
– Most of what we write is expressions denoting values

CIS1200

Metaphorically, we might say that

imperative programming is about doing
while

value-oriented programming is about being

CIS1200

Programming with Values
• Programming in value-oriented (a.k.a. pure or functional)

style can be a bit challenging at first

• But it often leads to code that is much more beautiful

CIS1200

Types, Values, and Expressions

• Each type corresponds to a set of values
• Each expression is built from operations on values and it

simplifies to a value (or already is a value)
• Use parentheses to associate nested expressions

CIS1200

Types Values Operations Expressions

int -1 0 1 2 + * - / (3 + y) * x

Types, Values, and Expressions

• Each type corresponds to a set of values
• Each expression is built from operations on values and it

simplifies to a value (or already is a value)
• Use parentheses to associate nested expressions

CIS1200

Types Values Operations* Expressions

int -1 0 1 2 + * - / (3 + y) * x

float 0.12 3.1415 +. *. -. /. 3.0 *. (4.0 *. a)

string “hello” “CIS120” ^ (concatenation) “Hello, ” ^ s

bool true false && || not (not b1) || b2

*Note that there is no automatic conversion from float to int, etc., so you must use explicit conversion
operations like string_of_int or float_of_int

Static vs. Dynamic

CIS1200

The term ‘static’ indicates something that
happens before the program is run.

OCaml (like Java) has a static type system: the compiler checks that the
program is well typed before the program is run.

The term ‘dynamic’ refers to something that
happens while the program is running.

(We will learn about Java’s “dynamic dispatch” later in the course.)

Static Types
• Every identifier has a unique associated type
• "Colon" notation associates an identifier with its type

x : int a : float
s : string b1 : bool

• Every OCaml expression has a unique type determined by its
constituent subexpressions

CIS1200

x + (int_of_float (a +. 2.3))
: int : float

: float

: int

: int

Static Type Errors
• OCaml uses type inference to check that your

program uses types consistently

CIS1200

x + (string_of_float (a +. 2.3))
: int : float

: float

: string

ERROR: expected int but found string

NOTE: Every time OCaml points out a type
error, it is indicating a likely bug. Well-typed
OCaml programs often "just work"!
TIP: Adding type annotations can help track
down type checking errors.

Because + expects both of its
inputs to be of type int.

Sneak Preview
• OCaml has a rich type structure

(+) : int -> int -> int function types
string_of_int : int -> string

() : unit
(1, 3.0) : int * float tuple types

[1;2;3] : int list list types

• We will see all of these
(and how to define our own brand new types)
in upcoming lectures…

CIS1200

Calculating the Values of Expressions

OCaml’s model of computation

Simplification vs. Execution
• We can think of an OCaml expression as just a way of

writing down a value
• We can visualize running an OCaml program as a

sequence of calculation or simplification steps that
eventually lead to this value

• In contrast, a running Java program is best thought of
as performing a sequence of actions or commands

• … a variable named x gets created
• … then we put the value 3 in x
• … then we test whether y is greater than z
• … the answer is true, so we put the value 4 in x

Each command modifies the implicit, pervasive state of the
machine

CIS1200

Calculating with Expressions
OCaml programs mostly consist of expressions

Expressions simplify to values

3 ⇒ 3 (values compute to themselves)

3 + 4 ⇒ 7
2 * (4 + 5) ⇒ 18
attendees 500 ⇒ 120

The notation <exp> ⇒ <val> means that the expression
<exp> computes to the final value <val>

CIS1200

Note that the symbol ‘⇒’ is not OCaml syntax. We’re using it to
talk about the way OCaml programs behave.

Step-wise Calculation
• We can break down ⇒ in terms of single step

calculations, written ⟼

• For example:
(2+3) * (5-2)

⟼ 5 * (5-2) because 2+3 ⟼ 5
⟼ 5 * 3 because 5-2 ⟼ 3
⟼ 15 because 5*3 ⟼15

CIS1200

Conditional Expressions

OCaml conditionals are also expressions: they can be
used inside of other expressions

CIS1200

if s = "positive" then 1 else -1

if day >= 6 && day <= 7
then "weekend" else "weekday"

(if 3 > 0 then 2 else -1) * 100

if x > y then "x is bigger"
else if x < y then "y is bigger"
else "same"

if x > y then "x is bigger"
else (if x < y then "y is bigger"
else "same")

Simplifying Conditional Expressions
• A conditional expression yields the value of either its ‘then’-

branch or its ‘else’-branch, depending on whether the test is
‘true’ or ‘false’.

• For example
(if 3 > 0 then 2 else -1) * 100

⟼ (if true then 2 else -1) * 100
⟼ 2 * 100
⟼ 200
• It doesn’t make sense to leave out the ‘else’ branch in an ‘if’.

(What would the value be if the test was ‘false’?)

CIS1200

Typing Conditional Expressions

CIS1200

if s = "positive" then 1 else -1

: string : int: int

: bool

: int

NOTE: both branches
must have the same
type!

: string : string: int

Type Errors

CIS1200

if s = "positive" then 1 else “CIS 1200”

: bool

ERROR: expected int but found string

Let Declarations

naming, not “assigning”

Top-level Let Declarations
• A let declaration gives a name (a.k.a. identifier) to

the value denoted by some expression

• The scope of a top-level identifier is the rest of the
file after the declaration

CIS1200

let pi : float = 3.14159
let seconds_per_day : int = 60 * 60 * 24

The “scope” of a name is “the region of the
program in which it can be used”

Immutability
• Once defined by let, the binding between an

identifier and a value cannot be changed!

CIS1200

int x = 3;
x = 4;

Java / C / C++ / python /…
imperative update

'x = 4' is a command
that means

'update the contents of
location x to be 4'

The state associated with 'x'
changes as the program runs

let x : int = 3 in
x = 4

Ocaml
named expressions

'let x : int = 3' simply gives
the value 3 the name 'x'

'x = 4' asks `does x equal 4?‘
(a boolean value, false)

Once defined, the value
bound to 'x' never changes

Local Let Expressions
• Let declarations can appear both at top level and nested

within other expressions.

• Local let declarations are followed by ‘in’
– e.g. attendees, revenue, and cost

• Top-level let declarations do not use ‘in’
– e.g. profit_500

• The scope of a local identifier is just the expression after the
‘in’

CIS1200

let profit_500 : int =
let attendees = 120 in
let revenue = attendees * 500 in
let cost = 18000 + 4 * attendees in
revenue – cost

The scope of
attendees is

the expression
after the ‘in’

Typing Local Let Expressions

• A let-bound identifier has the type of the expression
it is bound to.

• The type of the whole local let expression is the type
of the expression after the ‘in’

• Recall: type annotations are written using colon:
let x : int = … ((x + 3) : int) …

CIS1200

let x = 3 + 5 in string_of_int (x * x)

: string: int : int

: string

Scope
Multiple declarations of the same variable or
function name are allowed. The later declaration
shadows the earlier one for the rest of the program.

CIS1200

scope of x

scope of y

scope of x
(shadows earlier x)

scope of z

let total : int =
let x = 1 in
let y = x + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

scope of total is the rest of the file

Simplifying Let Expressions

CIS1200

let total : int =
let x = 1 in
let y = x + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =
let x = 1 in
let y = x + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

First, we
simplify

the right-hand
side of the

declaration for
identifier

total.

Simplifying Let Expressions

CIS1200

let total : int =
let x = 1 in
let y = x + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

This r.h.s. is
already a

value.

Simplifying Let Expressions

CIS1200

let total : int =
let x = 1 in
let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Substitute 1
for x here.

But not
here because
the second x

shadows the first.

Simplifying Let Expressions

CIS1200

let total : int =
let x = 1 in
let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Discard the
local let since

it’s been
substituted

away.

Simplifying Let Expressions

CIS1200

let total : int =

let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplify the
expression

remaining in
scope.

Simplifying Let Expressions

CIS1200

let total : int =

let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Repeat!

Simplifying Let Expressions

CIS1200

let total : int =

let y = 2 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

let y = 2 in
let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

let y = 2 in
let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

let x = 1000 in
let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

let x = 1000 in
let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

let z = 1002 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

let z = 1002 in
1000 + 2 + 1002

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

let z = 1002 in
1000 + 2 + 1002

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

1000 + 2 + 1002

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int =

1000 + 2 + 1002 ⇒ 2004

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS1200

let total : int = 2004

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Lexical Scopes
When reading code: a variable refers to the nearest
enclosing let-binding.
– Be sure to account for nested expressions

CIS1200

let answer : int =
let x = 1 in
let y = let x = 2 in x + x in
x + y

let answer : int =
let x = 1 in
let y = (let x = 2 in x + x) in
x + y

With explicit parentheses:

These occurrences of ‘x’ refer to ‘x = 2’

This ‘x’ refers to ‘x = 1’. (The other let binding doesn’t enclose this x!)

For example:
answer = 5

Things (for you) to do…

• Sign up for Codio

• Check Ed for announcements

• Homework 1: OCaml Finger Exercises
– Practice using OCaml to write simple programs
– Start with first 4 problems

• (needed background on lists coming next week!)

– Start early!

CIS1200

