
CIS 1200 Final Exam December 19, 2023
Steve Zdancewic and Swapneel Sheth, instructors

SOLUTIONS

1

1. OCaml and Java Concepts (21 points total)

(a) (12 points) (1.5 points each) Indicate whether the following statements are true or false.

(a) True 2 False �
In Java, if s.equals(t) returns true, then s == t is guaranteed to return true.

(b) True 2 False �
In Java, if s == t returns true, then s.equals(t) is guaranteed to return true.

(c) True � False 2
In our GUI library, an event_listener is a first-class function stored in the hidden
state of a notifier widget. When an event occurs in the widget, the notifier invokes
all of the stored event_listeners.

(d) True � False 2
Variables in OCaml are immutable by default, whereas in Java, variables are mu-
table by default.

(e) True 2 False �
In a Java try-catch-finally statement, the finally clause is executed only if
the try clause does not throw an exception.

(f) True � False 2
In Java, a final instance variable can only be changed in a constructor.

(g) True 2 False �
In Java, every method must declare every exception it might throw in its header.

(h) True 2 False �
In Java, the default implementation of equality in the Object class uses reference
equality for mutable objects and structural equality for immutable objects.

2

(b) For the following questions, select the most suitable data structure for each particular
use case and justify why.

(Hint: An ArrayList in Java is similar to the “Resizable Array” example from class.)

i. (3 points) You are developing a navigation application (similar to Google Maps)
where a route consists of a series of way-points. You will need to frequently insert
and remove way-points as the route is optimized in real time. Which collection is
best suited for this?
2 ArrayList � LinkedList 2 TreeMap

Reason:
A LinkedList is best suited since we can efficiently insert and remove using
the head and tail of the list.

ii. (3 points) You’re designing a system for an online bookstore (similar to Amazon)
to store books where they need to be sorted based on ISBN numbers and frequently
retrieved (using the ISBN numbers). Which collection would you choose?
2 ArrayList 2 LinkedList � TreeMap

Reason:
A TreeMap is best suited since we can provide override the compareTo method
for books and use the efficient lookup and insert functions for Binary Search Trees.

iii. (3 points) You’re designing a system for a music playing app (similar to Spotify)
that stores curated playlists and once these playlists are created, they are never up-
dated. Users can choose to play songs in any order they like (e.g., song 1 followed
by song 3 followed by song 10). Which collection would you choose?
� ArrayList 2 LinkedList 2 TreeMap

Reason:
Since we want efficient access to the middle of the playlist and order in which
the songs are inserted matters, an ArrayList is the best option.

PennKey: 3

2. OCaml Higher Order Functions (again) (16 points total)

Recall the higher-order list processing functions shown in Appendix 1.

For each of the following mystery functions, determine which implementation choice(s) will
produce the correct output for the provided input list (Choose all that apply).

(a) (4 points)
mystery1 [1; 4; 7] = [2; 1; 5; 4; 8; 7]

� fold (fun x acc -> (x+1)::x::acc) [] input

2 transform (fun x-> x+1::[x]) input

2 fold (fun x acc -> x+1@x@acc) [] input

2 transform (fun x -> (x, x+1)) input

(b) (4 points)
mystery2 [("I", "love"); ("dogs", "and"); ("cats", "!")] =

["I love"; "dogs and"; "cats !"]

2 fold (fun (a,b) acc -> aˆ" "ˆb) [] input

� transform (fun (a,b) -> aˆ" "ˆb) input

� fold (fun (a,b) acc -> (aˆ" "ˆb)::acc) [] input

2 transform (fun (a,b) -> (aˆ" "ˆb)::[]) input

(c) (4 points)
mystery3 [2; 3; 4] = 1

� fold (fun x acc -> acc / x) 24 input

2 transform (fun x -> 1) input

� fold (fun x acc ->
if ((x mod 3 = 0) || (acc = 1)) then 1 else 0) 0 input

2 transform (fun x -> if x = 2 then 1 else 0) input

(d) (4 points)
mystery4 [[1; 2; 3]; [-1; -1; -1]; [2; 2; 2]] = [6; -1; 8])

� transform (fun x -> (fold (fun y acc -> y * acc) 1 x)) input

2 transform (fun x -> (transform (fun y -> y * y) x)) input

2 fold (fun x1 acc -> (transform (fun x2 -> x1*x2::acc))) [] input

� fold (fun x acc1 ->
(fold (fun y acc2 -> y * acc2) 1 x)::acc1) [] input

4

3. Java Subtyping and Dynamic Dispatch (19 points total)

This problem refers to two interfaces and several classes that might appear in a program
about the movie “Barbie”. You can find them in Appendix 2.

(a) (2 points) Which of the following classes are an example of simple inheritance in Java
(either explicitly or implicitly)? (Mark all that apply.)

� Allan � ComputerScienceBarbie 2 JavaBarbie

2 OcamlBarbie

(b) (2.5 points)
__________________ barbie = new ComputerScienceBarbie("CIS", "Hoodie");

Which type can be correctly used for the declaration of barbie above?
(Mark all that apply.)
� MattelToy

� Barbie

2 Allan

� ComputerScienceBarbie

2 JavaBarbie

2 OcamlBarbie

� Object

(c) (2.5 points)
MattelToy barbie = new ______??________(...);
OCamlBarbie toy = (OCamlBarbie) barbie;
toy.debugOCamlCode("’a list");

What can be used on the first line (instead of the ???) so that the code successfully
compiles but throws an exception when run? (Choose all that apply.)
2 MattelToy

2 Barbie

2 Allan

� ComputerScienceBarbie

� JavaBarbie

2 OcamlBarbie

2 Object

PennKey: 5

Which of the following lines is legal Java code that will not cause any compile-time
(i.e., type checking) or run-time errors?

If it is legal code, check the “Legal Code” box and answer the questions that follow it.
If it is not legal, check one of the “Not Legal” options and explain why.
You can assume each option below is independent.

(d) (3 points)
Barbie barbie = new ComputerScienceBarbie("Natalie", "Blazer");
String result = barbie.code();

2 Legal Code
A. The static type of barbie is .

B. The dynamic class of barbie is .

2 Not Legal — Will compile, but will throw an Exception when run
� Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

The code method is not defined for the static type Barbie.

(e) (3 points)
MattelToy toy = new OCamlBarbie("OCaml", "Caml");
toy.manufacture();

� Legal Code
A. The static type of toy is MattelToy .

B. The dynamic class of toy is OcamlBarbie .

2 Not Legal — Will compile, but will throw an Exception when run
2 Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

6

(f) (3 points)
ComputerScienceBarbie barbie = new JavaBarbie("Java", "Coffee cup");
System.out.println(barbie.speak());

The code above is Legal and doesn’t throw an exception when run. Now, consider
changing the second line to the following:
System.out.println(((JavaBarbie) barbie).speak());

The new version is:

� Legal Code
The updated code above will print (Choose all that apply.)
2 “Hi Computer Science Barbie”
� “Hi Java Barbie”
2 “Hi OCaml Barbie”

2 Not Legal — Will compile, but will throw an Exception when run
2 Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

(g) (3 points)
List<ComputerScienceBarbie> list = new ArrayList<JavaBarbie>();

2 Legal Code
The code above is legal because: (Choose all that apply.)
2 JavaBarbie is a subtype of ComputerScienceBarbie
2 This example illustrates Parametric Polymorphism.

2 Not Legal — Will compile, but will throw an Exception when run
� Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

Even though JavaBarbie is a subtype of ComputerScienceBarbie, Java Generics are invariant.

PennKey: 7

Grading scheme: For (a), +0.5 for each option correctly answered

Grading scheme: For (b, c), , +0.5 if 6-7 incorrectly answered OR +1 if 4-5 incorrectly
answered OR +1.5 if 2-3 incorrectly answered OR +2 if 1 incorrectly answered OR +2.5 for
all correctly answered

Grading scheme: For Illegal Code (d, g), +1.5 Selected correct option AND (+0.5 for
partially correct reason OR +1.5 for completely correct reason)

Grading scheme: For (e), +1.5 Selected correct option AND +0.5 for static type correctly
answered and +1 for dynamic class correctly answered

Grading scheme: For (f), +1.5 Selected correct option AND +0.5 for each print option
correctly answered

8

4. Java Swing Programming (16 points total)

Appendix 3 shows code for a partial implementation of a “Connect Four” game in Java.

The image below shows the GUI after a few turns. The exact rules of the game are not
relevant to the questions below; the questions test your understanding of both Java and Swing
programming idioms instead.

(a) (2 points)

True � False 2

On line 44, calling super.paintComponent(g) invokes the paintComponent method
of the JPanel class.

(b) (2 points)
There are several occurrences of the new keyword in the code provided. List all occur-
rences (i.e., line numbers) that correspond to anonymous inner classes.

Just one instance – lines 15–25.

PennKey: 9

(c) (4 points)
How will the program’s behavior change if we delete the call to repaint() on line 31?
(Select one.)

2 Nothing at all will ever be displayed – just a blank window.
2 The initial GUI will be displayed, but no shapes will ever be drawn.
2 The initial GUI will be displayed and tiles will show up when the grid is selected,

but clicking the reset button will have no effect.
2 The initial GUI will be displayed and tiles will show up when the grid spots are

selected. Clicking the reset button will not clear the existing tiles and no further
GUI updates will happen (regardless of what the user does).

� The initial GUI will be displayed and tiles will show up when the grid spots are
selected. Clicking the reset button will not clear the existing tiles, but clicking on
a grid spot will update the UI to the correct state.

2 No change in behavior.

(d) (4 points) For the game overall, which of the following are true? (Mark all that apply.)

2 GameBoard is a supertype of JPanel.
� The code would still compile successfully and behave identically if we replace the

Lambda function on lines 74–97 with an analogous anonymous inner class.
� The @Override annotations (such as on lines 16, 42, and 65) are optional and the

code will successfully compile if we delete them.
2 Java requires the use of the MouseAdapter class whenever we want to add a

MouseListener to an object.

10

(e) (4 points) Consider the argument to reset.addActionListener(...) on line 90.
Which of the following are true?

The Javadocs for addActionListener are shown below:
public void addActionListener(ActionListener l)
Adds an ActionListener to the button.

Parameters:
l - the ActionListener to be added

(Select one.)

2 The static type of the argument is null.
2 The static type of the argument is Object.
� The static type of the argument is ActionListener.
2 The argument has a static type, but it’s not one of the options listed above.
2 The argument does not have a static type.

(Select one.)

2 The dynamic class of the argument is null.
2 The dynamic class of the argument is Object.
2 The dynamic class of the argument is ActionListener.
� The argument has a dynamic class, but it’s not one of the options listed above.
2 The argument does not have a dynamic class.

PennKey: 11

5. Java Exceptions (12 points total)

This problem makes use of the class definitions for a game called “Hot Potato,” which is
provided for you in Appendix 4.

(a) (5 points)
The getsIt method has a throws declaration in the method signature (line 14). Which
of the following are true? (Choose all that apply.)

2 It is possible to omit the throws declaration (without making any other changes)
and the code would still compile successfully.

� It is possible to omit the throws declaration (with making other changes) and the
code would still compile successfully.

2 Any code that calls the getsIt method must also have a throws declaration in the
method signature.

2 Any code that calls the getsIt method doesn’t need to have a throws declaration
in the method signature since HotPotato is an unchecked exception.

� Any code that calls the getsIt method either needs a throws declaration in the
method signature or handles the exception via a try-catch block since HotPotato
is a checked exception.

(b) (7 points)
What happens when the following code is run? (Select one.)

String n1 = "Player 1";
String n2 = "Player 2";
String n3 = "Player 3";
HotPotato potato = new HotPotato();
Player p1 = new Player(n1, null);

Player p2 = new Player(n2, null);
Player p3 = new Player(n3, p2);
p1.nextInLine = p3;
p3.nextInLine.nextInLine = p1;

Player.thrower = p3;
try {

p2.getsIt(potato);
} catch (HotPotato p) {

System.out.println("Dropped it!");
}

(Answer choices on the next page.)

12

2 Nothing is printed to the console and the program immediately terminates.

2 The program throws a NullPointerException (possibly after printing some out-
put).

2 The console prints the following output and execution terminates normally.
Player 2 gets the potato.
Player 2 throws the potato.
Player 2 catches the potato and throws it.
Dropped it!

� The console prints the following output and execution terminates normally.
Player 2 gets the potato.
Player 2 passes the potato.
Player 1 gets the potato.
Player 1 passes the potato.
Player 3 gets the potato.
Player 3 throws the potato.
Player 1 catches the potato and throws it.
Player 2 catches the potato and throws it.
Dropped it!

2 The console prints the following output and execution terminates normally.
Player 2 gets the potato.
Player 2 passes the potato.
Player 3 gets the potato.
Player 3 passes the potato.
Player 1 gets the potato.
Player 1 throws the potato.
Player 2 catches the potato and throws it.
Dropped it!

2 The console prints
Player 2 gets the potato.
Player 2 passes the potato.
Player 1 gets the potato.
Player 1 passes the potato.
Player 3 gets the potato.
Player 3 passes the potato.
Player 2 gets the potato.
Player 2 passes the potato.
Player 1 gets the potato.
Player 1 passes the potato.

and continues looping until a StackOverflow occurs.

PennKey: 13

6. Java Iterators and Testing (36 points total)

In this problem, you will create a class, NumberGenerator, which is an Iterator that pro-
duces a sequence of numbers for which a provided validator returns true.

The numbers are non-negative and they are produced in ascending order.

For example, to print out the first 10 prime numbers, we could use the following code:
Iterator<Integer> primes = new NumberGenerator(new PrimeNumberValidator());
for(int i = 0; i < 10; i++) {

System.out.print(primes.next() + " ");
}

When executed, the output will be:
2 3 5 7 11 13 17 19 23 29

In the code above, the PrimeNumberValidator class (see Appendix 5) is an instance of the
NumberValidator interface, which is defined as:
public interface NumberValidator {

public boolean isValidNumber(int x);
}

In the case of PrimeNumberValidator, the isValidNumber(x) method returns true if x is
prime, and returns false otherwise.

(a) (3 points) Fill in the blanks below so that correct implementations of NumberGenerator
and PrimeNumberValidator will pass, or, if that is not possible, mark the box indicating
why.

@Test
public void testNumberGeneratorTestA() {

int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};

Iterator<Integer> iter = new NumberGenerator(new PrimeNumberValidator());
for(int i = 0; i < 5; i++) {

assertEquals(primes[i], iter.next());
}
assertEquals(13, iter.next());
assertTrue(iter.hasNext());

}

OR (choose one)

2 It is not possible because of syntax errors in the provided code.

2 It is not possible because of type errors in the provided code.

14

(b) (3 points) Fill in the blanks in the test case below so that it will pass, or, if that is not
possible, mark the box indicating why.

@Test
public void testNumberGeneratorTestB() {

Iterator<Integer> iter = new NumberGenerator(x -> x==0);
assertEquals(0, iter.next());
assertFalse(iter.hasNext());
assertThrows(NoSuchElementException.class, () -> iter.next());

}

OR (choose one)

2 It is not possible because of syntax errors in the provided code.

2 It is not possible because of type errors in the provided code.

Constructors The NumberGenerator will support two constructors. The first one accepts
an int upper bound with the meaning that all yielded results be strictly less than that bound,
along with a NumberValidator. If the bound provided is negative or the NumberValidator

is null, the NumberGenerator constructor should throw an IllegalArgumentException.

The second constructor (that we provide) accepts just a NumberValidator and invokes the
first constructor with a bound of Integer.MAX_VALUE, which is the largest int value repre-
sentable in Java.

(c) (2 points)

True 2 False �

The presence of two constructors for NumberGenerator that have the same name but differ
in their types is an example of overriding in Java.

PennKey: 15

(d) (3 points) Fill in the blanks in the test case below so that it will pass, or, if that is not
possible, mark the box indicating why.

@Test
public void testC() {

assertThrows(IllegalArgumentException.class,
() -> new NumberGenerator(-3, x -> x==0));

assertThrows(IllegalArgumentException.class,
() -> new NumberGenerator(3, null));

Iterator<Integer> iter = new NumberGenerator(2, x -> true);
assertEquals(0, iter.next());
assertEquals(1, iter.next());

assertFalse(iter.hasNext());
}

OR (choose one)

2 It is not possible because of syntax errors in the provided code.

2 It is not possible because of type errors in the provided code.

Implementation
The following page contains a partial implementation of the NumberGenerator class itself.
Complete the code so that it correctly implements the Iterator<Integer> interface (see the
JavaDocs in Section 6).

After a NumberGenerator is constructed from a given NumberValidator and bound, each
call to next() should yield the smallest non-negative (i.e. >= 0) integer that has not already
been yielded and such that v.isValidNumber(n) == true and the number is < bound. If
there is no such number, next() should throw a NoSuchElementException. The yielded
values should be generated on demand, that is: your code should generate at most one number
at a time.

You may not use any other Java libraries but you can assume that Iterator and appropriate
exception types are imported.

(e) (4 points) You will have to add at least one private field and may add private helper
method(s). In the space below, briefly state the representation invariant(s) used by your code
for the private field(s). Hint: the representation invariant should be exploited by hasNext().

INVARIANT:

The int field next is maintained so that, either:

• 0 <= next < bound and next is the next number to return from next(), or

• next == bound and there are no more valid numbers

16

(f) (21 points) Complete this implementation:
import java.util.Iterator;
import java.util.NoSuchElementException;

/**
* Generates an ascending sequence of numbers all of which are

* >= 0 and < the given bound and that also satisfy the

* isValidNumber predicate provided by the NumberValidator.

*/
public class NumberGenerator implements Iterator<Integer> {

private final NumberValidator v;
private final int bound; // all results are < bound

// invariant:
// - 0 <= next < bound and next is the next number to return, or
// - next == bound and there are no more valid numbers
private int next;

public NumberGenerator(int bound, NumberValidator v) {
if (bound < 0 || v == null) throw new IllegalArgumentException();
this.v = v;
this.bound = bound;
this.next = 0;
findNext();

}

// provides a constructor with a large default maximum value
public NumberGenerator(NumberValidator v) {

this(Integer.MAX_VALUE, v);
}

private void findNext() {
while (next < bound && !v.isValidNumber(next)) {

next = next + 1;
}

}

public boolean hasNext() {
return (next < bound);

}

public Integer next() {
if (!hasNext()) throw new NoSuchElementException();
int curr = next;
next = next + 1;
findNext();
return curr;

}
}

17

Appendices

Section 1 - Higher-Order List Processing Functions

Section 2 - Java Code for Subtyping

Section 3 - Java Code for “Connect Four”

Section 4 - Java Code for “Hot Potato”

Section 5 - Java Code for NumberValidator and PrimeNumberValidator

Section 6 - JavaDocs for Integer and Iterator

18

1 Higher-Order List Processing Functions

Here are the higher-order list processing functions:
let rec transform (f: ’a -> ’b) (xs: ’a list): ’b list =
begin match xs with
| [] -> []
| h::tl -> f h :: transform f tl
end

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list) : ’b =
begin match l with
| [] -> base
| h::tl -> combine h (fold combine base tl)
end

19

2 Java Code for Subtyping

interface MattelToy {
public void manufacture();

}

interface Barbie extends MattelToy {
public void changeOutfit(String newOutfit);
public void dance();

}

abstract class Allan implements MattelToy {
private String name;

public Allan(String name) {
// Constructor body

}

public void manufacture() {
// Implementation of manufacture method

}

public abstract void waveToAllan();
public abstract void beach();

}

class ComputerScienceBarbie implements Barbie {
private String name;
private String outfit;

public ComputerScienceBarbie(String name, String outfit) {
// Constructor body

}

public void manufacture() {
// Body of manufacture method

}

public void changeOutfit(String newOutfit) {
// Body of changeOutfit method

}

public void dance() {
// Body of dance method

}

public String code() {
return "Generic code";

}

public String speak() {

20

return "Hi Computer Science Barbie";
}

}

class JavaBarbie extends ComputerScienceBarbie {

public JavaBarbie(String name, String outfit) {
super(name, outfit);
// Additional constructor body for JavaBarbie

}

public String code() {
return "Java code";

}

public void debugJavaCode(String code) {
// Body of debugJavaCode method

}

public String speak() {
return "Hi Java Barbie";

}
}

class OCamlBarbie extends ComputerScienceBarbie {

public OCamlBarbie(String name, String outfit) {
super(name, outfit);
// Additional constructor body for OCamlBarbie

}

public void debugOCamlCode(String code) {
// Body of debugOCamlCode method

}

public String speak() {
return "Hi OCaml Barbie";

}
}

21

3 Java Code for “Connect Four”

1 class GameBoard extends JPanel {
2
3 private ConnectFour c4; // model for the game -- the code is hidden
4 private JLabel status; // current status text
5 public static final int SIZE = 5;
6 public static final int BOARD_WIDTH = 100 * SIZE;
7 public static final int BOARD_HEIGHT = 100 * SIZE;
8
9 public GameBoard(JLabel statusInit) {

10 setBorder(BorderFactory.createLineBorder(Color.BLACK));
11
12 c4 = new ConnectFour();
13 status = statusInit;
14
15 addMouseListener(new MouseAdapter() {
16 @Override
17 public void mouseReleased(MouseEvent e) {
18 Point p = e.getPoint();
19
20 c4.playTurn(p.x / 100, p.y / 100);
21
22 updateStatus();
23 repaint();
24 }
25 });
26 }
27
28 public void reset() {
29 c4.reset();
30 status.setText("Player 1’s Turn");
31 repaint();
32 }
33
34 private void updateStatus() {
35 if (c4.getCurrentPlayer()) {
36 status.setText("Player 1’s Turn");
37 } else {
38 status.setText("Player 2’s Turn");
39 }
40 }
41
42 @Override
43 public void paintComponent(Graphics g) {
44 super.paintComponent(g);
45
46 for (int i = 1; i < 5; i++) {
47 g.drawLine(i * 100, 0, i * 100, BOARD_WIDTH);
48 g.drawLine(0, i * 100, BOARD_WIDTH, i * 100);
49 }
50
51 for (int i = 0; i < SIZE; i++) {

22

52 for (int j = 0; j < SIZE; j++) {
53 int state = c4.getCell(j, i);
54 if (state == 1) {
55 g.setColor(Color.LIGHT_GRAY);
56 g.fillOval(30 + 100 * j, 30 + 100 * i, 40, 40);
57 } else if (state == 2) {
58 g.setColor(Color.DARK_GRAY);
59 g.fillOval(30 + 100 * j, 30 + 100 * i, 40, 40);
60 }
61 }
62 }
63 }
64
65 @Override
66 public Dimension getPreferredSize() {
67 return new Dimension(BOARD_WIDTH, BOARD_HEIGHT);
68 }
69 }
70
71 public class GameRunner {
72
73 public static void main(String[] args) {
74 SwingUtilities.invokeLater(() -> {
75 final JFrame frame = new JFrame("Connect Four");
76 frame.setLocation(300, 300);
77
78 final JPanel status_panel = new JPanel();
79 frame.add(status_panel, BorderLayout.SOUTH);
80 final JLabel status = new JLabel("Setting up...");
81 status_panel.add(status);
82
83 final GameBoard board = new GameBoard(status);
84 frame.add(board, BorderLayout.CENTER);
85
86 final JPanel control_panel = new JPanel();
87 frame.add(control_panel, BorderLayout.NORTH);
88
89 final JButton reset = new JButton("Reset");
90 reset.addActionListener(e -> board.reset());
91 control_panel.add(reset);
92
93 frame.pack();
94 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
95 frame.setVisible(true);
96 board.reset();
97 }
98);
99 }

100 }

23

4 Java Code for “Hot Potato”

1 class HotPotato extends Exception {
2 }
3
4 class Player {
5 public static Player thrower = null;
6 Player nextInLine;
7 String name;
8
9 Player(String name, Player target) {

10 this.name = name;
11 this.nextInLine = target;
12 }
13
14 void getsIt(HotPotato potato) throws HotPotato {
15 System.out.println(name + " gets the potato.");
16 if (this == thrower) {
17 System.out.println(name + " throws the potato.");
18 throw potato;
19 } else {
20 try {
21 System.out.println(name + " passes the potato.");
22 nextInLine.getsIt(potato);
23 } catch (HotPotato p) {
24 System.out.println(name + " catches the potato and throws it.");
25 throw p;
26 }
27 }
28 }
29 }

24

5 Java Code for NumberValidator and PrimeNumberValidator

public interface NumberValidator {
public boolean isValidNumber(int x);

}

public class PrimeNumberValidator implements NumberValidator {

@Override
public boolean isValidNumber(int x) {

if (x == 0 || x == 1) return false; // 0 and 1 aren’t prime

// check for factors starting at 2 (they must be <= sqrt(x))
for (int factor = 2; factor * factor <= x; factor++) {

if (x % factor == 0) return false; // x has a factor
}
return true; // x has no factors

}
}

25

6 JavaDocs

class Integer implements Comparable<Integer>

The Integer class wraps a value of the primitive type int in an object. An object
of type Integer contains a single field whose type is int. The Java compiler will
transparently insert calls intValue and valueOf to convert between int literals and
Integer objects as needed.

int intValue()

Returns the value of this Integer as an int.

static Integer parseInt(String s)

• Returns: the integer value represented by the argument s in decimal.

• Throws: NumberFormatException - if the string does not contain a parsable integer.

static Integer valueOf(int i)

Returns the Integer object corresponding to int i.

int compareTo(Integer anotherInteger)

Compares two integers numerically. x.compareTo(y) returns x - y.

26

interface Iterator<E>

boolean hasNext()

Returns true if the iteration has more elements. (In other words, returns true if next()
would return an element rather than throwing an exception.)

• Returns: true if the iteration has more elements

E next()

Returns the next element in the iteration.

• Returns: the next element in the iteration

• Throws: NoSuchElementException - if the iteration has no more elements

PennKey: 27

	Higher-Order List Processing Functions
	Java Code for Subtyping
	Java Code for ``Connect Four''
	Java Code for ``Hot Potato''
	Java Code for [language=Java,backgroundcolor=white]NumberValidator and [language=Java,backgroundcolor=white]PrimeNumberValidator
	JavaDocs

