
CIS 1200 Final Exam May 9, 2023
Steve Zdancewic instructor

SOLUTIONS

1

OCaml Concepts (27 points total)
Appendix A contains the definitions of several OCaml types and functions that should be familiar
from class: ’a tree, ’a ref, transform, and fold.

Binary Search Trees (8 points) For each tree below, check the box indicating whether it satisfies
the binary search tree invariants. NOTE: If it does not, cross out and replace one node value such
that the resulting int tree does satisfy the invariants (the result does not need to have the same
nodes).

X 0 or 1 X 6 4 6
\ / \ / \ / \
2 5 7 or 1 5 4 8
\ 7 / \ / \ \
4 / \ 0 3 1 X 5 9

5 X 8+

□ is a BST □ is a BST ⊠ is a BST □ is a BST
⊠ is not BST ⊠ is not BST □ is not BST ⊠ is not BST

Higher-order Functions (8 points)
Consider the following four functions defined using transform or fold.

let hof1 = transform (fun x -> insert x 120)
let hof2 = fold (fun x acc -> insert acc x) Empty
let hof3 = fold (fun x acc -> (insert x 120) :: acc) []
let hof4 = fold (fun x acc -> insert x 120) Empty

Match each of the functions to one of the following English descriptions of its behavior.
(choose one option for each function; a choice may be used by more than one function)

(A) Returns a list of trees obtained by adding the value 120 to every tree in a given list.

(B) Returns either Empty or the tree obtained by adding 120 to the first tree in a given list.

(C) Returns a (binary search) tree containing the elements of a provided list.

(D) Returns a list of trees obtained by adding the value 120 to Empty for every tree in a given
list.

• hof1 is described by: ⊠ A □ B □ C □ D

• hof2 is described by: □ A □ B ⊠ C □ D

• hof3 is described by: ⊠ A □ B □ C □ D

• hof4 is described by: □ A ⊠ B □ C □ D

2

Aliasing and mutable state Recall that OCaml supports mutable state via type declarations
such as for the ’a ref type shown below (and in Appendix A). Consider the following well-typed
program:
type ’a ref = { mutable contents : ’a }

let x = { contents = { contents = "1200" } }
let y = { contents = "PENN" }
;; x.contents <- y
let z = y
;; y.contents <- "RULES"
let w = y.contents

;; print_endline ("x.contents.contents = " ˆ x.contents.contents)
;; print_endline ("y.contents = " ˆ y.contents)
;; print_endline ("z.contents = " ˆ z.contents)
;; print_endline ("w = " ˆ w)

(a) (4 points) What is the type of each variable in the above code? (choose one each)

• x : □ string □ string ref □ unit ref ⊠ (string ref) ref

• y : □ string ⊠ string ref □ unit ref □ (string ref) ref

• z : □ string ⊠ string ref □ unit ref □ (string ref) ref

• w : ⊠ string □ string ref □ unit ref □ (string ref) ref

(b) (4 points) Fill in the blanks below to show what gets printed when this program is run. Fill
each slot with one of the strings 1200, PENN, or RULES
x.contents.contents = RULES

y.contents = RULES

z.contents = RULES

w = RULES

(c) (3 points) After running the program above, which values will alias y? (mark all that apply)
□ x ⊠ z

⊠ x.contents □ z.contents

□ x.contents.contents □ w

PennKey: 3

Java Programming
The next several questions refer to the Java code found in Appendix C. Some of the questions

test your understanding of Java concepts; other questions will ask you to follow our design process
to implement (parts of) a collection datatype for graphs. You may find the (excerpt of) the Java
Documentation found in Appendix B to be useful.

Step 1: Understand the problem (4 points total)
Besides the set and finite map collections that we have studied in class, another frequently used

collection type is the graph. A graph contains a set of nodes along with a collection of (directed)
edges, each of which connects a source node to a target node. We consider graphs where there is
at most one edge between any pair of nodes.

We draw nodes as labeled circles n and edges as arrows pointing from the source to the target
s t . For example, the diagram below depicts a graph whose nodes are the integers 1 through

6, and whose edges are indicated by the seven arrows.

1 2
3

4
5 6

As with other collections, there are many operations that we might want our graphs to support. In
addition to methods to add nodes and edges to the graph, we focus on just two other operations.
First, determining the neighbors of a node, which is just the set of nodes reachable via an edge. For
instance, in the graph above, the neighbors of 2 are 3 and 4 , but node 6 has no neighbors.
Second, we can determine whether there is a path from some node s to a node t that follows the
edges in the graph. For instance, in the example graph above, there are paths 1 2 4 5
and 5 2 3 but there is no path from node 3 to node 1 . Note that there is always a
(trivial) path from any node to itself and that a path might visit the same node multiple times.

(a) (2 points) In the example graph above, which nodes are neighbors of node 5 ? (mark all
that apply)

□ 1 ⊠ 2 □ 3 □ 4 □ 5 ⊠ 6

(b) (2 points) How many paths are there from node 4 to node 3 ? (choose one)

□ 0

□ 1

□ 2

⊠ there are infinitely many paths due to the cycle in the graph

4

Step 2: Design the interface (14 points total)
Just as with Java’s Set<E> and Map<K,V> interfaces, which are generic in the data they store, we

will make the interface Graph<Node> polymorphic in the type Node. The Graph<Node> interface
supports add and contains operations with the same specification of those methods in Set; it also
supports three new graph-specific methods: addEdge, neighbors, and hasPath. Code defining
the interface is shown in Appendix C.1.

Java concepts: (12 points) With respect to Graph<Node>, indicate whether the following state-
ments are true or false; if false give a brief justification.

1. According to the method signature on line 25, addEdge might throw an IOException.

□ True
⊠ False because: Ans: IOException must be declared using throws

2. According to the method signature on line 25, addEdge might throw a NullPointerException
⊠ True
□ False because: Ans:

3. The following snippet of code will compile successfully (but may produce warnings):
Graph<Integer> g = null;
g.contains("CIS1200");

⊠ True
□ False because: Ans: Note that the contains method takes an argument of type Object.

4. The following snippet of code will compile successfully (but may produce warnings):
Graph<Integer> g = new Graph<>();
g.contains(3);

□ True
⊠ False because: Ans: You can’t create an instance of an interface.

Design question: (2 points) Suppose that, rather than neighbors, the Graph<Node> interface
provides a method boolean hasEdge(Node src, Node tgt), which returns true if there is an
edge from src to tgt (and throws NoSuchElementException if src is not a node in the graph).

1. Consider implementing hasEdge using neighbors: (choose one)

□ It is not possible to implement hasEdge using neighbors.

□ g.contains(src)&& g.neighbors(tgt) implements g.hasEdge(src,tgt)

⊠ g.neighbors(src).contains(tgt) implements g.hasEdge(src,tgt)

□ g.neighbors(tgt).contains(src) implements g.hasEdge(src,tgt)

PennKey: 5

Step 3: Write test code for Graph (12 points total) Even before we have code that implements
the Graph<Node> interface, we can write test cases that check our examples and properties. These
test cases can use subtype polymorphism to implement tests that work for any implementation: we
will assume that each such generic test is provided a instance of a graph object freshly created by
new. For instance, in Step 4 (later in the exam) you will work with TreeGraph. We will assume
that a test for TreeGraph is called via test(new TreeGraph()).

(a) (4 points) Consider the following test case:
1 private void testNoSuchSource(Graph<Integer> g) {
2 assertFalse(g.contains(0));
3 assertThrows(NoSuchElementException.class, () -> g.neighbors(0));
4 }

Which of the following statements are true? (mark all that apply)

⊠ This test case will succeed only if g.contains(0) returns false.

□ The syntax NoSuchElementException.class (line 3) creates an instance of an anonymous
inner class.

⊠ The syntax () -> g.neighbors(0) (line 3) creates an instance of an anonymous inner class.

□ The following test case is equivalent to the one above.
private void testNoSuchSourceAlternate(Graph<Integer> g) {

assertFalse(g.contains(0));
try {

g.neighbors(0);
} catch (NoSuchElementException e) { fail(); }

}

(b) (2 points) Complete the following test case so that all assertions succeed. It is based on the
example graph pictured earlier:

private void testNeighbors(Graph<Integer> g) {
g.addEdge(1,2); g.addEdge(2,3); g.addEdge(2,4); g.addEdge(3,5);
g.addEdge(4,5); g.addEdge(5,6); g.addEdge(5,2);

TreeSet<Integer> expected1 = new TreeSet<>();

expected1.add(___2_____);
assertEquals(expected1, g.neighbors(1));

TreeSet<Integer> expected2 = new TreeSet<>();
expected2.add(3);
expected2.add(____4_______);
assertEquals(expected2, g.neighbors(___2_______));

TreeSet<Integer> expected3 = new TreeSet<>();

assertEquals(expected3, g.neighbors(____6______));
}

6

(c) (6 points) Briefly explain (in English and/or pseudocode) how to write a test case that can
fail if the neighbors method does not properly encapsulate some state associated with the graph
implementation.

Answer: To test proper encapsulation, we must (1) obtain the set of nodes returned
by a call to neighbors, (2) modify that set, and (3) check whether the modification
affects the results of another operation on the set. One code example (of many possible
ones) is:

private void testEncapsulation(Graph<Integer> g) {
g.addEdge(1,2);
Set<Integer> nbrs = g.neighbors(1);
assertFalse(nbrs.contains(3));
nbrs.add(3);
Set<Integer> nbrs2 = g.neighbors(1);
assertFalse(nbrs2.contains(3));

}

Step 4: Implement it As with the Java Collections library, we might have different implemen-
tations of the Graph interface that use different internal representations. We will follow the design
there by using an abstract class to implement the hasPath algorithm once so that different
representations of the graph abstract type can share that code.

Java concepts (16 points total) These questions are about the implementation of the AbstractGraph
code in Appendix C.2. (Note: you should be able to answer these questions without understanding
the details of the hasPath search algorithm; they are just about Java concepts.)

1. (4 points) Which of the following are supertypes of AbstractGraph<Integer>? (mark all
that apply)

⊠ AbstractGraph<Integer> □ AbstractGraph<Object>

□ AbstractSet<Integer> □ Set<Node>

□ AbstractGraph<Node> ⊠ Object

2. (4 points) Suppose a well-typed program declares a variable Graph<Integer> g = (*
omitted *);. Which of the following statements are true? (mark all that apply)

⊠ The static type of g is Graph<Integer>.

□ It is possible for the dynamic class associated with g to be AbstractGraph<Integer>

⊠ It is possible for the dynamic class associated with g to be a subtype of AbstractGraph
<Integer>

⊠ In code after this declaration it is possible for the expression g.equals(g) to throw an
exception.

PennKey: 7

3. (4 points) Note that there is a comment in the documentation for AbstractGraph indicating
that the implementation assumes that Node implements the Comparable<Node> interface.
Which of the following best explains why? (choose one)

□ The implementation of this.contains, as used on line 11, requires compareTo in its
implementation.

□ The method toSearch.removeFirst(), as used on line 24, needs compareTo to find
the smallest node to remove from the list.

⊠ The implementation of hasPath uses a TreeSet<Node> to store the alreadyVisited

nodes, as seen on lines 16, 25, and 30, and TreeSet requires its elements to support
compareTo.

□ The method current.equals(tgt), as used on line 27, requires compareTo in its
implementation.

4. (4 points) Which of the following best describes what would happen if we removed the use
of this from the conditional guard on line 11, i.e., so it reads:

if (!contains(src)|| !contains(tgt)){

(choose one)

□ The hasPath method would always throw a NoSuchElementException.

□ The hasPath method would never throw a NoSuchElementException.

□ The hasPath method would always go into an infinite loop.

⊠ The behavior of the hasPath method would be unaffected.

Design question Now we will implement two different instances of the Graph<Integer> in-
terface. Both inherit from AbstractGraph<Integer> and provide the missing Graph<Integer>

methods. (Note that, for these types, the nodes are specialized to be Integer objects.)

(no more questions on this page)

8

Implementation 1: ArrayGraph (14 points total) The first implementation represents the nodes
and edges of the graph using arrays of booleans (sometimes called the “adjacency matrix”). Ap-
pendix C.3 contains code for this class.

The following are the representation invariants embodied by this code.

INV1 nodes[n] == true if and only if n is a node in the graph

INV2 edges[src][tgt] == true if and only if src and tgt are nodes in the graph and there is
an edge from src to tgt

(a) (2 points) Which of the following best explains why the constructor (line 10) establishes
these invariants? (choose one)

□ The graph starts out with maxNodes nodes, and the default initializer for boolean is true.

□ The graph starts out with maxNodes nodes, and the default initializer for boolean is false.

□ The graph starts out empty, and the default initializer for boolean is true.

⊠ The graph starts out empty, and the default initializer for boolean is false.

(b) (4 points) The add method is supposed to add a new node to the graph.

• Which line of code relies on INV1? (choose one):

□ line 22 ⊠ line 23 □ line 24 □ line 25

• Which line of code establishes INV1? (choose one):

□ line 22 □ line 23 ⊠ line 24 □ line 25

(c) (2 points) Which invariant would break if we delete line 37 from addEdge? (choose one)
□ INV1 breaks ⊠ INV2 breaks □ neither breaks □ both break

(d) (6 points) Complete the implementation of neighbors. (The code is not very long.)
@Override
public Set<Integer> neighbors(Integer src) {

if (!this.contains(src)) { throw new NoSuchElementException(); }

Set<Integer> nbrs = new TreeSet<>();
for(int tgt=0; tgt < nodes.length; tgt++) {

if (edges[src][tgt]) nbrs.add(tgt);
}
return nbrs;

}

PennKey: 9

Implementation 2: TreeGraph (17 points) The second implementation represents the nodes and
edges of the graph using the Java TreeMap and/or TreeSet collection(s). From the options below,
choose appropriate representation type(s) or mark “not needed” if you don’t need that field. Then
write down the invariant and complete the missing parts of the TreeGraph following that plan.

class TreeGraph extends AbstractGraph<Integer> {

private final Map<Integer,Set<Integer>> edges;

/ * INVARIANT :

* s i s a node e x a c t l y when : edges . c o n t a i n s K e y (s)

*
* s −> t i s an edge e x a c t l y when : edges . g e t (s) . c o n t a i n s (t)

* /

public TreeGraph() { this.edges = new TreeMap<>(); }

@Override
public boolean add(Integer node) {

if (!this.contains(node)) {
edges.put(node, new TreeSet<>());
return true;

}
return false;

}
@Override
public boolean contains(Object o) {

return edges.containsKey(o);
}
@Override
public void addEdge(Integer src, Integer tgt) {

this.add(src);
this.add(tgt);
Set<Integer> neighbors = edges.get(src);
neighbors.add(tgt);

}
@Override
public Set<Integer> neighbors(Integer src) {

if (!this.contains(src)) { throw new NoSuchElementException(); }
Set<Integer> nbrs = new TreeSet<>();
for(Integer tgt : edges.get(src)) {

nbrs.add(tgt);
}
return nbrs;

}
}

10

Using a Graph (16 points total) Appendix C.4 contains a program that reads the edges of a
graph from a file example.txt and then prints out, for each node src in the graph, a list of nodes
that can be reached via a path from src. The file format is simple: nodes are numbers and each
line of the file is of the form s -> t, representing an edge from s to t in the graph. Below you can
see the sample example.txt associated with the example graph, along with the output printed to
the console:

example.txt: console output:
1 -> 2 1 ==> 1 2 3 4 5 6
2 -> 3 2 ==> 2 3 4 5 6
2 -> 4 3 ==> 2 3 4 5 6
3 -> 5 4 ==> 2 3 4 5 6
4 -> 5 5 ==> 2 3 4 5 6
5 -> 6 6 ==> 6
5 -> 2

Java Concepts (a) (2 points) Suppose that we change line 25 of GraphApp to instead use the
this keyword:
Graph<Integer> g = this.readGraph(new FileReader(filename));

What would be the result? (choose one)

□ The program would compile successfully and its behavior would be unchanged.

□ The program would compile successfully but it would throw an exception when run.

⊠ The program would not compile because main is declared as static.

□ The program would not compile because readGraph is declared as static.

Java Concepts (b) (2 points) Recall that you used the BufferedReader as part of your TwitterBot
homework. Which of the following are true properties of the BufferedReader class. (Note: we

have intentionally not provided JavaDocs for BufferedReader.) (mark all that apply)

⊠ BufferedReader is more efficient than just using FileReader to read individual characters
from the input.

□ The BufferedReader methods do not throw IOExceptions.

⊠ The BufferedReader readLine method provides the ability to read a whole line of input at
once as a String.

⊠ A BufferedReader constructor can accept any Reader as an input.

PennKey: 11

Design Question (a) (5 points) This program works, but could be made both simpler and more
general. Suggest a change you would make to the Graph<Node> interface and briefly describe (in
English and/or pseudocode) how it would let your simplify the code on lines 26–36 of GraphApp.
Note: Your change should be suitable for inclusion in a Java Collections library class, i.e., it should
not simply contain the code of from GraphApp and it should not do I/O.

• Modify the Graph<Node> interface to add a method Set<Node> getNodes()

and: rewrite the lines 26–36 as:
for(Integer src : g.getNodes()) {
System.out.print(src + " ==>");
for(Integer tgt : g.getNodes()) {
if (g.hasPath(src, tgt)) System.out.print(" " + tgt);

}
System.out.println();

}

• Modify the Graph<Node> interface to extend Iterable<Node> and rewrite the lines 26–36
as:

for(Integer src : g) {
System.out.print(src + " ==>");
for(Integer tgt : g) {
if (g.hasPath(src, tgt)) System.out.print(" " + tgt);

}
System.out.println();

}

Design Question (b) (3 points) As it is currently written, readGraph declares the IOException
and main uses try/catch to handle it, which is a bit awkward. Which of the following changes
would lead to a cleaner design with the same functionality? (choose one)

□ Remove the try/catch code on lines 24/37–41 and add throws IOException on line 21.

⊠ Move the try/catch code from lines 24/37–41 to surround lines 9-16, modify readGraph

to take String filename, and call the FileReader constructor on line 9.

□ Change readGraph to take a BufferedReader b, delete the throws IOException from
line 7, delete line 9, and call the BufferedReader constructor on line 25.

Design question (c) (4 points) Our implementations of Graph<Integer> have not said anything
about the equals method. Would overriding equals be justified in this case? Briefly explain why
or why not.

Implementations of Graph<Integer>
⊠ should
□ should not override equals, because:

Answer: Two graphs should be considered structurally equivalent if they contain the same set
of nodes and those nodes are connected by in the same way by the edges in each graph. Java’s Set
type uses a similar kind of structural comparison, and this would be consistent.

12

Scratch Space
Use this page for work that you do not want us to grade. If you run out of space elsewhere in the
exam and you do want to put something here that we should grade, make sure to put a clear note
in the normal answer space for the problem in question.

PennKey: 13

CIS1200 Final 2023 Spring
Appendices

1

A OCaml Code

Binary Trees

type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

(* Inserts n into the binary search tree t *)
let rec insert (t: ’a tree) (n: ’a) : ’a tree =
begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->

if x = n then t
else if n < x then Node(insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

Reference Types

type ’a ref = { mutable contents : ’a }

Recall that the OCaml syntax r.contents <- e mutates the contents field of r to be e.

Higher-order Functions: Transform and Fold

let rec transform (f: ’a -> ’b) (xs: ’a list): ’b list =
begin match xs with
| [] -> []
| h::tl -> f h :: transform f tl
end

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list) : ’b =
begin match l with
| [] -> base
| h::tl -> combine h (fold combine base tl)
end

2

B JavaDocs

class Integer implements Comparable<Integer>

The Integer class wraps a value of the primitive type int in an object. An object
of type Integer contains a single field whose type is int. The Java compiler will
transparently insert calls intValue and valueOf to convert between int literals and
Integer objects as needed.

int intValue()

Returns the value of this Integer as an int.

static Integer parseInt(String s)

• Returns: the integer value represented by the argument s in decimal.

• Throws: NumberFormatException - if the string does not contain a parsable integer.

static Integer valueOf(int i)

Returns the Integer object corresponding to int i.

int compareTo(Integer anotherInteger)

Compares two integers numerically. x.compareTo(y) returns x - y.

3

interface Iterator<E>

boolean hasNext()

Returns true if the iteration has more elements. (In other words, returns true if next()
would return an element rather than throwing an exception.)

• Returns: true if the iteration has more elements

E next()

Returns the next element in the iteration.

• Returns: the next element in the iteration

• Throws: NoSuchElementException - if the iteration has no more elements

4

interface Set<E> extends Collection<E>, Iterable<E>
Type Parameters:

• E - the type of elements in this set

boolean add(E e)

Adds the specified element to this set if it is not already present (optional operation).

• Returns: true if this set did not already contain the specified element

• Throws:
ClassCastException - if the class of the specified element prevents it from being added to
this set

IllegalArgumentException - if some property of the specified element prevents it from
being added to this set

boolean contains(Object o)

• Returns: true if this set contains the specified element

boolean isEmpty()

• Returns: true if this set contains no elements.

Iterator<E> iterator()

• Returns: an iterator over the elements in this set

5

interface Map<K,V>
Type Parameters:

• K - the type of keys maintained by this map

• V - the type of mapped values

boolean containsKey(Object key)

• Returns: true if this map contains a mapping for the specified key.

V get(Object key)

• Returns: the value to which the specified key is mapped, or null if this map contains no
mapping for the key.

V put(K key, V value)

Associates the specified value with the specified key in this map (optional operation).
If the map previously contained a mapping for the key, the old value is replaced by
the specified value. (A map m is said to contain a mapping for a key k if and only if
m.containsKey(k) would return true.)

• Parameters:
key - key with which the specified value is to be associated

value - value to be associated with the specified key

• Returns: the previous value associated with key, or null if there was no mapping for key.
(A null return can also indicate that the map previously associated null with key, if the
implementation supports null values.)

Set<K> keySet()

Returns a Set view of the keys contained in this map. The set is backed by the map, so
changes to the map are reflected in the set, and vice-versa. The set supports element re-
moval, which removes the corresponding mapping from the map, via the Set.remove

operation. It does not support the Set.add operation.

6

C Java Code

C.1 Graph

1
2 / * *
3 * A Graph c o n t a i n s a s e t o f nodes a long w i t h a d d i t i o n a l i n f o r m a t i o n about
4 * edges between them .
5 * @param <Node> − t h e t y p e o f nodes i n t h e graph
6 * /
7 interface Graph<Node> {
8
9 / * F o l l o w s t h e same s p e c i f i c a t i o n as Set<Node> * /

10 boolean add(Node n);
11
12 / * F o l l o w s t h e same s p e c i f i c a t i o n as Set<Node> * /
13 boolean contains(Object o);
14
15 / * *
16 * Adds an edge t o t h e graph f rom node s r c t o node t g t . The nodes
17 * s r c and t g t a re a l s o added t o t h e graph .
18 * @param s r c − t h e source node o f t h e edge
19 * @param t g t − t h e t a r g e t node o f t h e edge
20 * @throws C l a s s C a s t E x c e p t i o n − i f t h e c l a s s o f t h e s r c o r t g t
21 * p r e v e n t s i t f rom be ing added t o t h i s s e t o f nodes
22 * @throws I l l e g a l A r g u m e n t E x c e p t i o n i f e i t h e r s r c o r t g t i s n o t a v a l i d
23 * node f o r t h e graph
24 * /
25 void addEdge(Node src, Node tgt);
26
27 / * *
28 * Re tu rns t h e s e t o f t a r g e t nodes r e a c h a b l e by f o l l o w i n g edges
29 * w i t h t h e source s r c . These are t h e immed ia te n e i g h b o r s o f s r c .
30 * @param s r c
31 * @return − s e t o f nodes r e a c h a b l e by f o l l o w i n g edges w i t h source s r c
32 * @throws − NoSuchElementExcept ion i f node s r c i s n o t i n t h e graph
33 * /
34 Set<Node> neighbors(Node src);
35
36 / * *
37 * De te rmines whether t h e r e i s a pa th f rom s r c t o t g t f o l l o w i n g
38 * edges o f t h e graph .
39 * @param s r c − s t a r t node o f t h e pa th
40 * @param t g t − end node o f t h e pa th
41 * @return − t r u e i f t h e r e i s a sequence o f edges c o n n e c t i n g s r c t o t g t
42 * @throws NoSuchElementExcept ion i f e i t h e r s r c o r t g t i s n o t a node o f
43 * t h e graph
44 * /
45 boolean hasPath(Node src, Node tgt);
46 }

7

C.2 AbstractGraph

1
2 / * *
3 * P r o v i d e s t h e hasPath o p e r a t i o n i m p l e m e n t a t i o n f o r Graph<Node>
4 *
5 * Assumes : Node imp lements t h e Comparable<Node> i n t e r f a c e .
6 * * /
7 abstract class AbstractGraph<Node> implements Graph<Node> {
8
9 public boolean hasPath(Node src, Node tgt) {

10 / * Check t h a t t h e s r c and t g t a re i n t h e graph . * /
11 if (!this.contains(src) || !this.contains(tgt)) {
12 throw new NoSuchElementException();
13 }
14
15 / * t h e s e t o f nodes a l r e a d y v i s i t e d , used t o p r e v e n t i n f i n i t e l o o p s * /
16 Set<Node> alreadyVisited = new TreeSet<>();
17
18 / * t h e l i s t o f nodes s t i l l t o v i s i t * /
19 LinkedList<Node> toSearch = new LinkedList<>();
20 toSearch.add(src);
21
22 / * pe r f o rm bread th − f i r s t sea rch t h r o u g h t h e graph * /
23 while(!toSearch.isEmpty()) {
24 Node current = toSearch.removeFirst();
25 alreadyVisited.add(current);
26
27 if (current.equals(tgt)) return true;
28
29 for(Node n : this.neighbors(current)) {
30 if (!alreadyVisited.contains(n)) {
31 toSearch.addLast(n);
32 }
33 }
34 }
35 return false;
36 }
37 }

8

C.3 ArrayGraph

1 class ArrayGraph extends AbstractGraph<Integer> {
2
3 private final boolean[] nodes;
4 private final boolean[][] edges;
5
6 / * *
7 * C o n s t r u c t s a graph capab le o f s t o r i n g a t most maxNodes nodes
8 * @param maxNodes − t h e maximum number o f nodes t h a t m igh t be i n t h e graph
9 * /

10 public ArrayGraph(int maxNodes) {
11 nodes = new boolean[maxNodes];
12 edges = new boolean[maxNodes][maxNodes];
13 }
14
15 / * He lpe r method t o d e t e r m i n e v a l i d i t y o f a r r a y i n d i c e s . * /
16 private boolean valid(Integer n) {
17 return (0 <= n && n < nodes.length);
18 }
19
20 @Override
21 public boolean add(Integer n) {
22 if (!valid(n)) { throw new IllegalArgumentException(); }
23 if (nodes[n]) { return false; }
24 nodes[n] = true;
25 return true;
26 }
27
28 @Override
29 public boolean contains(Object o) {
30 if (o == null || Integer.class != o.getClass()) return false;
31 Integer n = (Integer) o;
32 return valid(n) && nodes[n];
33 }
34
35 @Override
36 public void addEdge(Integer src, Integer tgt) {
37 add(src);
38 add(tgt);
39 edges[src][tgt] = true;
40 }
41
42 @Override
43 public Set<Integer> neighbors(Integer src) {
44 if (!this.contains(src)) { throw new NoSuchElementException(); }
45
46 Set<Integer> nbrs = new TreeSet<>();

43 / * TODO * /
44 }
45 }

9

C.4 GraphApp

1
2 / * *
3 * Reads a graph f rom a f i l e and p r i n t s o u t pa th i n f o r m a t i o n
4 * /
5 public class GraphApp {
6
7 public static Graph<Integer> readGraph(Reader r) throws IOException {
8 Graph<Integer> g = new TreeGraph();
9 BufferedReader b = new BufferedReader(r);

10
11 for(String s = b.readLine(); s != null; s = b.readLine()) {
12 String[] edge = s.split(" -> ");
13 Integer src = Integer.parseInt(edge[0]);
14 Integer tgt = Integer.parseInt(edge[1]);
15 g.addEdge(src, tgt);
16 }
17
18 return g;
19 }
20
21 public static void main(String[] args) {
22 String filename = "files/example.txt";
23
24 try {
25 Graph<Integer> g = readGraph(new FileReader(filename));
26 for(int src = 0; src < 10; src++) {
27 if (g.contains(src)) {
28 System.out.print(src + " ==>");
29 for (int tgt = 0; tgt < 10; tgt++) {
30 if (g.contains(tgt)) {
31 if (g.hasPath(src, tgt)) System.out.print(" " + tgt);
32 }
33 }
34 System.out.println();
35 }
36 }
37 } catch (FileNotFoundException e) {
38 System.out.println("File " + filename + " not found.");
39 } catch (IOException e) {
40 System.out.println("IO Error");
41 }
42 }
43 }

10

	OCaml Code
	JavaDocs
	Java Code
	[language=Java,backgroundcolor=white]Graph
	[language=Java,backgroundcolor=white]AbstractGraph
	[language=Java,backgroundcolor=white]ArrayGraph
	[language=Java,backgroundcolor=white]GraphApp

